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Abstract
The richness of many complex systems stems from the interactions among their
components. The higher-order nature of these interactions, involving many units at
once, and their temporal dynamics constitute crucial properties that shape the
behaviour of the system itself. An adequate description of these systems is offered by
temporal hypergraphs, that integrate these features within the same framework.
However, tools for their temporal and topological characterization are still scarce. Here
we develop a series of methods specifically designed to analyse the structural
properties of temporal hypergraphs at multiple scales. Leveraging the hyper-core
decomposition of hypergraphs, we follow the evolution of the hyper-cores through
time, characterizing the hypergraph structure and its temporal dynamics at different
topological scales, and quantifying the multi-scale structural stability of the system.
We also define two static hypercoreness centrality measures that provide an overall
description of the nodes aggregated structural behaviour. We apply the
characterization methods to several data sets, establishing connections between
structural properties and specific activities within the systems. Finally, we show how
the proposed method can be used as a model-validation tool for synthetic temporal
hypergraphs, distinguishing the higher-order structures and dynamics generated by
different models from the empirical ones, and thus identifying the essential model
mechanisms to reproduce the empirical hypergraph structure and evolution. Our
work opens several research directions, from the understanding of dynamic processes
on temporal higher-order networks to the design of new models of time-varying
hypergraphs.

Keywords: Temporal hypergraphs; Hyper-core decomposition;
Temporal-topological characterization; Multi-scale structural stability; Model
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1 Introduction
Many complex systems composed of interacting elements can be effectively described
within the theory of static networks [1–3]. This powerful framework provides a wide
set of techniques and tools to characterize the interactions at different topological scales,
through global graph properties (e.g. density), possibly focusing on specific groups of rel-
evant nodes (e.g. k-cores) and providing various measures of node centralities. Further-
more, this multi-scale characterization helps identify nodes and mesostructures with rel-
evant roles in dynamical processes, since the interaction structure deeply impacts pro-
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cesses unfolding on networks [3, 4]. Despite the power of network theory, recently several
empirical evidences have brought out the limits of this framework, which by definition is
restricted to a static description of systems involving only binary interactions.

On the one hand, several systems present time-varying interactions, which follow spe-
cific dynamics and temporal patterns [5–7]: for example, human social interactions [8],
scientific collaborations [9] and neural systems [5, 10]. These systems are represented us-
ing temporal networks, a generalization of static networks in which nodes interact via links
with specific activation and deactivation times [5, 6]. Several structural characterization
tools for static networks have been generalized to time-varying graphs, showing the non-
trivialities emerging from the introduction of the temporal dimension [5–7]: for instance,
span-cores can decompose a temporal graph into subgraphs of controlled duration and
increasing connectivity [11, 12]. Moreover, dynamic processes on temporal networks are
also impacted by the network dynamics, especially when the dynamics of and on the net-
work have comparable time scales [5, 6, 13, 14].

On the other hand, many complex systems also feature interactions between groups of
agents, not reducible to sets of pairs [15, 16]: this is the case for example of human so-
cial interactions [17], scientific collaborations [18] and species interactions in ecosystems
[19]. An adequate description of these systems involves hypergraphs, a generalization of
networks in which nodes can interact in groups of arbitrary size, i.e., hyperedges [15].
Taking into account such higher-order nature of interactions leads to the definition of
new structures and concepts and to new dynamical phenomena [15, 16, 20–22]. Indeed,
several dynamical processes, including contagion dynamics, synchronization phenomena
and consensus formation, exhibit richer and more complex dynamics when defined on
higher-order networks, with important differences with respect to the dynamics occur-
ring on pairwise networks, such as changes in the nature of the phase transitions observed
[15, 20, 21, 23]. Despite the relevance of such higher-order effects, tools to characterize
hypergraphs at various scales have only recently been proposed: for example, efforts have
been devoted to defining explicitly higher-order centrality measures, accounting for in-
formation otherwise impossible to retrieve by pairwise measures [15, 24]; moreover, a few
techniques and methods have been developed to identify relevant higher-order substruc-
tures in hypergraphs [15, 25–27]. Among them, the hyper-core decomposition [26, 27]
identifies a doubly nested hierarchy of mesoscopic subhypergraphs, the hyper-cores, com-
posed of nodes progressively more densely connected to each other through interactions
of increasing size. This technique provides a global fingerprint of systems described us-
ing hypergraphs and identifies structurally central mesostructures that play an important
role in higher-order dynamical processes [26]. This decomposition also comes with an
associated centrality measure for nodes, the hypercoreness, which is based on the node
structural position at the various interaction orders [26].

The increasing attention to the development of frameworks to handle time-varying
and non-pairwise structures speaks for the need of using both the temporal and the
higher-order nature of interactions to adequately describe and model several complex
systems and dynamical processes. The integration of these two features has occurred
relatively recently within temporal hypergraphs, where hyperedges present specific acti-
vation times and duration, describing evolving group interactions [15]. Some works fo-
cused on defining procedures to construct temporal hypergraphs from data [28, 29], oth-
ers on the impact of the hypergraph dynamics on dynamic processes [30, 31]. Only few
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attempts have been made to investigate the temporal-topological properties of tempo-
ral hypergraphs [29, 32–36], and a complete structural characterization is still missing.
Moreover, synthetic models of temporal hypergraphs have been proposed to identify and
replicate the mechanisms that govern the evolution of empirical systems [9, 35–38], but
model-validation tools are still scarce. Therefore, it becomes necessary to develop ded-
icated multi-scale characterization methods tailored for temporal hypergraphs. These
techniques are essential to accurately describe empirical systems, construct and validate
synthetic models, and ultimately identify crucial temporal structures for higher-order dy-
namic processes: how does the higher-order structure evolve at different scales over time?
Are there persistent groups of nodes exhibiting dense connections at different interaction
orders, or do these configurations change dynamically? Are the most structurally central
nodes always the same, or do they undergo changes over time?

Here, we tackle such issues by proposing a multi-scale method for the characterization of
temporal hypergraphs at different topological scales. By applying the hyper-core decom-
position to successive snapshots of a temporal hypergraph, and by following the evolution
of the resulting hierarchical structure, we are able to characterize the structure and its
evolution at different scales: macroscopically, following the evolution of the relative sizes
of the hyper-cores; mesoscopically, focusing on the dynamics of specific hyper-cores; mi-
croscopically, following the position of single nodes in the hyper-core structure over time.
Measuring the similarity between the hyper-core structure at different times enables the
quantification of the structural stability of the system at different topological scales. We
also define two time-aggregated hypercoreness centralities for nodes, based on the node
instantaneous hypercoreness and its evolution, which together provide an overall descrip-
tion of its structural behavior. We apply the proposed approach to several data sets repre-
senting systems of diverse nature. This enables us to identify differences and similarities
in their structure and evolution, unveiling temporal patterns, and to establish connections
between structural properties and specific activities within the systems. Finally, we illus-
trate how the proposed method provides a model-validation tool for synthetic models of
temporal hypergraphs. To this aim, we propose several models of activity-driven tempo-
ral hypergraphs [9, 13, 39, 40] which progressively implement mechanisms for the forma-
tion of group interactions of increasingly complexity. We tune these models to mimic the
activity patterns of the interaction data sets and show how, following the hyper-core de-
composition over time, we are able to distinguish between the hyper-core structures and
dynamics generated by the models at different topological scales, providing a quantitative
comparison between synthetic models and empirical hypergraphs.

The paper is organized in the following way: in Sect. 2.1 we describe the hyper-core de-
composition and how it provides a multi-scale method for the characterization of tempo-
ral hypergraphs; in Sect. 2.2 we define two time-aggregated centrality measures for nodes;
in Sect. 2.3 we present the empirical data sets considered, and in Sects. 2.4, 2.5 we apply the
proposed method to different data sets; in Sect. 2.6 we show how our method can be used
as a model-validation tool, considering different hypergraph models; in Sect. 3 we sum-
marize the main results, discuss their implications and outline some future perspectives.
In order to avoid accumulating too many technical details in the previous sections, we
leave the detailed presentation of several aspects of our methodology to Sect. 4-Methods
(on the hyper-core decomposition in Sect. 4.1, on the data preprocessing in Sect. 4.2, on
reshuffling procedures in Sect. 4.3 and on the temporal hypergraph models in Sect. 4.4).
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2 Results
2.1 Following the hyper-core decomposition of temporal hypergraphs
Let us consider a time-varying hypergraph H observed over the time interval (0, tmax]. We
consider a snapshot representation of H with temporal resolution τ [28], i.e., the interval
(0, tmax] is divided into n = tmax/τ time windows of length τ : H = {Ht}n

t=1, where in each
time window t the instantaneous hypergraph Ht = (Vt ,Et) is an unweighted static hyper-
graph formed by the set Vt of nodes active at least once in ((t – 1)τ , tτ ] and by the set Et of
hyperedges active at least once in ((t – 1)τ , tτ ] (with Nt = |Vt| and Et = |Et|). A hyperedge
e = {i1, i2, . . . , im} ∈ Et represents a group interaction between nodes ik ∈ Vt ∀k = 1, . . . , m:
it consists in a set of m nodes, with m ∈ [2, Mt], where Mt = maxe∈Et |e|. We denote with
�t(m) the hyperedge size distribution in the time-window t .1

We propose to characterize the structural evolution of the temporal hypergraph H by
applying the hyper-core decomposition procedure to each snapshot Ht [26]. The hyper-
core decomposition decomposes static hypergraphs into series of subhypergraphs of in-
creasing connectivity, ensured by hyperedges of increasing sizes. Specifically, the (k, m)-
hyper-core of the snapshot Ht = (Vt ,Et) is defined as the maximum subhypergraph that
contains all the nodes i ∈ Vt involved in at least k distinct hyperedges of size at least m
within the subhypergraph itself (see Methods and [26]).

The set of nodes belonging to the (k, m)-core but not to the (k + 1, m)-core forms the
(k, m)-shell. Each node i in the temporal hypergraph can thus be assigned a time-varying
m-shell index Cm(i, t), which defines the maximum k such that i belongs to the (k, m)-
hyper-core but not to the (k + 1, m)-hyper-core at time t. This leads to the definition of the
hypercoreness R(i, t) of node i in Ht by [26]:

R(i, t) =
Mt∑

m=2

Cm(i, t)/km
max(t) , (1)

where km
max(t) is the maximum connectivity at order m for the snapshot t, such that the

(km
max(t), m)-core is not empty, but the (km

max(t) + 1, m)-core is empty. R(i, t) ∈ [0, Mt – 1]

summarizes the centrality properties of i with respect to the hyper-core decomposition at
time t by taking into account its relative depth in the (k, m)-core structure at all interaction
orders [26] .2

By considering the hyper-core decomposition of the successive snapshots forming the
temporal hypergraph, we can thus follow the temporal evolution of its higher-order hier-
archical structure, and obtain a characterization of the higher-order dynamics at several
scales, as we now discuss.

Macroscopic scale. The fraction of nodes within the (k, m)-hyper-cores, n(k,m), as a func-
tion of k and m constitutes the filling profile of the hyper-cores, and provides information
on the distribution of nodes in the various cores and shells. Following its evolution across
successive snapshots yields information on how the overall system’s cohesiveness changes
over time. The filling profile can indeed detect changes in the underlying higher-order

1We consider only interactions of size m ≥ 2 and neglect the presence of singletons, i.e. hyperedges of size m = 1, since
here we focus on the characterization of how the elements of the system interact with each other. Moreover, the singletons
are immediately pruned in the hyper-core decomposition.
2It is possible to define a whole family of hypercoreness centralities [26] by arbitrarily weighing the different hyperedge
sizes m in Eq. (1). Here we consider the simplest “size-independent” hypercoreness in which all sizes contribute equally.
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hierarchical structure, since different distributions of nodes in the hyper-cores reflect dif-
ferent configurations of interactions in the nested hierarchy [26]: for instance, a smooth
decay of n(k,m) with k and m suggests the presence of nodes progressively more densely
connected with each other through interactions of larger sizes (homogeneously popu-
lated shells), while the alternation of plateaus and abrupt drops reveals the presence of a
non-trivial structure, with nodes poorly or densely connected with each other, without
intermediate behaviours (unevenly filled shells). Thus, the similarity between the hyper-
cores filling profiles of two different snapshots, n(k,m)(t) and n(k,m)(t′), provides a quanti-
tative estimate of the stability of the macroscopic hyper-core structure over time. While
several similarity measures can be defined between the filling profiles of two hypergraphs,
we consider here the root-mean-square deviation similarity, defined as follows for the fill-
ing profiles a(k,m) and b(k,m) of two static hypergraphs A and B with respective maximum
connectivities km

max(A) and km
max(B) ∀m, and respective maximum hyperedge sizes MA

and MB :

�(A,B) = 1 –

√√√√√√

K∑
k=1

M∑
m=2

(
a(k,m) – b(k,m)

)2

K (M – 1) – 1
, (2)

with K = max
m

{max{km
max(A), km

max(B)}} and M = max{MA, MB} (in this way � ∈ [0, 1]). 3,4

The temporal similarity matrix �(t, t′) = �(Ht ,Ht′ ) provides then a way to explore the ex-
istence of various temporal patterns in the hyper-core decomposition of the system at dif-
ferent times, and to unveil the presence of stable periods, recurrences or sudden changes
[7, 10, 41, 42].5

Mesoscopic scale. By following the hyper-core decomposition over time, it is moreover
possible to study the temporal stability and changes occurring in subhypergraphs with
specific structural roles. To this aim, we can consider a given set of shells or cores, and
compare their sets of nodes A in two different snapshots t and t′ through the Jaccard
similarity J(t, t′) = |At ∩ At′ |/|At ∪ At′ |. The matrix J(t, t′) quantifies the stability over time
of the set of nodes forming the cores under scrutiny. In particular, we will here focus on
the set of the most central hyper-cores of each snapshot, i.e. the (km

max, m)-hyper-cores ∀m.
We can then determine whether these cores are stable, involving always the same nodes
across snapshots, or whether their composition evolves, due to changes of connectivity of
individual nodes: this can happen even when the macroscopic structure remains similar
(as found in temporal networks where the most connected nodes can vary with time [43],
or a core-periphery structure can be stable even when the composition of the core strongly
fluctuates [10]).

Moreover, empirical data include sometimes meta-data (see Methods) describing prop-
erties or attributes of the nodes or hyperedges, and dividing them into classes based on

3The maximum similarity � = 1 is obtained when the two hyper-cores filling profiles are identical a(k,m) = b(k,m) ∀k ∈ [1,K],
∀m ∈ [2,M]; the minimum similarity � = 0 is obtained when the hypergraphs feature the two maximally different configu-
rations, a(1,2) = 1, a(k,m) = 0 otherwise, and b(k,m) = 1∀k ∈ [1,K], ∀m ∈ [2,M], i.e. in one case the (1, 2)-core contains the entire
population while all the other hyper-cores are empty, and in the other case all the hyper-cores are maximally filled with the
entire population.
4This measure can be applied to any couple of hypergraphs with different populations, numbers of hyperedges, distribu-
tions of hyperdegrees P(DH

m ) ∀m ∈ [2,M] and distributions of interactions size �(m). In general, systems with similar P(DH
m )

and �(m) feature a higher similarity compared to those with different distributions.
5Note that different similarity measures could be considered to build such similarity matrix.
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their specific function or context. For instance, data describing social interactions can be
enriched by information on the individuals involved (e.g., to which class they belong in
a school environment, to which department or which role they have in a work environ-
ment). Such information makes it possible to study whether different groups or classes
of nodes have different higher-order structural properties, and whether specific hyper-
cores are preferentially composed by specific nodes or specific types of hyperedges. For
instance, one can identify the most represented class in each hyper-core at each time, and
follow over time which types of nodes or hyperedges are dominant in the most central
hyper-cores.

Microscopic scale. At the node level, the hypercoreness R(i, t) gives an instantaneous
measure of the centrality of a node in each snapshot. It is thus possible, for each node
of interest, to follow its trajectory in the hyper-core structure through the evolution of
its hypercoreness. More precisely, in order to make the hypercoreness values comparable
across different snapshots, we consider the temporal evolution of the relative position of
each node i in the hypercoreness ranking:

r(i, t) =
R(i, t)

max
j∈Vt

{R(j, t)} . (3)

The evolution of r(i, t) with t indeed reflects the movements that node i undergoes within
the hierarchical structure, potentially navigating towards more central or more superficial
cores.

The set of all R(i, t) moreover provides an instantaneous node hierarchy within the time
window t. Such a hierarchy might fluctuate from one snapshot to the next [43], and the
Pearson correlation coefficient �(t, t′) = �(R(i, t), R(i, t′)) of the nodes hypercoreness val-
ues between two time snapshots t and t′ provides information on the stability of the node
ranking over time, i.e., on how the nodes change their respective structural positions over
time. Just as �(t, t′) for the global scale and J(t, t′) for intermediate scales, this measure can
unveil correlation patterns at various time-scales: for example, a high and constant �(t, t′)
indicates that nodes tend to keep their relative structural positions over time, while con-
stantly low values correspond to an unstable situation with nodes continuously changing
place in the hierarchy.

Note that, as not all nodes are active in each snapshot, we can compute �(t, t′) in two
ways: (i) ρ∗(t, t′) takes into account only the nodes that are active in both t and t′, while
(ii) ρ(t, t′) is computed considering all nodes active in at least one of them (setting the
hypercoreness of inactive nodes to 0). The difference between ρ(t, t + 1) and ρ∗(t, t + 1)

provides information on the structural properties of nodes just after entering the system
or right before leaving it: ρ � ρ∗ indicates that nodes have mainly low hypercoreness when
joining/leaving the system, while ρ 	 ρ∗ indicates that nodes joining/leaving the system
tend to be central.

2.2 Time-aggregated hypercoreness centralities
The hypercoreness centrality of nodes in static hypergraphs has been shown to provide in-
formation on their importance for dynamic processes involving higher-order interactions
unfolding on such hypergraphs [26]. Many processes however unfold on time-varying hy-
pergraphs [30, 31], hence a time-aggregated ranking of nodes summarizing the evolution
of their instantaneous coreness could prove useful.
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We first define the snapshot activity aw(i) ∈ [0, n], given by the number of time win-
dows in which node i is active, and the average number of interactions when active h(i) =
D(i)/aw(i), where D(i) is the total number of hyperedges in which i is involved in the tem-
poral hypergraph. We then introduce two time-aggregated centrality measures that sum-
marize the positions of the nodes in the hyper-core structure over time:

• the aggregated hypercoreness W :

W (i) =
n∑

t=1

R(i, t)
max
j∈Vt

{R(j, t)} =
n∑

t=1

r(i, t), (4)

takes into account how deep i is in the hyper-core structure at the various interaction
orders in each time window, and simply aggregates this information over time.

• the activity-averaged hypercoreness W :

W (i) =
n∑

t=1

r(i, t)
aw(i)

=
W (i)
aw(i)

, (5)

averages W over the activity of the nodes.
W and W provide complementary information. Indeed, a high W can be obtained either
for a node i that is very active (high aw(i)) but not very central (small r(i, t)) or for a node j
that is not very active (low aw(j)) but central when active (high r(j, t)). These two situations
are distinguished when taking into account also W , as W (i) will then be small while W (j)
will be large. Together, the time-aggregated hypercoreness measures W (i) and W (i) thus
provide a two-dimensional picture taking into account both the activity of nodes and the
evolution of their relative centralities over time.

2.3 Empirical temporal hypergraphs
The approach outlined is general and can be applied to empirical data of higher-order
interactions evolving over time describing a variety of systems. In the following, we show-
case its interest using: a data set of scientific collaborations [44, 45], several data sets of
physical proximity interactions between individuals in various environments [46–54] (a
hospital [50], a conference [48], three schools [51–53], a university [54] and a workplace
[47, 48]), and a data set of email communications [55–57]. These data sets present different
statistical, topological and temporal properties (e.g., interaction size distribution, tempo-
ral patterns due to system-specific activities). Full details on all the data sets and on the
preprocessing procedures are available in the Methods Section (Sect. 4) and in the Sup-
plementary Material (SM) (see Additional file 1). In the main text we specifically analyse
data describing three different systems, while results for the other data sets are reported
in the SM. In particular, here we consider:

• the scientific collaborations data set of the American Physical Society (APS), which
provides the list of papers published in APS journals from 1893 to 2021 [44, 45]. We
build a temporal hypergraph (see Methods) in which each node corresponds to an
author, each hyperedge represents a paper connecting its co-authors and is endowed
with a label indicating the journal in which the paper was published.

• a data set of face-to-face human interactions in a hospital (LH10), collected within the
SocioPatterns collaboration [46, 50]. The data set has a temporal resolution of 20
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seconds and covers a period of 96 hours. We build a temporal hypergraph in which
each node corresponds to an individual and each hyperedge represents a group
interaction, defined with a temporal resolution of 5 minutes (see Methods) [20]. Each
node is assigned with a label indicating its social role: Med for doctors, Param for
nurses, Admin for administrative staff, and Patient for patients.

• a data set of proximity human interactions in a university, collected within the
Copenhagen Network Study (CopNS) [54]. The data set has a temporal resolution of 5
minutes and covers a period of 4 weeks. We build a temporal hypergraph from the
data by considering each individual as a node, and each hyperedge as a group
interaction with a temporal resolution of 5 minutes (see Methods) [36].

For the university data set, we also show how the analysis of the hyper-core structure over
time can contribute to the validation of models of time-varying hypergraphs.

2.4 Dynamics of the higher-order structure of scientific collaborations
We represent the APS scientific collaborations data set through a time-varying hypergraph
in which each node corresponds to an author and each hyperedge represents a paper con-
necting its co-authors (see Methods). We consider a 5-years temporal resolution, i.e., each
temporal snapshot is formed by all papers published in a 5-years time window (see SM for
a different temporal resolution), and we consider the period 1962-2021 (earlier years hav-
ing only much smaller numbers of nodes and hyperedges).

Figure 1a shows the evolution of the global hyper-cores structure as given by the filling
profiles, which do not simply expand in a monotonous fashion as the numbers of nodes
and hyperedges increase over the years. Initially the system presents only (k, m)-hyper-
cores with low connectivity k, especially for large hyperedge sizes m; then, the filling pro-
file undergoes an expansion towards higher k and higher m values. At first, km

max increases
for high interaction orders m and only later at low orders. Furthermore, the increase in
km

max is non-monotonic with respect to time, especially for low m: km
max for m � 2 grows up

to a maximum in the 1997-2001 snapshot, and then decreases and stabilizes in the follow-
ing years (as we will discuss below, this behavior can be traced back to a specific scientific
community and its collaboration dynamics). Thus, the cohesiveness of the scientific com-
munity first increased through connected large size collaborations, then an increase in
cohesiveness occurred at all orders until 1997-2001. The cohesiveness of the community
then relaxed to a lower but stationary level in the last 20 years.

Although the size of the interactions and the density of collaborations change over time,
the overall structure of the filling profiles remains similar instead (Fig. 1a). In fact, the
hyper-cores always present a rapid and progressive emptying of the cores as k and m in-
crease: superficial shells (low k) are densely populated, and shells become gradually less
populated with increasing k and m. The root-mean-square deviation similarity �(t, t′) be-
tween the hyper-cores filling profiles at time t and t′ presents very high values for all pairs
(t, t′) (Fig. 1b), indicating a stable structure: the similarity is particularly high between con-
secutive snapshots (Fig. 1e), and decreases monotonically when |t′ – t| increases.

We investigate the mesostructural level through the similarity J∗(t, t′) between the sets of
nodes belonging to the most central cores, i.e. to the (km

max, m)-hyper-cores ∀m at different
times. Figure 1c,f shows that the stability of the central cores is low, even between adjacent
time windows. This is not only due to the fact that the set of authors change over time, as J∗

is much lower than the Jaccard coefficient JN between the sets of authors in different time



Mancastroppa et al. EPJ Data Science           (2024) 13:50 Page 9 of 31

Figure 1 Evolution of the hyper-core structure in APS scientific collaborations. a: fraction of nodes n(k,m) in the
(k,m)-core as a function of k andm for each 5-years time window. The numbers of active nodes Nt and
hyperedges Et are also reported and the insets show n(k,m) as a function of k form = 2,m = 6 andm = 10. b:
root-mean-square deviation similarity �(t, t′) between n(k,m)(t) and n(k,m)(t′) (grey diagonal: �(t, t) = 1). c:
Jaccard similarity J∗(t, t′) between the sets of nodes belonging to the most central hyper-cores, i.e. to the
(kmmax ,m)-cores ∀m, at time t and t′ (grey diagonal: J∗(t, t) = 1). d: Pearson correlation coefficient ρ(t, t′)
between the nodes hypercoreness at times t and t′ , considering all the nodes that are active in at least one of
the snapshots (grey diagonal: ρ(t, t) = 1). e: similarity �(t, t + 1) vs. t. f: temporal evolution of J∗(t, t + 1) and
Jaccard similarity JN(t, t + 1) between the entire population in two consecutive time windows. g: temporal
evolution of the correlation between the nodes hypercoreness in consecutive snapshots, considering all the
nodes that are active in at least one of the snapshots, ρ(t, t + 1), or only those active in both, ρ∗(t, t + 1). Note
that macroscopically the size and the density of the interactions evolve in a non-trivial way, however the
overall filling of the hyper-cores remains quite similar over time; the composition of the most central
hyper-cores is highly unstable, suggesting a high system instability at the mesoscopic and microscopic scales
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windows. J∗(t, t′) moreover decreases to 0 as soon as the time difference |t′ – t| exceeds 2-4
time windows, indicating a completely different composition of the central hyper-cores.
Note that a tendency to increase the stability of the central cores can be seen until ≈
2010 (Fig. 1c,f ), although it decreases again afterwards. Overall the J∗ values remain low,
indicating that the nodes sitting in the most central hyper-cores change over time.

We further explore this instability using the correlation ρ(t, t′) of nodes hypercoreness
across different time windows, as shown in Fig. 1d,g. A positive correlation is observed
between the hypercoreness values of nodes in successive snapshots, but the correlation
ρ(t, t + 1) computed using all nodes active at least once in (t, t + 1) is lower than ρ∗(t, t + 1),
which takes into account only nodes active in both snapshots (Fig. 1g). As discussed above,
this indicates that some nodes with high centrality leave the system, and/or nodes enter the
system and gain immediately a central position. As the temporal distance |t′ – t| increases,
the correlation ρ(t, t′) progressively decreases. Moreover, the correlations tend to increase
with t: ρ(t, t + 1) increases with t and the decrease of ρ(t, t′) with |t′ – t| becomes slower
(Fig. 1d,g), indicating an increased stability in centrality rankings as time evolves.

The correlation between hypercoreness values decays to zero in approximately 3-5 time
windows and then reaches negative values: this suggests a progressive inversion of the
rankings over time, with nodes successively increasing and decreasing their hypercore-
ness and rankings, as driven by the unfolding of their academic careers. Figure 2 indeed
gives some examples of the evolution of individual nodes’ relative hypercoreness r(i, t),
which are a reflection of the academic trajectories of the corresponding scientists. Some
nodes have a bell-shaped hypercoreness profile, entering the system with a low centrality,
progressively moving towards the more central cores and then back to lower ranks. This
can describe the academic trajectory of a young researcher, who enters into the scientific
community, becomes central and then progressively leaves the community due to retire-
ment or a change in the topic/journals reference of their research. Other nodes present
instead a rather stable ranking, and, for individuals having entered the system more re-
cently, only the upward trend of increasing centrality is observed.

To characterize the nodes’ overall behaviours, we moreover compute their time-
aggregated centrality measures, and show the results in Fig. 3. On average, the aggregated
hypercoreness 〈W 〉 increases with the activity snapshot aw (Fig. 3a), but a large variability

Figure 2 Hypercoreness evolution for selected nodes in the
APS scientific collaborations.We show the temporal
evolution of the hypercoreness r(i, t) for four authors and
the mean 〈r〉(t) value (average on active nodes): we show
the authors I.Y. Lee (#W1) and R.V.F. Janssens (#W2), who
occupy respectively the first and second position in the
ranking produced by the aggregated hypercorenessW
over the period 1942-2021, and the authors Guang-Can
Guo (#h1) and Loren N. Pfeiffer (#h5), who occupy
respectively the first and fifth position in the ranking
produced by the average number of interactions per
active windows h̄ over the period 1942-2021. Nodes can
have different behaviors, ranging from a stable to a
bell-shaped temporal profile of the hypercoreness: these
profiles mirror movements of the node in the hyper-cores
structure towards more central or more superficial
hyper-cores, and can reflect the authors’ academic
trajectories
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Figure 3 Time-aggregated hypercoreness in APS scientific collaborations 1942-2021. a: scatter plot of the
aggregated hypercorenessW(i) as a function of the snapshot activity aw (i) for all nodes i, and average
aggregated hypercoreness 〈W〉 as a function of aw . b: aggregated hypercorenessW(i) vs. average number of
interactions per active window h(i) for all nodes i. c: aggregated hypercorenessW(i) as a function of the
activity-averaged hypercorenessW(i). In all panels the points are colored according to the activity aw of the
corresponding node. Note that the two time-aggregated hypercoreness measures provide complementary
information and a complete description of the structural behavior of the nodes over the entire observation
period; moreover, they distinguish different behaviors not identified by other centrality measures

in the values of W is observed at given aw. Some nodes can be very active but display a low
centrality, while nodes with moderate activity can reach large values of W . The average
number of interactions per active window h is also only weakly correlated with W , and
the nodes with highest W do not coincide with those with largest h (see Fig. 3b). Finally,
the aggregated and activity-averaged hypercoreness, W and W , also do not produce the
same ranking (see Fig. 3c). Some nodes are not often active (low aw) with medium-low
W but high W : these authors appear in few windows but within very connected commu-
nities, therefore are very central on average when active but their low aw make them less
relevant in aggregated terms. Other nodes are very active (high aw) with medium-high
W but relatively low W : such authors are often active either with a low centrality or with
non-monotonous hypercoreness profile (see Fig. 2). Overall, the combined information of
W and W provide a more complete description of nodes structural behavior on the whole
time span than when considering only one of these centralities.

We finally leverage the fact that each hyperedge representing a scientific article is la-
belled by the journal it was published in to examine the importance of the various APS
journals in the hyper-core structure. The APS journals can be interdisciplinary (e.g. PRL)
or specialized in a specific research field (e.g. PRC for nuclear physics, PRD for high-energy
physics, PRB for condensed matter physics), thus representing a specific research area [45]
(see SM).

For each (k, m)-core we consider all the hyperedges it contains and their labels, and we
identify the dominant journal (namely, whose frequency exceeds 0.5; if no journal is rep-
resented by more than half of the hyperedges, we consider that no journal dominates) .6

Figure 4a shows the resulting evolution of the hyper-cores dominant journal. Initially, PR
and PRL dominate within all the hypercores, since they were the only available journals
together with RMP (not shown in the figure, see SM). Then, the more superficial cores
present a mixed composition, while the most central ones are first dominated by PRL in

6In the aggregation procedure to create each snapshot, some hyperedges can fully overlap (i.e., the same group of authors
can publish more than one article). Although we do not consider weighted hyperedges, in such a case we assign a multiple
label composed of the set of journals in which these articles with the same co-authors were published.
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Figure 4 Prevalent APS scientific communities in hyper-cores. a: temporal evolution over 5-years time windows
of the prevalent journal within each (k,m)-hyper-core of the APS data set, defined as the most frequent
hyperedge label in each core (we consider a journal dominant only if its frequency is larger than 0.5; white
indicates hyper-cores which are empty or where a dominant journal cannot be defined). b: relative frequency
P of the various journals within the most central hyper-cores, i.e. (kmmax ,m)-cores ∀m, and its temporal
evolution. c: same as b for the randomized data. We average the relative frequency over 50 randomized
realizations of the hypergraph (see Methods). The error bars give the standard errors. We identify the scientific
communities most densely connected at different orders of interaction: this pattern evolves over time,
following specific trends of collaborations in the different research areas, and is significant when compared
with appropriate randomized systems

the period 1962-1981; subsequently in 1982-1986, central cores are mostly formed by the
high-energy physics community (PRD) for large collaboration sizes, while at low order
the nuclear physics area dominates (PRC). Starting from 1992, PRC dominates the most
central hyper-cores at all orders: the non-monotonic behavior observed in the core struc-
ture, with the maximum connectivity in 1997-2001, is predominantly due to interactions
within the nuclear physics area. This could be due to several discoveries in the field occur-
ring in the preceding years (e.g. the discovery of the W and Z bosons [58] or the discovery
of top quarks [59, 60]), which boosted collaborations in the community, favouring and
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increasing cohesion. After this phase the nuclear physics area remains overall dominant.
Moreover, this non-monotonic behavior can also be identified in the hyper-core decom-
position of the hypergraphs obtained by considering only the papers published in PRC
(see SM). Recently, the condensed matter physics community (PRB) is also expanding its
contribution to the central cores at low interaction orders. The relative contribution of
the scientific communities to the set of the most central cores is summarized in Fig. 4b:
PRL is the dominant journal in the first time windows, while the share of PRC increases
rapidly starting in the 80s; the share of PRB becomes also important from 2012-2016 and
in 2017-2021 new journals start gaining relevance (e.g. PRX).

As the number of scientists and articles in various fields are neither homogeneous nor
constant, we check whether such patterns are simply due to the relative abundance of au-
thors and articles in the different journals. To this aim, we build a randomized version of
the temporal hypergraph, which preserves in each time window the hypergraph structure
and the total number of interactions of each order for each label, but destroys any correla-
tion between the nodes and the label of the hyperedges in which they participate (see the
reshuffling procedure in Methods). We consider 50 randomized realizations and for each
hyper-core we estimate the average frequency of each label. The patterns of topic domi-
nance in the most central cores is significantly different in the reshuffled version compared
to the empirical case (see Fig. 4b,c and SM). For example, in the reshuffled case PRA, PRB
and PRE are significantly more represented in the central cores, while PRC is instead less
represented than in the original data.

It is also possible to consider a different time resolution for building the temporal hyper-
graph, to investigate e.g. the dynamics at shorter time-scales, or to focus on one specific
scientific community by considering the hypergraph formed by articles published in one
specific journal. We refer to the SM for some results in such directions.

2.5 Higher-order structure dynamics of interactions in a hospital
We now consider the data set of face-to-face interactions in a hospital (LH10), represented
through a time-varying hypergraph where nodes correspond to individuals and hyper-
edges to group interactions (see Methods). We first study differences in the daily aggre-
gated hypergraph structures, i.e., we aggregate the temporal hypergraph over 24-hours
time windows (thus obtaining n = 4 time windows).

The maximum size of interactions Mt and the maximum connectivity values km
max(t) ∀m,

i.e. the cohesiveness of the system, are rather stable over different days (Fig. 5a,b). How-
ever, nodes are differently distributed within the cores. On the first day, the population of
the (k, m)-cores features sharp drops when k increases, followed by plateaus: these corre-
spond to densely populated shells at small k followed by almost empty shells. In other days,
the structure instead presents a more progressive emptying of the cores as k increases,
hence shells are populated more homogeneously (even if some jumps and plateaus of re-
duced sizes are still present). The root-mean-square deviation similarity �(t, t′) between
the hyper-cores filling profiles at time t and t′ still presents high values for all pairs (t, t′)
(see Fig. 5c), however the similarity is lower than the one observed for the APS data set.
Moreover, the similarity � between consecutive snapshots increases over time (Fig. 5f ).

Mesoscopically the system is quite stable (see Fig. 5d,g): the similarity J∗(t, t′) between
the nodes in the most central cores at time t and t′ presents medium-high values, J∗(t, t′)
slightly decreases when increasing |t′ – t| and in consecutive time windows it still assumes
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Figure 5 Hyper-core structure evolution in daily interactions within a hospital (LH10). a: relative population n(k,m)

of the (k,m)-core as a function of k andm for each time window. The number of active nodes Nt and
hyperedges Et is reported for each snapshot. b: n(k,m) as a function of k for fixed values ofm. c:
root-mean-square deviation similarity �(t, t′) between n(k,m)(t) and n(k,m)(t′) – the grey diagonal corresponds
to �(t, t) = 1; d: Jaccard similarity J∗(t, t′) between the sets of nodes belonging to the most central
hyper-cores, i.e. the (kmmax ,m)-cores ∀m, at time t and t′ – the grey diagonal corresponds to J∗(t, t) = 1. e:
Pearson correlation coefficient ρ(t, t′) between the nodes hypercoreness at time t and t′ , considering all the
nodes that are active in at least one of the snapshots – the grey diagonal corresponds to ρ(t, t) = 1. f: similarity
�(t, t + 1) as a function of t. g: temporal evolution of both the similarity J∗(t, t + 1) and the Jaccard similarity
JN(t, t + 1) between the entire population in consecutive time windows. h: temporal evolution of the
correlation between the nodes hypercoreness in consecutive snapshots, considering all the nodes that are
active in at least one of the snapshots, ρ(t, t + 1), or that are active in both, ρ∗(t, t + 1). Note that
macroscopically the density and the size of the interactions are quite stable, even if the overall filling of the
hyper-cores changes over time; the composition of the most central hyper-cores is highly stable, suggesting a
high system stability at the mesoscopic and microscopic scales

values close to the similarity of the entire population JN , even if decreasing over time. The
composition of the most central cores is thus quite stable, therefore in general the nodes
maintain the same position in the core structure. This is confirmed by the correlation
ρ(t, t′) in the nodes hypercoreness between two snapshots (see Fig. 5e,h). The correlation
ρ(t, t′) presents high values. As we will explore further below, this stability in the compo-
sition of central cores and in the behavior of the nodes is due to the difference in the roles
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Figure 6 Hypercoreness evolution in the temporal hypergraph of
daily interactions within a hospital (LH10).We show the temporal
evolution of the hypercoreness r(i, t) for four agents with
different social role: a paramedic (id = 1210), a medic (id =
1144), a member of the administrative staff (id = 1098) and a
patient (id = 1383). The dashed line shows the mean 〈r〉(t)
(averaged only on active nodes). Nodes can have different
behaviors, ranging from a stable to a non-monotonous
temporal profile of hypercoreness. This profile reflects changes
in an individual’s interaction patterns, corresponding to the
node’s movements within the hyper-cores structure, either
towards more central or more superficial hyper-cores. Note
how the patient’s hypercoreness is always lower than the
average, while the paramedic’s hypercoreness is always
maximal

Figure 7 Time-aggregated hypercoreness in a hospital (LH10). a: scatter plot of the aggregated hypercoreness
W(i) as a function of the snapshot activity aw (i) for all nodes i, and averaged aggregated hypercoreness 〈W〉 as
a function of aw . b: aggregated hypercorenessW(i) vs. average number of interactions per active window h(i)
for all nodes i. c: aggregated hypercorenessW(i) as a function of the activity-averaged hypercorenessW(i). In
all panels points are colored according to the node’s social role. Note that the two time-aggregated
hypercoreness provide a complete and complementary description of the structural behavior of the nodes
over the full observation period. Different social roles present different behaviors, e.g., patients present low
values of all centrality measures, doctors and administrative staff have heterogeneous behaviors, while nurses
feature high values of all centralities

played by the different individuals in the hospital, which limits the mobility of the nodes
in the hyper-core structure.

Note that, even if the position of the nodes in the hyper-core structure is fairly stable over
time, the evolution of the hypercoreness r(i, t) for single nodes can show different trajec-
tories. This is evident when disaggregating by social role, as for the examples in Fig. 6:
the nodes can present a stable dynamic with a constant position in the core structure, as
shown by the patient and the paramedic cases, or a non-monotonic dynamic, with move-
ments from more central cores towards more superficial ones and vice-versa, as for the
doctor and the administrative staff member.

These different behaviours are summarized by the time-aggregated centrality measures.
In general the aggregated hypercoreness W increases with the snapshot activity aw (see
Fig. 7a), however nodes with the same aw can have very different W . Analogously, W and
the average number of interactions when active h are positively correlated, but there are
outliers, which produce different top positions in the corresponding rankings (see Fig. 7b).
By taking the structure into account, the aggregated hypercoreness can thus provide a dif-
ferent and more detailed information than the activity or the average number of interac-
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tions. The aggregated and activity-averaged hypercoreness show that the nodes that are
globally relevant are also relevant, on average, when active (see Fig. 7c). Nevertheless, the
produced rankings are still different since some nodes are relevant when active (high W ),
but not globally (low W ). By combining the two time-aggregated hypercoreness measures
we obtain information on the different overall behaviors of the nodes (see Fig. 6).

We finally expose strong differences in the temporal and structural properties of specific
roles in the hospital. Figure 7 shows that the activity aw is quite independent of the social
role; however, the patients have a homogeneous behavior occupying always the lower po-
sitions in all the rankings produced by the other time-aggregated centrality measures; on
the contrary the nurses, doctors and administrative staff present a more heterogeneous
behaviour, presenting a wide range of centrality values. Nurses constitute the most struc-
turally and temporally relevant group according to all the time-aggregated centrality mea-
sures, always occupying the top positions of the rankings (see Fig. 7).

The nurses have a key role also mesoscopically: in each (k, m)-hyper-core indeed, we
identify the dominant social role when possible by checking whether more than half of
the nodes of a core belong to one category. In the superficial cores it is not possible to
identify a dominant role, however in the most central cores the nurses dominate in all time
windows and at all interaction orders (see Fig. 8a). Nurses thus constitute the most densely

Figure 8 Prevalent social role in hyper-cores of a hospital (LH10). a: temporal evolution over 24-hours time
windows of the prevalent social role in each (k,m)-hyper-core of the LH10 data set, defined as the most
frequent label in the core: we use a color code for identifying social roles and we consider a role dominant
only if its frequency is larger than 0.5. In white are indicated hyper-cores which are empty or where no
dominant role can be identified. b: temporal evolution of the hypercoreness r(i, t) averaged over all nodes
(dashed black line) and averaged over each distinct class. c: temporal evolution of the relative frequency P of
the various social roles within the top 15% positions of the nodes ranking given by the hypercoreness r(i, t). d:
same as b, but in this case we consider the relative frequency P averaged over 50 randomized realizations of
the hypergraph (see Methods). In this case, we also show error bars corresponding to the standard errors. We
identify the social roles most densely connected at different orders of interaction. This pattern is very stable,
with nurses being the most densely connected at all interaction orders. Nurses present higher hypercoreness
than other social roles, while patients have values lower than the average. This pattern is significant when
compared to appropriate randomized systems
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connected social group at all the orders of interaction, thus the interactions structure in
the most central cores is attributable to their activities.

The dominant role of nurses is further highlighted microscopically by considering the
evolution of the average hypercoreness r(i, t) within each specific class (see Fig. 8b). All
roles present a quite stable average hypercoreness: patients and nurses present a hyper-
coreness notably lower and higher than the average, respectively, while doctors and ad-
ministrative staff are close to the average behavior. Moreover, if we consider the instan-
taneous ranking produced by the hypercoreness and estimate the frequency of each role,
we find that nurses always dominate the top positions (see Fig. 8c). This pattern is not due
to a difference in numbers of nodes or hyperedges, as we check by comparing the results
with a reshuffled data set in Fig. 8d: we generate 50 random realizations of the hyper-
graph, which completely preserve in each time window the structure of the hypergraph
and the total number of nodes with each label, but destroys correlations between the la-
bels of interacting nodes (see the reshuffling procedure in Methods). The frequencies of
the different social roles in the top positions of the hypercoreness ranking, averaged over
all the realizations, shows strong differences compared to the original case.

While we have here focused on the changes occurring between different days, it is pos-
sible to consider a different temporal resolution to focus e.g. on specific activities in the
system occurring at a different time scales: in the SM we consider as an example the evo-
lution occurring within a single day with 2-hours time windows.

In the SM we also apply the proposed analysis to data sets describing interactions be-
tween individuals in different contexts (see Methods). In some contexts, the composition
of the hyper-cores present a strong structural variability and instability: this corresponds
e.g. to conferences or workplaces where different days can bring very different patterns of
connections. A more stable structure is obtained in others, with high stability of the cores
composition, e.g. systems in which patterns of interactions are repeated over time due to
role and activities constraints, such as in schools and hospitals (see SM). Such differences
in the results highlight and confirm the interest of following the hyper-core decomposition
over time as a characterization tool for temporal hypergraphs.

2.6 A validation tool for time-varying hypergraph models
We now illustrate how the hyper-core decomposition can also help with the validation of
synthetic models of temporal hypergraphs. More precisely, it can serve as a tool to quanti-
tatively validate whether a model reproduces given hierarchical structures and structural
dynamics of interest, such as those of an empirical temporal hypergraph, at several topo-
logical and temporal scales. To showcase the potential of this as a tool, we consider several
models of temporal hypergraphs of increasing complexity, and tune them to reproduce the
activity patterns of a data set. We then apply the previously described approach to each
model and to the original data set, identifying differences among the models, and ulti-
mately investigating which model ingredients make it possible to generate a non-trivial
hierarchical structure that resembles the one found in the data.

For simplicity, we consider models within the class of activity-driven (AD) networks:
these models are based on simple mechanisms for the formation of interactions [13], and
can be refined to include increasing complex realistic features and tuned to reproduce
many properties of empirical data sets [40, 61–64]. We consider here several generaliza-
tions taking into account higher-order interactions, in a similar spirit as [9, 37]. In each
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model, we consider a population of N nodes: each node is assigned at each time t an activ-
ity parameter at(i), which represents the node propensity to generate interactions and sets
its activation rate (Poissonian activation dynamics). When a node is active, it generates a
hyperedge of size m, drawn from a distribution �t(m) (which potentially depends on the
time step t). The remaining (m – 1) nodes are selected in the population with mechanisms
depending on the specific AD model. We consider the following models:

• Higher-order activity-driven model (HAD). This model is the hypergraph
generalization of the standard AD network [13] and of the simplicial activity-driven
model (SAD) [9]. Each active node creating an hyperedge of size m chooses the m – 1
nodes to interact with uniformly at random from the whole population. This model
takes into account only the heterogeneity of the agents behaviour, through their
activities, and the one of the size of the groups. Interactions are instantaneous and
there is no memory between successive time steps.

• HAD model with attractiveness (HADA). This model corresponds to the hypergraph
generalization of the AD network with attractiveness [39, 40, 63, 64]. Each node is also
assigned with an attractiveness parameter bt(i), which defines the intensity with
which the node attracts active interactions. Each active node, to create an interaction
of size m, selects the m – 1 other nodes in the population randomly with probability
proportional to their attractiveness b. The interactions are instantaneous and there is
no memory. We consider bt(i) = at(i) ∀i at each time, i.e. the most (less) active nodes
are also the most (less) attractive ones, as observed in empirical systems [63, 64].

• HAD model with memory (HADAM). This model is the HADA with the introduction
of an additional memory mechanism, similar to that proposed in the AD networks
with memory [61, 62]. For each active node i, we denote by lt(i) the number of other
nodes with which it has already interacted in previous time steps. The active node i, to
create an interaction of size m, selects the m – 1 other nodes (i) with probability
pt(i) = 1/(1 + lt(i)), among those not yet encountered, (ii) with probability (1 – pt(i))
among those already met. These nodes are selected: in the former case, with
probability proportional to their attractiveness b(j); in the latter case, with probability
proportional to their attractiveness b(j) and to the number of times they have already
met with the active node ωij.

Each model can be fed by empirical data in the following manner. Given an empiri-
cal temporal hypergraph H and its snapshot representation {Ht}n

t=1, for each model we
consider the same population size as the empirical hypergraph; moreover, we use the em-
pirically observed hyperedges size distribution �t(m) at each time step, and we tune the
activities at(i) so that the total number of interactions at each time, ntot

t , and the total num-
ber of interactions in which each node is involved, nt(i), replicate the empirical ones (see
Methods for more details on the hypergraphs generation).

Here specifically, we consider the data set of human interactions in a university (CopNS),
represented through a temporal hypergraph where nodes correspond to individuals and
hyperedges to group interactions (in the SM we also apply the same analysis to the hospital
data set). Once we have generated the three synthetic temporal hypergraphs, we aggregate
both data and models on 1-day time windows (see Methods). We then apply the hyper-
core decomposition to each time window and compare the resulting structures and their
temporal evolution at this time scale. We mainly focus here on the first working days of
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the first week of the data, and we show in the SM that similar temporal and structural
patterns are obtained also for other days and weeks.

The original data set presents a non-trivial filling of the cores, with significant differences
over time (see Fig. 9a): on Monday the (k, m)-cores present a rapid emptying for all orders
when k increases, with a rapid drop in the population (densely populated shells), followed
by an extended plateau (empty shells); a similar structure is obtained on Wednesday and
Thursday, but with some differences in the drops widths, in the plateaus extensions and in
the maximum connectivity values; on Tuesday instead, the structure is very different, the
maximum connectivity values are much lower and the plateau observed in the other time
windows is almost absent. These filling profiles suggest the presence of a rich hierarchical
structure in the hypergraph that changes over time.

The HAD model, despite replicating the activities and hyperedge sizes distributions of
the data, has a very different hyper-core decomposition, which does not display any hier-
archical structure (Fig. 9a): all (k, m)-cores are equally populated by the whole population
until k ∼ km

max, then n(k,m) quickly collapses to zero; all the shells are empty apart for those
with k ∼ km

max which contain the entire population. The model thus does not replicate the
empirical hierarchical structure nor its evolution, neither mesoscopically, since all cores
coincide with the entire population, nor microscopically, since all the nodes have the same
position in the core structure. This is expected due to the interaction mechanism of the
model —which generates a completely mean-field structure.

By contrast, the temporal hypergraph obtained from the HADA model does present
a hierarchical structure: the population of the (k, m)-cores decreases progressively and
smoothly with k at all orders m, indicating the presence of uniformly populated shells. The
system presents a hierarchy both mesoscopically, since there are groups of nodes more
densely connected, and microscopically, since the nodes are distributed on the various
shells. The model partially replicates the changes in the maximum connectivity, but it
does not completely reproduce the empirical hierarchical structure, as the shapes of n(k,m)

vs. k are rather different from the empirical ones (insets of Fig. 9a).
Finally, the synthetic hypergraphs generated using the HADAM model present a rich

hierarchical structure that reproduces quite well the empirical one and its evolution, both
in the maximum connectivity and in the filling profiles. Indeed, the memory effect drives
the creation of interactions between nodes that have already met several times in the past,
thus favoring non-trivial patterns with densely connected groups of nodes. Some quanti-
tative differences with the empirical structure are still observed, such as a more progressive
emptying of the cores with k, and slightly different km

max values.
Figure 9b provides a quantitative comparison of the hyper-core structures generated by

each model with the empirical one, through the root-mean-square deviation similarity
� between the respective hyper-cores filling profiles in each time window. As expected
from the above considerations, the hyper-core structure of the HADAM model is the most
similar to the empirical one with � ∼ 0.95, followed by the HADA model (� ∼ 0.80),
and by the HAD model (� ∼ 0.60). Similar results are also obtained with other similarity
measures (see SM).

At the mesoscopic scale, the empirical data present a strong instability in the most cen-
tral cores (see Fig. 9c), with a very low similarity J∗(t, t +1) between consecutive snapshots.
The HAD model, on the contrary, presents a very high stability in the deepest cores, re-
producing the empirical similarity JN of the entire population, as expected since the whole
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Figure 9 Hyper-cores structure in time-varying hypergraphsmodels.We consider the CopNS data set as well as
the HAD, HADA and HADAMmodels adjusted to the CopNS node activities and hyperedge size distributions,
and aggregated over 1-day time windows. a: relative population n(k,m) of the (k,m)-core as a function of k and
m from Monday to Thursday of the first week; the number of active nodes Nt and hyperedges Et are also
reported. The insets show n(k,m) as a function of k for fixed values ofm. The first row corresponds to the
empirical data; the second, third and fourth rows correspond to the hypergraphs generated respectively with
the HAD, the HADA and the HADAMmodels. b: similarity � between the hyper-cores filling profiles of the
empirical hypergraphHt and each of the synthetic modelsH′

t in the same time window t. c: similarity
J∗(t, t + 1) between the most central hyper-cores, i.e. (kmmax ,m)-cores ∀m, in two consecutive snapshots, and
Jaccard similarity JN(t, t + 1) between the entire population of the data set in consecutive time windows. d:
Pearson correlation coefficient ρ∗(t, t + 1) between the nodes hypercoreness in two consecutive snapshots,
considering all the nodes that appear in both time snapshots. In panels c-d we consider both the data set and
the corresponding synthetic models. The results presented here show that the hyper-core decomposition
provides a tool for the validation of temporal hypergraph models: the HADAMmodel reproduces quite well
the empirical hierarchical structure and its evolution at all the topological scales, while the HADA and HAD
models fail to reproduce it at all scales
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population composes the most central cores (see Fig. 9a). The HADA and the HADAM
models yield a lower stability of the central cores: the variations in activity and mem-
ory effects are enough to generate changes in the mesoscopic hierarchical structure and
similarities closer to the empirical case, even if still higher. At the microscopic level, the
empirical data set alternates phases with low and high hypercoreness correlations in con-
secutive snapshots ρ∗(t, t + 1), (see Fig. 9d): during the weekdays the structural position
of nodes change a lot across days (low ρ∗), because of varying activities, while during the
weekends it is quite stable (high ρ∗). On the contrary, the three models present approxi-
mately constant correlation values: the HAD model trivially does not present any correla-
tion ρ∗ ∼ 0, since the model does not generate any hierarchy of nodes in any time window;
the HADA model instead presents higher correlations ρ∗ ∼ 0.30, as the system generates
a hierarchical structure with high-activity nodes being the most central over time; finally,
the HADAM model presents the highest correlations ρ∗ ∼ 0.60, since the memory forces
the creation of correlations in nodes behavior over time and could be balanced only by
strong changes in nodes activity.

These results are further confirmed by comparing the entire similarity matrices of the
models with the ones of the empirical hypergraph at different scales (see SM, for the ma-
trices �(t, t′), J∗(t, t′), ρ(t, t′) and ρ∗(t, t′)): the HADAM model better reproduces the evo-
lution and temporal stability of the empirical system at all the temporal and structural
scales, while the HADA and HAD models feature larger differences, with the HAD model
leading to the widest discrepancy (see SM).

We finally compare in Fig. 10 the behaviour of the time-aggregated centralities measures
in the data and models. The original data set presents a wide variability. In fact, even if the
aggregated hypercoreness W and the activity-averaged hypercoreness W are positively
correlated, there are nodes very central on average when active (high W ) but globally not
relevant (low W ) and vice-versa. This suggests different node hypercoreness trajectories
and node movements across the core structure (see SM). The system also presents a het-
erogeneous distribution of the aggregated hypercoreness W , P(W ), which provides a clear
ranking of nodes. Moreover, nodes with the same snapshot activity aw can present very
different structural behaviors, indeed the activity is unevenly distributed in the W classes:
the nodes with relevant structural role (high W ) are frequently active (high aw), but nodes
poorly structurally relevant (low W ) can have very different activity values.

In the HAD model all nodes have approximately the same activity-averaged hypercore-
ness W but different values of the aggregated one W (see Fig. 10): the HAD model does
not produce any hypercoreness hierarchy of nodes in any time window, therefore on av-
erage when a node is active it has the same centrality as the others W . The aggregated
hypercoreness W differentiate among the nodes only through their temporal persistence
in the system, i.e. through aw. The distribution of W appears homogeneous and peaked.

The HADA model creates a hierarchy of nodes both in terms of W and W (see Fig. 10):
in this case, the most globally central nodes are also relevant on average when active, while
nodes that are less central globally can feature different behaviours when active, either be-
ing very central or not. The distribution P(W ) appears homogeneous and peaked, with a
gradual increase in the activity aw of nodes more relevant. Even if it features a hypercore-
ness hierarchy, the model does not reproduce the empirical distribution of the aggregated
hypercoreness P(W ), and yields a stronger correlation between W and aw than in the em-
pirical data.
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Figure 10 Time-aggregated hypercoreness in time-varying hypergraphsmodels.We consider the CopNS data
set with 1-day time windows over four weeks, as well as the three synthetic models. a: scatter plots of the
aggregated hypercorenessW as a function of the activity-averaged hypercorenessW for each node: the
points are colored according to the snapshot activity aw of the corresponding node. b: histograms giving the
number of nodes P(W) with aggregated hypercorenessW : within each bar we distinguish the relative
frequency of nodes belonging to each class aw , through stacked bars. In all panels, we consider both the
empirical hypergraphs (first column) and the corresponding synthetic temporal hypergraphs (second
column - HAD, third column - HADA, and fourth column - HADAM). Note that the two time-aggregated
hypercoreness provide a description of the structural behavior of the nodes. The distributions of these
measures and their correlations help validate synthetic models concerning the structural and temporal
properties of single nodes. The HADAMmodel reproduces the empirical distributions and correlations quite
well, while the HADA and HAD models fail to do so

The HADAM model yields a hierarchy both in terms of W and W (see Fig. 10), repli-
cating quite well the empirical patterns, even if there are nodes with time-aggregated hy-
percoreness values, W and W , higher than those empirically observed. The distribution
P(W ) is heterogeneous, with few nodes with very high W , and also the heterogeneity in
nodes structural and temporal behaviours is well reproduced, since the distribution of aw

in the W classes well replicate the empirical case.
Overall, these results show how the hyper-core decomposition allows to validate the

hypergraph models structurally and temporally at different scales. The three temporal
models are generated starting from the same amount of information extracted from the
empirical data set and are tuned to replicate the same statistical and temporal properties.
The HAD model fails to produce and replicate the hierarchical structure at any of the
scales considered, as the model generates a mean-field structure without hierarchy. The
introduction of attractiveness in the HADA model generates a hierarchical structure that
however still strongly differs from the empirical one, as the model generates a more pro-
gressive core-periphery structure. The memory effect introduced in the HADAM model
makes it possible to obtain a hierarchical structure that resembles quite well the empirical
one at all scales, except for a stronger correlation between the nodes hypercoreness rank-
ings. Note that analogous results can be obtained also considering other data sets (see the
SM).

3 Discussion
Recently, there has been a recognition of the importance of going beyond pairwise and
static representations for complex systems [5, 15]. In this article, we have put forward a
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method for the structural and dynamic characterization of temporal hypergraphs, which
represent time-varying systems involving higher-order interactions. The approach is
based on decomposing the hypergraph into hyper-cores over time, and it provides a multi-
scale characterization: macroscopically, it follows the higher-order hierarchical structure
over time, monitoring the stability of the overall hyper-core structure; mesoscopically, it
follows the evolution of specific hyper-cores, observing whether stable groups of nodes
are densely connected to each other or whether they change over time; microscopically, it
follows the structural behavior of single nodes, monitoring their movements across the hi-
erarchical structure, towards more superficial or more central hyper-cores. The approach
provides several similarity measures that quantitatively estimate the higher-order struc-
tural stability of the system at different topological scales, also identifying temporal pat-
terns in the structure evolution. We moreover introduced two time-aggregated centrality
measures of nodes, by aggregating the instantaneous hypercoreness or by averaging it over
the node’s activity. These last measures provide additional information on the behavior of
the nodes, as opposed to other centrality measures that do not account for higher-order
structural properties.

We applied the method to a wide range of data sets describing different systems, char-
acterizing each of them and identifying similarities and differences: for example, stronger
instability characterizes systems where the nature of the interactions favors variability in
the interaction patterns, such as scientific collaborations, conferences, universities and
workplaces; a more stable structure is observed instead in systems with patterns of re-
peated interactions due tho functional roles, such as schools and hospitals. We also linked
structural properties of nodes to specific roles and activities in the systems, thus identify-
ing relevant functions and their evolution over time.

The proposed method represents also an effective model-validation tool, since it al-
lows to quantitatively estimate whether a synthetic temporal hypergraph can replicate the
structure of an empirical hypergraph and its evolution at different topological scales, and
to compare several candidate models. In this direction, we proposed several models of
activity-driven hypergraphs with increasing complexity in the mechanisms that drive the
hyperedges formation and we estimated their structural-temporal differences and sim-
ilarities with respect to the empirical systems. We have shown that models taking into
account solely the node activities and the hyperedges size distribution over time cannot
reproduce the empirical higher-order structure and its evolution. By contrast, introducing
attractiveness and memory, while keeping the model simple, yields non-trivial hyper-core
structures and a behaviour closer to the one empirically measured.

Our work opens several research directions and future perspectives. It lays the foun-
dations for the development of new characterization techniques for time-varying hyper-
graphs [15]: for example, it represents a first step for the definition of a core decomposition
of temporal hypergraphs, which is a highly challenging task because of the difficulties in
defining a procedure taking into account both non-dyadic interactions and the temporal
dimension to generalize, e.g., the span-core decomposition of temporal networks [11, 12].
Our work also provides insights for the understanding of higher-order dynamic processes
on temporal hypergraphs, since hyper-cores play an important role in dynamic processes
[26]: understanding how the multi-scale evolution of the underlying hypergraph affects
dynamic processes is of great interest, in order to fully assess the coupling between the
dynamics of and on the hypergraph. This is crucial also for the planning of adaptive mea-
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sures and interventions, e.g. to maximize or prevent the spread of information on a time-
varying hypergraph. Finally, our approach provides tools to guide the design of new mod-
els for temporal hypergraphs capable of reproducing higher-order structural properties
of empirical systems at different topological scales. Here we have proposed examples of
activity-driven hypergraphs featuring different interesting properties [9, 13, 39], however
more complex models could be devised [35–38, 40], for example introducing correlations
between the activity of nodes and the size of hyperedges of which they are member, or
considering memory and attractiveness mechanisms involving groups of nodes.

4 Methods
4.1 Hyper-core decomposition
Let us consider an unweighted static hypergraph Ht = (Vt ,Et), composed by the set of its
nodes Vt and by the set of its hyperedges Et . A hyperedge e = {i1, i2, . . . , im} ∈ Et consists in
a set of m nodes ik ∈ Vt ∀k = 1, . . . , m, with m ∈ [2, Mt], where Mt = maxe∈Et |e|.

The hyper-core decomposition is a procedure that decomposes the hypergraph Ht into
(k, m)-hyper-cores, i.e., a double hierarchy of nested subhypergraphs of increasing connec-
tivity, provided by hyperedges of increasing size. Specifically, the (k, m)-hyper-core of Ht ,
denoted as F (k,m)

t = (A(k,m)
t ,S (k,m)

t ), is defined as the maximum subhypergraph that con-
tains all the nodes i ∈ Vt involved in at least k distinct hyperedges of size at least m within
the subhypergraph itself. It contains all the hyperedges that are subsets of interactions in
the original hypergraph Ht , of size at least m and that contain only nodes of A(k,m)

t . There-

fore, A(k,m)
t = {i ∈ Vt s.t. DF (k,m)

t
m (i) ≥ k} and S (k,m)

t = {e ∩A(k,m)
t s.t. e ∈ Et ∧ |e ∩A(k,m)

t | ≥ m},

where DF (k,m)
t

m (i) is the number of distinct interactions of size at least m in which the
node i is involved in F (k,m)

t . Note that the (k, m)-hyper-core includes the (k, m + 1)- and
(k +1, m)-hyper-cores, producing a doubly nested hierarchical structure which, by increas-
ing k and m, progressively identifies groups of nodes more densely connected with each
other through interactions of increasing order [26]. The (k, m)-hyper-core is obtained by
removing progressively and iteratively all the nodes with Dm < k and all the hyperedges of
size smaller than m [26].

4.2 Data description and preprocessing
We consider data sets covering a wide range of interaction systems and presenting differ-
ent statistical, topological and temporal properties (see SM).

Scientific collaborations The American Physical Society (APS) scientific collaborations
data set [44, 45] consists in all the APS publications from 1893 to 2021: for each paper the
date of publication, the journal and the list of authors are indicated.

We initially addressed some issues appearing in the data: (i) information is missing for
some papers, for example on the author list: in these cases we removed the corresponding
entries from the data set; (ii) the same author “Name Surname” can appear with the full
extended name, as “N. Surname”, “N Surname” or “Na. Surname”; analogously with middle
names “Name Second Surname” or “Name-Second Surname”. To minimize the impact of
these inconsistencies, we: (a) identified all entries with the same “Surname”; (b) reassigned
the papers associated to dotted names to the corresponding extended name, carrying out
the reassignment only in case of uniqueness. Some dotted names do not have or have sev-
eral extended correspondences, making a unique reassignment impossible: in these cases
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we consider the contracted name as if it were a unique additional author. See the SM for
further details on the size of the various issues. The performed approach reduces the prob-
lems related to author identification, but does not completely eliminate the issue: it is still
possible that two authors have the same name, therefore the publications are attributed as
if they were a single individual. Moreover, in the presence of large collaborations, not all
authors are listed [65]. Such issues cannot be eliminated through preprocessing of the data
without additional information sources to perform a cross-source analysis [65]. However,
even without such additional information, the preprocessed data set gives a good enough
picture of the scientific interactions as our purpose is here demonstrative and we do not
seek to give precise ranking indications concerning scientists, nor follow in detail some
careers.

We thus use the data to build a hypergraph in which each node is an author, a hyperedge
represents a paper connecting the co-authors, and it is assigned with a label indicating the
corresponding journal. Since we focus on the pattern of collaborations between authors,
rather than on the absolute scientific production, we do not take into consideration papers
with a single author. We obtain a temporal hypergraph with 1-day resolution, and we focus
on 1942-2021. We consider 5-years adjacent time windows and aggregate the temporal
hypergraph within each of them, obtaining a sequence of unweighted static hypergraphs.
Each static hypergraph is composed of all the nodes and hyperedges active at least once
in the considered time window. The same group of authors can have co-authored several
papers in the same time window producing fully overlapping hyperedges: in this case we
consider only one hyperedge (unweighted hypergraph) and we assign a multiple label to
it, including all the journals in which the same group of authors published.

Physical proximity We consider several data sets of human face-to-face interactions ob-
tained through RFID wearable proximity sensors, made publicly available by the SocioPat-
terns collaboration [46, 48, 49] and by the Contacts among Utah’s School-age Population
project [53]. These data sets describe interactions between individuals in several settings
and cover different time periods: a workplace (InVS15 [47, 48] - 2 weeks), a conference
(SFHH [48] - 2 days), a hospital (LH10 [50] - 4 days), two primary-schools (LyonSchool
[51], Utah_elem [53] - 2 days) and a high-school (Thiers13 [52] - 1 week). The data consist
in each case in lists of time-resolved pairwise interactions between individuals (nodes),
i.e., temporal networks with a time resolution of 20 seconds. To identify group interac-
tions and transform such temporal networks into temporal hypergraphs, we carried out
the following procedure [23, 26]: (i) pairwise interactions are aggregated over 5-minutes
time intervals; (ii) cliques, i.e. fully connected clusters, are identified in each time step;
(iii) in each time interval the maximum cliques, i.e. cliques not fully contained in another
clique, are identified and promoted to hyperedges. This procedure generates temporal
hypergraphs with 5-minutes resolution. Some data sets have moreover node labels pro-
viding information on single nodes properties, e.g. class of each student for LyonSchool,
Thiers13, Utah_elem, social role for LH10 and working department for InVS15.

We also consider time-resolved data describing physical proximity events between stu-
dents in a University, collected through the Bluetooth signal of cellphones during 4 weeks
within the Copenhagen Network Study [36, 54] (CopNS). The data set provides pairwise
interactions between individuals (nodes) with a temporal resolution of 5 minutes and with
information on the signal intensity: we perform the preprocessing procedures described
in [36], obtaining a temporal hypergraph with 5-minutes resolution.
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Email Finally, we consider a data set describing email communications within an Eu-
ropean institution (email-EU [55–57] - 17 months). This data set is publicly available as
a temporal hypergraph: each node represents a user, each hyperedge corresponds to an
email and involves both the recipients and the sender of the message. The sending time is
provided for each hyperedge with 1-second resolution and the information on the direc-
tionality of the email is discarded.

4.3 Labels reshuffling procedures
We implement two reshuffling procedures, one for systems with hyperedge labels (e.g.
APS), and one for those with node labels (e.g. LH10).

Hyperedge labels reshuffling. We consider a temporal hypergraph H = {Ht}t=n
t=1, in which

each hyperedge e is assigned with one or multiple labels. We obtain a reshuffled realiza-
tion of the temporal hypergraph H′ in the following way: for each static snapshot Ht , we
randomly select two hyperedges e and f of the same size m and, if they have different labels
le and lf , we perform a label swap so that e will have the new label l′e = lf and f will have
the new label l′f = le. In the case of hyperedges e with multiple labels [l1

e , l2
e , . . . , ln

e , . . . , lq
e ],

one of the labels is randomly selected ln
e , and the label swap is performed only with it. The

procedure is repeated 105 times for each size m ∈ [2, Mt] and for each static snapshot Ht

(if the number of hyperedges of size m is at least 4 and at least two different labels are
available). The described procedure preserves in each temporal snapshot the hypergraph
structure, the overall number of hyperedges with each label at each order of interaction,
while it destroys the correlations between the nodes and the labels of the hyperedges in
which they are involved.

Node labels reshuffling. We consider a temporal hypergraph H = {Ht}t=n
t=1, in which each

node i is assigned with a label li. We obtain a reshuffled realization H′ of the temporal
hypergraph in the following way: for each temporal snapshot Ht , we randomly select two
nodes i and j and, if they have different labels li and lj, we perform a label swap so that i will
have new label l′i = lj and j will have new label l′j = li. The procedure is repeated 104 times
for each temporal snapshot. The described procedure preserves the hypergraph structure
and the overall number of nodes with a specific label in each temporal snapshot, but it
destroys the correlations between the labels of interacting nodes.

4.4 Temporal hypergraphs models
We generate different synthetic temporal hypergraphs starting from the properties of the
empirical hypergraph we want to model. Let us consider an empirical temporal hyper-
graph H observed over the time interval (0, tmax]. We consider n = tmax/τ adjacent time
windows ((t – 1)τ , tτ ] with t ∈ [1, . . . , n]. Within each of them we extract the set of active
nodes (of size Nt), the distribution of the hyperedge size �t(m), the total number of in-
teractions ntot

t and the total number of interactions in which each node is involved nt(i).
Then we generate synthetic temporal hypergraphs H′ with the same nodes of the empiri-
cal hypergraph, that within each temporal window t have the same set of available nodes
Nt , the same distribution �t(m) of the hyperedge sizes of the empirical data and that, by
an opportune tuning of the model parameters, reproduce quite well ntot

t and nt(i) ∀i. We
consider three different models of temporal hypergraphs. Then, we can perform temporal
aggregations for both the empirical {Ht}t=n

t=1 and each synthetic {H′
t}t=n

t=1 hypergraphs. For
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instance, starting from data having a 5-minutes resolution, we generate synthetic hyper-
graphs with the same temporal resolution, and then we consider hypergraphs aggregated
over 1-day time-windows for the analysis.

4.4.1 Activity-driven hypergraph (HAD)
The higher-order activity-driven model (HAD) is the hypergraph generalization of the AD
network [13] and of the simplicial activity-driven model (SAD) [9]. In this model, given
a population of N nodes, each node is assigned with an activity a(i). In the discrete-time
version of this model, in each time-step �t each node i can activate with probability a(i)�t.
When a node activates, it generates a hyperedge of size m, drawn from the distribution
�(m). The remaining (m – 1) nodes participating in the interaction are selected uniformly
at random from the entire remaining population, i.e. each node is selected with probability
1/(N – 1). At the following time-step all hyperedges are erased and the process continues
iteratively. Here moreover, we take into account that the set of available nodes (of size Nt),
the hyperedge size distribution �t(m) and the activity of a node at(i) can change over time.

The number of interactions in which a node is involved in the time window t of extension
τ is:

nt(i) = at(i)τ +
∑

j �=i

at(j)τ
〈m – 1〉t

Nt – 1
, (6)

where the first term is due to the activation of the node i itself and the second term to
the activation of another node j. Moreover, ntot

t =
∑

i at(i)τ . Therefore, the HAD model
replicates the nt(i) ∀i and ntot

t of the empirical data set by fixing the activity of each node
as:

at(i) =
nt(i) – 〈m–1〉t

Nt–1 ntot
t

τ
(

1 – 〈m–1〉t
Nt–1

) , (7)

where Nt , �t(m), nt(i) and ntot
t are fixed as in the empirical dataset. We set the time-step

�t equal to the duration of the interactions in the empirical data set.
The model takes into account the hyperedge size distribution, the activity of each single

node and their temporal evolution. The mechanism of hyperedges formation is uniform,
random and without memory, therefore the generated temporal hypergraph structure is
mean-field.

4.4.2 Activity-driven hypergraph with attractiveness (HADA)
The higher-order activity-driven model with attractiveness (HADA) is a generalization
of the AD network with attractiveness [39, 63, 64], and it differs from the HAD model
through the introduction of an attractiveness parameter which describes the propensity of
nodes to attract active interactions. Given a population of N nodes, each node is assigned
with an activity a(i) and an attractiveness b(i): in each discrete time-step �t each node i
can activate with probability a(i)�t. When a node i activates, it generates a hyperedge of
size m, drawn from the distribution �(m). The remaining (m – 1) nodes participating in
the interaction are randomly selected from the population with probability proportional
to their attractiveness, i.e. each node j is selected with probability b(j)/

∑
k �=i b(k). At the
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following time-step all the hyperedges are destroyed and the process is iterated. For sim-
plicity, hereafter we will assume that b(i) = a(i) ∀i, i.e. the most (less) active nodes are
also the most (less) attractive ones, as observed in several real systems [63, 64]. The set of
available nodes, the hyperedge size distribution and the activity of a node can change over
time.

The number of interactions in which a node is involved in the time window t of extension
τ is:

nt(i) = at(i)τ +
∑

j �=i

at(j)τ
〈m – 1〉tat(i)∑

k �=j
at(k)

, (8)

where the first term is due to the activation of the node itself and the second term to the
activation of another node. The HADA model reproduces the nt(i) ∀i observed in the
empirical data, if the activity is:

at(i) =
nt(i)

τ

(
1 + 〈m – 1〉t

∑
j �=i

at (j)
ntot

t /τ–at (j)

) , (9)

where Nt , �t(m), nt(i) and ntot
t are fixed as in the empirical dataset. When Nt � 1, we

can approximate at(i) ∼ nt(i)/〈m〉tτ since
∑

j �=i at(j) ∼ ntot
t /τ : this holds for all the time

windows of all the datasets considered. We set the time-step �t equal to the duration of
the interactions in the empirical data set.

The model takes into account the hyperedge size distribution and the activity of each
node, together with their temporal evolution; the hyperedges formation mechanism is
still random and without memory, but favors interactions with high activity nodes. The
generated temporal hypergraph has a progressive core-periphery structure: high-activity
nodes compose the core, being densely connected to each other and to the rest of the
population; nodes with progressively lower activity become gradually more peripheral,
being increasingly less connected to each other and only connected to the nodes in the
core.

4.4.3 Activity-driven hypergraph with memory (HADAM)
The higher-order activity-driven model with memory differs from the HADA model for
the introduction of a memory mechanism, analogous to that introduced in the AD net-
work with memory [61, 62]. Given a population of N nodes, each node is assigned an
activity a(i) and an attractiveness b(i): in each discrete time-step �t each node i can acti-
vate with probability a(i)�t. Here we consider activities and attractiveness depending on
time. At time t moreover, we define the aggregated neighbourhood Nt(i) of i as the set of
nodes i has interacted with in previous time steps. When a node i activates at time t, it
generates a hyperedge of size m, drawn from the distribution �t(m):

• with probability pt(i) = 1/(1 + lt(i)), the m – 1 nodes i will interact with are selected
among nodes that i has not yet encountered, i.e. who do not belong to its
neighbourhood Nt(i) at time t, where lt(i) = |Nt(i)|. In this case each node j /∈Nt(i) is
selected with probability b(j)/

∑
k /∈Nt (i) b(k);

• with probability (1 – pt(i)), they are selected among nodes that i has already met, i.e.
who belongs to its neighbourhood Nt(i) at time t. In this case each node j ∈Nt(i) is



Mancastroppa et al. EPJ Data Science           (2024) 13:50 Page 29 of 31

contacted with probability ωt
ijb(j)/

∑
k∈Nt (i) ω

t
ikb(k), where ωt

ij is the number of times
that i and j have participated together in a hyperedge up to time t.

At the following time-step all the hyperedges are erased, the process continues iteratively
and correlations are generated over time by the memory. For simplicity, hereafter we use
bt(i) = at(i) ∀i, t [63, 64].

In the HADAM model, we cannot determine the activity of the nodes in order to repro-
duce nt(i) as observed in the empirical data, since nt(i) depends on the full detailed history
of contacts of i up to time t. We fix the activities as in the HADA model, with Eq. (9), and
we have checked that this ansatz reproduces well ntot

t and the average total degree in the
aggregate snapshots. We set the time-step �t equal to the duration of the interactions in
the empirical data set.

The model takes into account the hyperedge size distribution and the activity of each
node, together with their temporal evolution. Initially, the hypergraph evolves as the
HADA model since p(i) ∼ 1 for all nodes. Then p(i) decreases and memory effects become
relevant: at first an active node generates hyperedges with both new and old contacts, and
then preferentially with only nodes already met, selecting those contacted several times
in the past. This memory-attractiveness mechanism favors dense interactions between
groups of nodes with high activity and between groups of nodes that contact each other
several times, thus generating a rich topological structure.
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