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Abstract

For � a Fuchsian Group of the first kind, we obtain large sieve inequalities with weights
the hyperbolic periods of Maass forms of even weight. This is inspired by work of
Chamizo, who proved a large sieve inequality with weights values of Maass forms of
weight 0. The motivation is applications in counting problems in �1\�/�2, where �1,
�2 are hyperbolic subgroups of �.
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1 Introduction
In Analytic Number Theory, a large sieve inequality is an inequality that provides a non-
trivial estimate for an exponential sum, with respect to themean square of the coefficients.
Large sieve inequalities are important, for example, in the study of averages of exponential
sums, and spectral sums in general. A representative example is the following:

Theorem 1 (Bombieri, [3]) Let (an)n be a sequence of complex numbers and let
x1, . . . , xR ∈ R/Z be such that

∥
∥xμ − xν

∥
∥ > δ for every μ �= ν and some δ > 0, where ‖x‖

denotes the distance of x from the closest integer. Then,

R
∑

ν=1

∣
∣
∣
∣
∣
∣

∑

n≤N
ane2π inxν

∣
∣
∣
∣
∣
∣

2

� (

N + δ−1)
∑

n≤N
|an|2 .

Of particular interest in modern analytic number theory is the harmonic analysis in �\H,
where � is a Fuchsian group of the first kind andH = {

z = x + iy ∈ C
∣
∣ y > 0

}

, the upper
half-plane. An example of a large sieve inequality in this setting is the one introduced
by Jutila in [17]. This was used by Nordentoft–Petridis–Risager in [20], to study the
mean square of shifted convolution sums for Hecke eigenforms. In [4] and [5], Chamizo
considered another large sieve inequality for �\H, more closely related to our work. We
now describe the setup for his work.
We denote by hm the space of L2(H)- functions that transform as

F (γ z) = j2mγ (z)F (z)
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under �, where for γ =
(

a b
c d

)

we have

jγ (z) = cz + d
∣
∣cz + d

∣
∣
.

Let

Dm = y2
(

∂2

∂x2
+ ∂2

∂y2

)

− 2imy
∂

∂x

be the Laplacian in hm. Here, L2(H) is the space of functions f such that
〈

f, f
〉

finite, where,
for f, g such that f · g well-defined in �\H, we define

〈

f, g
〉

:=
∫

�\H
f (z) · g(z) dx dy

y2
.

Fix a real-valued orthonormal h0-eigenbasis
(

u0,j
)

j with respect toD0, with corresponding
eigenvalues

(

λj
)

j . Let also Ea (z, s) denote the Eisenstein series with respect to the cusp a

(see [16, (3.11)]). Chamizo proved the following theorem.

Theorem 2 (Chamizo, [4]) Let z ∈ �\H. Let (an)n be a sequence of complex numbers,
and, for every cusp a, let aa(t) be a continuous function. Furthermore, let T, X > 1 and
x1, . . . , xR ∈ [X, 2X]. If |xν − xμ| > δ > 0 for ν �= μ, then

R
∑

ν=1

∣
∣
∣
∣

∑

|tj |≤T
ajx

itj
ν u0,j(z) + 1

4π
∑

a

∫ T

−T
aa(t)xitν Ea(z, 1/2 + it) dt

∣
∣
∣
∣

2
�

(

T 2 + XTδ−1
)

||a||2∗ ,

where

||a||∗ =
( ∑

|tj |≤T
|aj|2 + 1

4π
∑

a

∫ T

−T
|aa(t)|2 dt

)1/2
.

Sums involving the exponential Xitj appear in the error term of hyperbolic counting
problems, when estimated using spectral methods.When improvements in upper bounds
for the error term are very difficult, we often consider itsmean square instead.One famous
example is the error term of the prime geodesic theorem. Cherubini and Guerreiro in [8]
proved an upper bound for the mean square error of the prime geodesic theorem. Balog
et al in [1] improved their result.
Large sieve inequalities involving the exponential Xitj are used in the study of the mean

square of such error terms, as they provide cancellations when averaging over different
values of X . In particular, Chamizo uses Theorem 2 to provide upper bounds for the
mean square of the error term in the classical hyperbolic lattice-counting problem (see
[5, Prop 2.1, Cor 2.1.1]). Theorem 2 has also been used by Chatzakos–Petridis to prove an
analogous upper bound for the mean square error term in the hyperbolic lattice problem
in �1\�/�2, where �1 and �2 are a hyperbolic and an elliptic subgroup of � respectively
(see [7, Thm 1.2]). Both of these problems are cases of the nine double-coset hyperbolic
counting problems studied by A. Good in [10]. In this paper, we prove a family of new
large sieve inequalities for periods ofMaass forms, that will be crucial in upcoming results
for the mean square error term in the case when �1 and �2 are both hyperbolic.
We define the Maass raising operators by

Km = (z − z̄)
∂

∂z
+ m.
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It can be shown that Km maps hm to hm+1 (see [21, p.308]). Furthermore, for any m, the
functions

(

um,j
)

j defined recursively by

um+1,j = i
√

λj + m2 + m
· Kmum,j

form an orthonormal hm-eigenbasis forDm with the same corresponding eigenvalues (see
[9, p. 146, eq. 11]). In a similar manner, we define

Ea,0 (z, s) := Ea (z, s) , Ea,m+1 (z, s) := i
√

1/4 + t2 + m2 + m
· KmEa,m (z, s) .

Let �1 be a hyperbolic subgroup of �, fixing the geodesic l in �\H. We further define the
periods

ûm,j :=
∫

l
um,j(z)ds(z), Êa,m(s′) :=

∫

l
Ea,m

(

z, s′
)

ds(z),

where ds(z) is the Poincaré metric defined by

ds(z)2 = y−2 (

dx2 + dy2
)

.

We prove large sieve inequalities analogous to Theorem 2, with weights ûm,j instead of
u0,j(z).

Theorem 3 Let m be a non-negative integer. Let T, X > 1 and x1, . . . , xR ∈ [X, 2X]. If
|xν − xμ| > δ > 0 for ν �= μ, then

R
∑

ν=1

∣
∣
∣

∑

|tj |≤T
ajx

itj
ν ûm,j + 1

4π
∑

a

∫ T

−T
aa(t)xitν Êa,m(1/2 + it) dt

∣
∣
∣

2 � (

T + Xδ−1)||a||2∗,

where the implicit constant depends on the geodesic segment l and the group �.

Remark 1 As we prove in Sect. 4, it is easy to show the relations

ûm+2,j = −
√

m2 + m + λj

m2 + 3m + 2 + λj
ûm,j ,

Êa,m+2(s) = −
√

m2 + m + s(1 − s)
m2 + 3m + 2 + s(1 − s)

Êa,m(s). (1)

It follows that it is enough to prove the theorem form = 0 andm = 1.

1.1 Preliminaries

By conjugating the group, we assume that l lies on the imaginary axis, which we denote
by I . We denote by len(l) the hyperbolic length of l:

len(l) :=
∫

l
1 ds(z).

For z = x + iy ∈ C, we define the Huber coordinates (u, v) as follows:

u(z) = log |z|, v(z) = − arctan
(
x
y

)

,

or, equivalently,

x = −eu sin v, y = eu cos v.
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We note that, for γ diagonal, we have

u (γ z) = u(z) + log λ,

where λ is the norm of γ , and

v (γ z) = v(z).

Note further that v(z) can be interpreted as the anticlockwise angle formed between
z = ieu+iv and the positive imaginary axis. The following two transforms are used in the
study of the hyperbolic-hyperbolic case of the double coset counting problem:

d(0)t (f ) =
∫ π

2

0

1
cos2 v

f
(

1
cos2 v

)

· 2F1
(
s
2
,
1 − s
2

;
1
2
;− tan2 v

)

dv, (2)

d(1)t (f ) =
∫ π

2

0

tan2 v
cos2 v

f
(

1
cos2 v

)

· 2F1
(
s + 1
2

,
2 − s
2

;
3
2
;− tan2 v

)

dv, (3)

where s = 1/2 + it. In this paper, instead of using the formulas (2) and (3) directly, we
express d(0)t and d(1)t in terms of the Selberg/Harish-Chandra transform (see the proof of
Proposition 1).
The transform d(0)t (f ) is called the Huber transform of f , and it appears in the spectral

expansion of the Huber series A(0)
f (z) (see [15, eq. (4),(26)]), defined by

A(0)
f (z) :=

∑

γ∈�1\�
f
(

1
cos2 (v(γ z))

)

.

This is an automorphizationof f composedwith 1/ cos2 (v(z)),with respect to�1\�, where
1/ cos2 (v(z)) is associated to the hyperbolic distance of z from the imaginary axis, ρ(z, I),
via the relation 1/ cos2 (v(z)) = cosh2 ρ(z, I). Huber in [15] and Chatzakos–Petridis in [7]
study the elliptic-hyperbolic double coset counting problem using the spectral expansion
of the Huber series. The first author in his thesis [18] used this spectral expansion to find
a relative trace formula, which he used in the study of the hyperbolic-hyperbolic double
coset problem.
On the other hand, the transform d(1)t (f ) appears in the spectral expansion of the series

A(1)
f (z), defined by

A(1)
f (z) :=

∑

γ∈�1\�
tan (v (γ z))f

(
1

cos2 (v (γ z))

)

.

In [22], the second author proves a refined version of the hyperbolic-hyperbolic double
coset counting problem, using the spectral expansion of A(1)

f (z). This refined version is
important for certain arithmetic applications regarding totally real quadratic fields. Such
applications have also been studied by Hejhal in the series of papers [12–14], without
detailed proofs.
In particular, we have the following spectral expansions.

Theorem 4 ( [7,22]) Assume that � is a Fuchsian Group of the first kind. For f a con-
tinuous, piecewise differentiable function with exponential decay at infinity, we have the
following spectral expansions:

(a) A(0)
f (z) = 2

∑

j
d(0)tj (f )û0,ju0,j(z) −

∑

a

i
2π

∫

(1/2)
d(0)t (f )Êa,0 (s)Ea,0 (z, s)ds,
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(b) A(1)
f (z) = 2

∑

j

√

λjd(1)tj (f )û1,ju0,j(z)

−
∑

a

i
2π

∫

(1/2)

√

s(1 − s) · d(1)t (f )Êa,1 (s)Ea,0 (z, s)ds.

Remark 2 We note that, while u1,j(z) is not necessarily real-valued over C, the periods
û1,j always are. Indeed,

u1,j(z) := i
√

λj
K0u0,j(z) = ie−iv

√

λj
cos v

(
∂

∂u
− i

∂

∂v

)

u0,j(z)

and, hence, by periodicity of u0,j(z) with respect to the parameter u,

û1,j :=
∫

l
u1,j(z)ds(z) =

∫ len(l)

0
u1,j(z) du = λ

−1/2
j

∫ len(l)

0

∂

∂v
u0,j(z) du,

is real, as u0,j(z) is real valued. The lack of conjugating the second factor in the spectral
expansions is, therefore, justified.

A main ingredient in our proof is the following pair of relative trace formulae, used in the
study of the hyperbolic-hyperbolic problem in [18] and [22].

Theorem 5 (Relative Trace Formulae [18,22]) Let f be a real, continuous, piecewise
differentiable function with exponential decay. Let ε be equal to 1 if � has an element with
zero diagonal entries, and 0 otherwise. Then, we have

(a) (1 + ε)f (1)len(l) +
∑

γ∈�1\�/�1−id
g0 (B(γ ); f ) = 2

∑

j
d(0)tj (f )û20,j +E(a)(f ),

(b) (1 − ε)f (1)len(l) +
∑

γ∈�1\�/�1−id
g1 (B(γ ); f ) = 2

∑

j
λjd(1)tj (f )û21,j +E(b)(f ),

where B(γ ) = ad + bc, len(l) is the hyperbolic length of l,

g0(u; f ) := 2
∫ ∞
√

max(u2−1,0)

f
(

x2 + 1
)

√
x2 + 1 − u2

dx =
∫ ∞

max(u2 ,1)

f (t)√
t − u2

dt√
t − 1

,

g1(u; f ) := u · g0
(

u; f + 2
√
x − 1 · f ′) ,

and

E(a)(f ) := −
∑

a

i
2π

∫

(1/2)
d(0)t (f )

∣
∣Êa,0 (s)

∣
∣
2 ds,

E(b)(f ) := −
∑

a

i
2π

∫

(1/2)
s(1 − s)d(1)t (f )

∣
∣Êa,1 (s)

∣
∣
2 ds.

Proof For the proof of (a), for � cocompact and ε = 0, see [18, §3.1]. The general case is
similar. For the proof of (b), see [22, §3, §8]. ��
Remark 3 It is worth noting that in the case ε = 1 the second part of the theorem is
trivial, as both sides of the equation are identically 0. We can see this by considering the
automorphism γ ↔ γ ′γ , where γ ′ has zero diagonal entries.

Remark 4 For |B(γ )| > 1, the quantity cosh−1 B(γ ) is the hyperbolic distance of l from
γ · l. The case |B(γ )| ≤ 1 corresponds to the cases where l and γ · l intersect. See for
example [19, Lemma 1].
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Remark 5 It is worth noting that the first relative trace formula does not take into account
the sign of B(γ ), where the second one does. The sign of B(γ ) specifies the direction of
γ · l and is importance, for instance, for certain arithmetic applications. For more details,
see [22].

1.2 Summary

In Sect. 2, by writing the series A(0)
f (z) and A(1)

f (z) in terms of integrals of automorphic
kernels (Lemma 1) and, using knownproperties of the spectral coefficients of such kernels,
we deduce inversion formulas for f in terms of d(0)t (f ) and d(1)t (f ) (Proposition 1). We use
these inversion formulas to deduce Lemma 2, a pair of useful upper bounds for f with
respect to d(0)t (f ) and d(1)t (f ) respectively. In Sect. 3, we use Lemma 2 to establish some
technical estimates that will be used later. In Sect. 4, we follow an argument similar to
Chamizo [4] to finish the proof of Theorem 3. We use the relative trace formulae from
Theorem 5 for particular choices of d(0)t (f ), d(1)t (f ), and the bounds established in Sect. 3.

2 Inversion formulae
In this section we explain the relation between the transforms d(0)t (f ), d(1)t (f ) and the
Selberg/Harish-Chandra transform. We use this relation to derive inversion formulas for
f in terms of d(0)t (f ) and d(1)t (f ).
Consider the automorphic kernel

K (z, w) =
∑

γ∈�

k(γ z, w),

where k(z, w) := k(u(z, w)) is a function of the fundamental point pair invariant,

u(z, w) = |z − w|2
4�z�w .

Define

F (z ; θ | k) =
∫

I/�1
K (z, eiθw)ds(w).

We will show that, for k an appropriate transform of f , every Huber series A(0)
f (z) can be

written in the form F (z; 0 | k) and vice versa. Similarly, we show that every series A(1)
f (z)

can be written in the form F ′(z; 0 | k), where the derivative is taken with respect to θ .

Lemma 1 For every z ∈ H, we can relate the series A(0)
f (z) and A(1)

f (z) to integrals of
automorphic kernels in the following way.

(a) We have

A(0)
f0 (z) = F (z; 0 | k0), (4)

where f0 and k0 are continuous, piecewise differentiable functions with exponential
decay at infinity related via the formula

f0(p) = 2
∫ +∞

√p
k0

(
x − 1
2

)
dx

√

x2 − p
, p ≥ 1, (5)

and, conversely,

k0(u) = −2u + 1
π

∫ +∞

(2u+1)2
f ′
0(p)

dp
√

p − (2u + 1)2
. (6)
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(b) We have

A(1)
f1 (z) = F ′(z; 0 | k1), (7)

where f1 and k1 are continuous, piecewise differentiable functions with exponential
decay at infinity, related via the formula

f1(p) = −
∫ +∞

√p
k ′
1

(
x − 1
2

)
dx

√

x2 − p
, p ≥ 1, (8)

and, conversely,

k ′
1(u) = 4u + 2

π

∫ +∞

(2u+1)2
f ′
1(p)

dp
√

p − (2u + 1)2
. (9)

Proof We have:

F (z ; θ | k) =
∑

γ∈�1\�

∑

γ0∈�1

∫

I/�1
k(u(γ z, γ −1

0 eiθw))ds(w)

=
∑

γ∈�1\�

∫

I
k(u(γ z, eiθw))ds(w) =

∑

γ∈�1\�
k̃(γ z; θ ),

where

k̃(z; θ ) :=
∫

I
k(u(z, eiθw))ds(w) =

∫ +∞

0
k(u(z, ieiθ t))

dt
t
.

Writing z = x + iy, we have

u(z, ieiθ t) = (x + t sin θ )2 + (y − t cos θ )2

4yt cos θ

=
(
x2 + y2

y2
· y
4t

+ t
4y

)

· sec θ + x
2y

tan θ − 1
2
.

In particular,

u(z, it) = x2 + y2

y2
· y
4t

+ t
4y

− 1
2
,

∂

∂θ
u(z, ieiθ t)

∣
∣
∣
∣
θ=0

= x
2y

= −1
2
tan v(γ ).

For (a), setting r = t/y, we have

k̃(z; 0) =
∫ +∞

0
k

(
p
4r

+ r
4

− 1
2

)
dr
r
,

where p = p(z) = (x2 + y2)/y2 = 1/ cos2 v(z). Hence, for f0(p) := k̃0(z; 0), we have

A(0)
f0 (z) = F (z; 0 | k0).

We are now left to verify the conversion formulae (5) and (6).
Under the change of variables u = (p/2r + r/2)2 and x = √

u we get

f0(p) =
∫ +∞

p
k0

(√
u − 1
2

)
du√

u
√
u − p

= 2
∫ +∞

√p
k0

(
x − 1
2

)
dx

√

x2 − p
,

as required. Using the inversion formula for Weyl integrals from [16, Eq. 1.64,1.62], we
have

u−1/2 · k0
(√

u − 1
2

)

= − 1
π

∫ +∞

u
f ′
0(v)

dv√
v − u

.
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In other words,

k0(u) = −2u + 1
π

∫ +∞

(2u+1)2
f ′
0(v)

dv
√

v − (2u + 1)2
.

For part (b), setting once again r = t/y, we have

∂

∂θ
k̃(z; θ )

∣
∣
∣
∣
θ=0

= −1
2
tan v(z)

∫ +∞

0
k ′

(
p
4r

+ r
4

− 1
2

)
dr
r
.

Hence, for

f1(p) := −1
2

∫ +∞

0
k ′
1

(
p
4r

+ r
4

− 1
2

)
dr
r
,

we have

A(1)
f1 (z) = F ′(z; 0 | k1).

The conversion formulae (8) and (9) follow in a similar manner as in part (a).
��

The spectral expansion of F (z ; 0 | k) and F ′(z ; 0 | k) can be easily deduced from the
well-known spectral expansion of K (z, w) (see [16, (7.17)]). In particular, let hk (t) be
the Selberg/Harish-Chandra transform of k (see [16, Eq. 1.62]). We have that

F (z; 0 | k) =
∑

j
hk (tj)û0,ju0,j(z) −

∑

a

i
4π

∫

(1/2)
hk (t)Êa,0 (s)Ea,0 (z, s)ds,

F ′(z; 0 | k) =
∑

j

√

λjhk (tj)û1,ju0,j(z) −
∑

a

i
4π

∫

(1/2)

√

s(1 − s) · hk (t)Êa,1 (s)Ea,0 (z, s)ds.

We combine these spectral formulas with Theorem 4 and equate the spectral expansions
of the two sides of the equations (4) and (7) from Lemma 1. We then use the inversion
formula for hk (see [16, Eq. 1.64]) to prove the following inversion formulae for d(0)t (f )
and d(1)t (f ).

Proposition 1 Let f a continuous, piecewise differentiable functionwith exponential decay
at infinity, d(0)t (f ) and d(1)t (f ) as in equations (2) and (3) respectively, and

I(W,R) := −2
√
2

π

∫ 1

0

(2W + (R − W )y)−1/2
√

y(1 − y)
dy. (10)

We can recover f from d(0)t (f ) and d(1)t (f ) in the following way:

(a) The function f can be written in the form

f (cosh2 w) =
∫ +∞

w
ω′(ρ)I(coshw, cosh ρ)dρ, (11)

where

ω(ρ) = 1
2π

∫ +∞

−∞
eiρtd(0)t (f )dt. (12)

(b) The function f can be written in the form

f (cosh2 w) =
∫ +∞

w
κ ′(ρ)I(coshw, cosh ρ)dρ, (13)
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where

κ(ρ) = i (sinh ρ)−1

π

∫ +∞

−∞
eiρt td(1)t (f )dt. (14)

Proof Using the inversion formula for hk (see [16, Eq. 1.64]), we have

k(u) = − 1
π

∫ +∞

u

q′(v)√
v − u

dv, (15)

where

q(sinh2 (ρ/2)) := 1
4π

∫ +∞

−∞
eiρth(t)dt.

Using the substitution v = sinh2 (ρ/2), we rewrite this as

k
(
x − 1
2

)

= −
√
2

2π

∫ +∞

cosh−1 x

sinh ρ · q′
(

sinh2 (ρ/2)
)

√

cosh ρ − x
dρ.

For part (a), take f0 = f and k0 as in Eq. (6). Equating the spectral coefficients of both
sides of Eq. (4), we deduce that

hk0 (t) = 2d(0)t (f ),

and, hence,

k0
(
x − 1
2

)

= −
√
2

π

∫ +∞

cosh−1 x

ω′(ρ)
√

cosh ρ − x
dρ,

where ω(ρ) is given by Eq. (12). We now substitute into Eq. (11), giving

f (p) = 2
∫ +∞

√p
k

(
x − 1
2

)
dx

√

x2 − p

= −2
√
2

π

∫ +∞
√p

∫ +∞

cosh−1 x

ω′(ρ)
√

cosh ρ − x
dρ · dx

√

x2 − p
.

Changing the order of integration and letting p = cosh2 w, we have

f (cosh2 w) =
∫ +∞

w
ω′(ρ)I(coshw, cosh ρ)dρ,

where, forW < R,

I(W,R) = −2
√
2

π

∫ R

W

1
√

(R − x)
(

x2 − W 2)
dx.

Using the substitution x = W + (R − W )y, we have

I(W,R) = −2
√
2

π

∫ 1

0

(2W + (R − W )y)−1/2
√

y(1 − y)
dy,

as required. For the caseW = R, we define I(W,W ) by continuity.
For part (b), we start by differentiating Eq. (15) in the following manner. Using integra-

tion by parts on Eq. (15), we have

k(u) = 2
π

∫ +∞

u
q′′(v)

√
v − u dv.

Hence, by Leibniz integral rule,

k ′(u) = − 1
π

∫ +∞

u

q′′(v)√
v − u

dv,
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which after the substitution v = sinh2 (ρ/2) and u = (x − 1)/2 becomes:

k ′
(
x − 1
2

)

= −
√
2

2π

∫ +∞

cosh−1 x

sinh ρ · q′′
(

sinh2 (ρ/2)
)

√

cosh ρ − x
dρ.

Take f1 = f and k1 as defined in Eq. (9). Equating the spectral coefficients of both sides of
Eq. (7), we deduce that

hk1 (t) = 2d(1)t (f ),

and hence, similarly with part (a), we have

f (cosh2 w) =
∫ +∞

w
κ ′(ρ)I(coshw, cosh ρ)dρ,

where

κ(ρ) = q′(sinh2 (ρ/2)) = 2
sinh ρ

(

q(sinh2 (ρ/2))
)′ = i (sinh ρ)−1

2π

∫ +∞

−∞
eiρt td(1)t (f )dt,

as in Eq. (14).
��

Remark 6 Using the integral representation of the hypergeometric function (see [11,
9.111]), we can show that I(W,R) can be written in terms of a hypergeometric function.
In particular,

I(W,R) = −2W−1/2 · 2F1
(
1
2
,
1
2
; 1;

W − R
2W

)

.

We conclude this section by using the inversion formulae from Proposition 1, to derive
the following estimates.

Lemma 2 Let f ,ω and κ as in Proposition 1. Furthermore, let τ (w) := κ(w) sinhw.Assume
that, as w tends to infinity, both τ (w) and ω(w) tend to zero. Then, for every w ≥ 0, we have

(a) f (cosh2 w) � |ω(w)| +
∫ +∞

w
|ω(ρ)|dρ,

(b)
(

sinhw · f
(

cosh2 w
))′ � |τ ′(w)| + |τ (w)| +

∫ +∞

w
|τ (ρ)|dρ.

Proof For part (a), applying integration by parts on Eq. (11), we have

f (cosh2 w) = −ω(w)I(coshw, coshw) −
∫ +∞

w
ω(ρ) sinh ρ

∂I
∂R

(coshw, cosh ρ)dρ.

On the other hand, we have

I(W,R) = −2
√
2

π

∫ 1

0

(2W + (R − W )y)−1/2
√

y(1 − y)
dy �

∫ 1

0

W−1/2
√

y(1 − y)
dy � W−1/2, (16)

where we used the fact that
∫ 1

0

1
√

y(1 − y)
dy = π < +∞.
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By differentiating Eq. (10) with respect to R and proceeding in a similar manner, we also
have

∂I
∂R

(W,R) =
√
2

π

∫ 1

0
y · (2W + (R − W )y)−3/2

√

y(1 − y)
dy �

∫ 1

0
y · W−3/2

√

y(1 − y)
dy

� W−3/2. (17)

On the other hand,
∂I
∂R

(W,R) =
√
2

π

∫ 1

0
y · (2W + (R − W )y)−3/2

√

y(1 − y)
dy

�
∫ 1

0

y
2W + (R − W )y

· W−1/2
√

y(1 − y)
dy � (R − W )−1W−1/2. (18)

Combining Eq. (17) with Eq. (18), we have
∂I
∂R

(W,R) � R−1W−1/2.

We deduce

f (cosh2 w) � |ω(w)| +
∫ +∞

w
|ω(ρ)|dρ,

as required.
For part (b), applying integration by parts on Eq. (13), and noting that

I(W,W ) = −2
√
2

π

∫ 1

0

(2W )−1/2
√

y(1 − y)
dy = −2W−1/2

π

∫ 1

0

1
√

y(1 − y)
dy = −2W−1/2,

we have

sinhw · f
(

cosh2 w
)

= − 2√
coshw

· τ (w) − sinhw
∫ +∞

w
τ (ρ) · ∂I

∂R
(coshw, cosh ρ) dρ.

Therefore,
d
dw

(

sinhw · f
(

cosh2 w
))

= tanhw√
coshw

· τ (w) − 2√
coshw

· τ ′(w)

− coshw
∫ +∞

w
τ (ρ) · ∂I

∂R
(coshw, cosh ρ) dρ

+ sinhw · τ (w) · ∂I
∂R

(coshw, coshw)

− sinh2 w
∫ +∞

w
τ (ρ) · ∂2I

∂W ∂R
(coshw, cosh ρ) dρ.

(19)

Differentiating Eq. (17), we have
∂2I

∂W ∂R
(W,R) = −3

√
2

2π

∫ 1

0
y(2 − y) · (2W + (R − W )y)−5/2

√

y(1 − y)
dy � W−5/2. (20)

Applying Eqs. (17) and (20) into Eq. (19), we deduce that
d
dw

(

sinhw · f
(

cosh2 w
))

� (coshw)−1/2 (|τ (w)| + |τ ′(w)|)

+ coshw
∫ +∞

w
|τ (ρ)| (coshw)−3/2 dρ

+ coshw · |τ (w)| · (coshw)−3/2

+ (coshw)2
∫ +∞

w
|τ (ρ)| (coshw)−5/2 dρ,
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and, hence:

d
dw

(

sinhw · f
(

cosh2 w
))

� |τ ′(w)| + |τ (w)| +
∫ +∞

w
|τ (ρ)|dρ.

��

3 Estimates for f
We now use Lemma 2 to establish some bounds for f0 and f1, for particular choices
of d(0)t (f0) and d(1)t (f1) that will be important in Sect. 4. In particular, the choices of the
transforms are such that d(0)t (f0) and (1/4 + t2)d(1)t (f1) are smoothings of the indicator of
[−T, T ] times the oscillation factor cos rt. This is analogous to [4, Lemma 3.1].

Lemma 3 . Let T, r be positive with T ≥ 1 and r � 1. Let f0, f1 be functions such that

d(0)t (f0) = e−t2/4T 2
cos(rt),

d(1)t (f1) = 1
2t2

e−t2/4T 2
(

1 − e−t2/4
)

cos (rt) .

The following inequalities hold:

(a) (i) For f0, we have

f0(cosh2 w) �
{

T · e−T 2(w−r)2 + 1, for w ≤ 2r,
T · e−T 2(w−r)2 , for w ≥ 2r.

In particular,

f0(1) � Te−T 2r2 + 1. (21)

(ii) For f1, we have

(

sinhw · f1(cosh2 w)
)′ �

{

T · e−T 2(w−r)2 + 1, for w ≤ 2r,
T · e−T 2(w−r)2 + e−2(w−r)2/3, for w ≥ 2r.

In particular,

f1(1) � Te−T 2r2 + 1. (22)

(b) Moreover, we can show that, for sinh−1 u ≥ 2r,

i)
∫ ∞

u

f0(x2 + 1)√
x2 − u2

dx � Te−T 2r2/2 · u−2 , (23)

ii)
∫ ∞

u

(

xf1(x2 + 1)
)′

√
x2 − u2

dx �
(

Te−T 2r2/2 + e−r2/2
)

· u−2. (24)

(c) Furthermore, for u � 1, we have:

i)
∫ ∞

0

f0(x2 + 1)√
x2 + u2

dx � 1, (25)

ii)
∫ ∞

0

(

xf1(x2 + 1)
)′

√
x2 + u2

dx � 1. (26)

Proof We start with the estimates related to f0:
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(a)-(i) As

dt (f0) = e−t2/4T 2
cos(rt),

using Eq. 12 and standard properties of the Fourier Transform (in particular, [2, 3.1.8,
3.2.23]), we have

ω(x) = T
2
√

π

(

e−T 2(x−r)2 + e−T 2(x+r)2
)

.

For x ≥ 0, we deduce

ω(x) � Te−T 2(x−r)2 .

Hence, by Lemma 2 (a),

f0(cosh2 w) � Te−T 2(w−r)2 + T
∫ +∞

w
e−T 2(ρ−r)2dρ

= Te−T 2(w−r)2 +
∫ +∞

T (w−r)
e−y2dy. (27)

For w > 2r, using Eq. (27) and the fact that, for x ≥ 0, the complementary error function
erfc(x) satisfies

erfc(x) := 2√
π

∫ +∞

x
e−y2dy = 2√

π

∫ +∞

0
e−(x+u)2du

≤ 2√
π

· e−x2 ·
∫ +∞

0
e−u2du = e−x2 , (28)

we have

f0(cosh2 w) � Te−T 2(w−r)2 + e−T 2(w−r)2

� Te−T 2(w−r)2 . (29)

On the other hand, for w < 2r, Eq. (27) gives

f0(cosh2 w) � Te−T 2(w−r)2 + 1. (30)

(b)-(i) For u > sinh 2r, using Eq. (29), we have, for every x ≥ u,

f0(x2 + 1) � Te−T 2(sinh−1 x−r)2 � Te−T 2r2/2 · e−T 2(sinh−1 x−r)2/2. (31)

On the other hand, for x ≥ 1,

T 2(sinh−1 x − r)2/2 ≥ T 2(sinh−1 x)2/8 ≥ (log x)2 /8,

giving

f0(x2 + 1) � Te−T 2r2/2 · e−(log x)2/8 � Te−T 2r2/2 · x−2.

It is easy to see that this bound is still valid if x < 1. Indeed, in that case, Eq. (31) gives

f0(x2 + 1) � Te−T 2r2/2 · e−T 2(sinh−1 x−r)2/2

� Te−T 2r2/2 � Te−T 2r2/2 · x−2.

Hence,



   73 Page 14 of 19 D. Lekkas Res. Number Theory          (2024) 10:73 

∫ +∞

u

f0(x2 + 1)√
x2 − u2

dx � Te−T 2r2/2
∫ +∞

u

1
x2

√
x2 − u2

dx

= Te−T 2r2/2 · u−2 ·
∫ +∞

1

1
y2

√

y2 − 1
dy

� Te−T 2r2/2 · u−2, (32)

as required.

(c)-(i) Finally, for u � 1,
∫ +∞

0

f0(x2 + 1)√
x2 + u2

dx �
∫ +∞

0

|f0(x2 + 1)|√
x2 + 1

dx.

Using Eq. (30) for 0 ≤ x ≤ sinh 2r and Eq. (29) for x ≥ sinh 2r,
∫ +∞

0

f0(x2 + 1)√
x2 + u2

dx �
∫ sinh 2r

0
1dx + T

∫ +∞

0

1√
x2 + 1

· e−T 2(sinh−1 x−r)2dx

� 1 + T
∫ +∞

0
e−T 2(w−r)2dw � 1, (33)

as required.
For the case of f1, we note that

τ (ρ) = i
π

∫ +∞

−∞
eiρt td(1)t (f1)dt = i

2π

∫ +∞

−∞
eiρt e−t2/4T 2

(

1 − e−t2/4

t

)

cos (rt) dt.

Using standard properties of the Fourier transform (in particular, [2, 3.1.8, 3.1.10, 3.2.23]),
we deduce that

τ (ρ) =
√

π

4
(erfc (T (ρ − r)) − erfc (B (ρ − r))

+erfc (T (ρ + r)) − erfc (B (ρ + r))) , (34)

where B = T/
√
T 2 + 1 = 1+o(1). Using the inequality (28) for x > 0, we have, for ρ > r,

τ (ρ) � e−T 2(ρ−r)2 + e−2(ρ−r)2/3. (35)

On the other hand, as erfc(x) is bounded, we have

τ (ρ) � 1, (36)

for every ρ ≥ 0. Furthermore, differentiating Eq. (34) gives

τ ′(ρ) = −1
2

(

Te−T 2(ρ−r)2 − Be−B2(ρ−r)2 + Te−T 2(ρ+r)2 − Be−B2(ρ+r)2
)

,

and hence

τ ′(ρ) � Te−T 2(ρ−r)2 + e−2(ρ−r)2/3. (37)

(a)-(ii) Using Eqs. (35) and (37), Lemma 2 b) gives that, for w > r,

(

sinhw · f1
(

cosh2 w
))′ � Te−T 2(w−r)2 + e−2(w−r)2/3

+
∫ +∞

w

(

Te−T 2(ρ−r)2 + e−2(ρ−r)2/3
)

dρ

� Te−T 2(w−r)2 + e−2(w−r)2/3,
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as required.
On the other hand, for w < r, by Eqs. (35), (36) and (37), Lemma 2(b) gives

(

sinhw · f1
(

cosh2 w
))′ � Te−T 2(w−r)2 + e−2(w−r)2/3 + 1 +

∫ r

w
1dρ

+
∫ +∞

r

(

Te−T 2(ρ−r)2 + e−2(ρ−r)2/3
)

dρ

� Te−T 2(w−r)2 + 1 + r + erfc(0) � Te−T 2(w−r)2 + 1,

as required.
(b)-(ii) and (c)-(ii) follow from (a)-(ii) in the samemanner as (b)-(i),(c)-(i) followed from

(a)-(i). ��

Remark 7 Alternatively, the result can also be proved by applying [6, Lemma 5.1] to
Lemma 1.

4 Proof of the sieve inequality
Applying the relative trace formula [18, (3.2)] for the function f of Lemma 3, and using
Lemma 3, we now prove Theorem 3.

Proof of Theorem 3 Wefirst derive Eq. (1), fromwhich it follows that it is enough to prove
the casesm = 0 andm = 1. Let cm :=

√

λj + m2 + m. By definition, we have

cm+1um+2,j = iKm+1um+1,j . (38)

On the other hand, by [9, eq. (3)&(8)], we have

cmum,j = iK−m−1um+1,j . (39)

Adding eq. (38) to eq. (39), and using the fact that

Km+1 = iy
(

∂

∂x
− i

∂

∂y

)

+ (m + 1),

we deduce that

cm+1um+2,j + cmum,j = 2iy
∂

∂y
um+1,j .

Hence, integrating along l with respect to ds(z), we have

cm+1ûm+2,j + cmûm,j =
∫

l
2iy

∂

∂y
um+1,j(z)ds(z)

= 2i
∫ λ

1

∂

∂y
um+1,j(iy)dy

= 2i
(

um+1,j(λ · i) − um+1,j(i)
) = 0,

whereλ = exp (len(l)). The last equality follows fromperiodicity ofum+1,j in theu variable.
Hence, we have

cm+1ûm+2,j = − cm
cm+1

ûm,j = −
√

m2 + m + λj

m2 + 3m + 2 + λj
ûm,j ,

as required. The relation for the periods of Eisenstein series follows in the same way.
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Form = 0, let

M =
R

∑

ν=1

∣
∣
∣

∑

|tj |≤T
ajx

itj
ν û0,j + 1

4π
∑

a

∫ T

−T
aa(t)xitν Êa,0(1/2 + it) dt

∣
∣
∣

2
.

By duality there exists a unit complex vector b = (b1, b2, . . . , bR), such that

M =
( R

∑

ν=1
bν

∣
∣
∣
∣
∣
∣

∑

|tj |≤T
ajx

itj
ν û0,j + 1

4π
∑

a

∫ T

−T
aa(t)xitν Êa,0(1/2 + it) dt

∣
∣
∣
∣
∣
∣

)2

.

After changing the order of summation and applying the Cauchy–Schwarz inequality on
the space CR, we get

M � ||a||2∗M̃ ,

where M̃ is defined as

M̃ =
∑

|tj |≤T

∣
∣
∣

R
∑

ν=1
bνx

itj
ν û0,j

∣
∣
∣

2 + 1
4π

∑

a

∫ T

−T

∣
∣
∣

R
∑

ν=1
bνxitν Êa,0(1/2 + it)

∣
∣
∣

2
dt.

We extend the summation for |tj| < T and integration for −T ≤ t ≤ T to the whole
spectrum using smooth weights that approximate the indicator of |t| < T from above. In
particular, we use weights of the form exp(−t2/4T 2), which decay rapidly at infinity and
are bounded away from zero in the interval [−T, T ]. We have

M̃ �
∑

j
exp

(

−t2j /4T
2
) ∣

∣
∣

R
∑

ν=1
bνx

itj
ν û0,j

∣
∣
∣

2

+
∑

a

∫ +∞

−∞
exp

(−t2/4T 2)
∣
∣
∣

R
∑

ν=1
bνxitν Êa,0(1/2 + it)

∣
∣
∣

2
dt.

After opening the squares and changing the order of summation we get

M � ||a||2∗ max
μ∈{1,2,...,R}

R
∑

ν=1

∣
∣Sνμ

∣
∣ , (40)

where we define

Sνμ =
∑

j
exp

(

−t2j /4T
2
)

cos(rνμtj )̂u20,j

+ 1
4π

∑

a

∫ +∞

−∞
exp

(−t2/4T 2) cos (rμνt)
∣
∣
∣Êa,0(1/2 + it)

∣
∣
∣

2
dt,

and

rνμ = | log(xν/xμ)| .
Since X ≤ xν , xμ ≤ 2X , we get

rνμ = | log(xν/xμ)| ≤ log 2

and, for μ �= ν, by the mean value theorem for log x,

rνμ ≥ |xν − xμ|
max

(

xν , xμ

) ≥ (j + 1)δ
2X

, (41)
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where j is the number of xi ’s between xν and xμ. Fixing r = rμν , let S := Sμν . From
Theorem 5 a), we have

S � f0(1)len(l) +
∑

γ∈�1\�/�1−id
2

∫ ∞
√

max(B2(γ )−1,0)

f0
(

x2 + 1
)

√

x2 + 1 − B2(γ )
dx,

where f0 is as in Lemma 3.
We can partition x1, . . . , xR into finitely many subsets such that each subset lies in an

interval of the form [ρiX, ρi+1X], whereρ = 1+ε, with ε > 0 a small fixednumber.Hence,
we can assume that rμν is smaller than any fixed constant (namely, smaller than log ρ). In
particular, we can assume that there is no γ with 1 < |B(γ )| ≤ cosh 2r. Therefore, using
Lemma 3, and in particular Eqs. (21) and (25), we deduce that

S � 1 + Te−r2T 2 +
∑

|B(γ )|>cosh 2r

∫ +∞
√

B2(γ )−1

f0(x2 + 1)
√

x2 + 1 − B2(γ )
dx.

From Lemma 3(b), we have
∑

|B(γ )|>cosh 2r

∫ +∞
√

B2(γ )−1

f0(x2 + 1)
√

x2 + 1 − B2(γ )
dx � Te−T 2r2/2 ·

∑

|B(γ )|>cosh 2r
(B2(γ ) − 1)−1.

Via partial summation, and the fact that #
{

γ ∈ �1\�/�1|
∣
∣B(γ )

∣
∣ ≤ X

} � X (see, for
example, [18, Theorem 1.2]), we deduce that

∑

|B(γ )|>cosh 2r

∫ +∞
√

B2(γ )−1

f0(x2 + 1)
√

x2 + 1 − B2(γ )
dx � Te−T 2r2/2,

and, therefore,

S � 1 + Te−T 2r2/2.

Hence, for fixed μ,
R

∑

ν=1
|Sμν | � R + T

R
∑

ν=1
e−T 2r2μν/2 � δ−1X + T

R
∑

ν=1
e−T 2r2μν/2. (42)

Furthermore, from Eq. (41), we have
R

∑

ν=1
e−T 2r2μν/2 � 1 +

R−1
∑

j=1
exp

(

− j2

8
·
(
Tδ

X

)2
)

� 1 +
∑

j<2
√
2X/δT

1 +
∑

j≥2
√
2X/δT

8
j2

·
(

X
Tδ

)2

� 1 + X
δT

+
(

X
Tδ

)2 ∑

j≥2
√
2X/δT

1
j2

� 1 + X
δT

+
(

X
Tδ

)2
· δT
X

� 1 + X
δT

. (43)

Combining Eq (42) and (43), we have
R

∑

ν=1
|Sμν | � δ−1X + T ·

(

1 + X
δT

)

� T + δ−1X.

Via Eq. (40), this concludes the proof of the theorem.
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For m = 1, for simplicity, assume � cocompact (for the general cofinite case, compare
with the proof ofm = 0 ). In a similar manner as in the casem = 0, let

M =
R

∑

ν=1

∣
∣
∣

∑

|tj |≤T
ajx

itj
ν û1,j

∣
∣
∣

2
.

Once again, by duality there exists a unit complex vector b = (b1, b2, . . . , bR), such that

M =
( R

∑

ν=1
bν

∑

|tj |≤T
ajx

itj
ν û1,j

)2

.

After changing the order of summation and applying the Cauchy–Schwarz inequality on
the space CR, we get

M � ||a||2∗M̃ ,

where M̃ is defined as

M̃ =
∑

|tj |≤T

∣
∣
∣

R
∑

ν=1
bνx

itj
ν û1,j

∣
∣
∣

2
.

In a similar manner as in the case m = 0, we extend the sum interval to the whole
spectrum. In order to apply Theorem 5 b), we need we want weights λj = |tj|2 + 1/4 to
appear. For that end, we modify the smooth coefficients chosen as follows:

M̃ �
∑

j

λj

t2j
exp

(

−t2j /4T
2
) (

1 − exp
(

−t2j /4
)) ∣

∣
∣

R
∑

ν=1
bνx

itj
ν û1,j

∣
∣
∣

2
.

After opening the squares and changing the order of summation we get

M � ||a||2∗ max
μ∈{1,2,...,R}

R
∑

ν=1

∣
∣Sμν

∣
∣ , (44)

where we define

Sμν =
∑

j

λj

t2j
exp

(

−t2j /4T
2
) (

1 − exp
(

−t2j /4
))

cos(rνμtj )̂u21,j .

From Theorem 5 b), we have

S � f1(1)len(l) +
∑

γ∈�1\�/�1−id
2B(γ )

∫ ∞
√

max(B2(γ )−1,0)

(

xf1
(

x2 + 1
))′

√

x2 + 1 − B2(γ )
dx,

where f1 is as in Lemma 3. The rest of the proof follows similarly with m = 0, using
Eqs. (22), (26) and (24) in place of Eqs. (21), (25) and (23). ��
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