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ABSTRACT9

The richness of many complex systems stems from the interactions among their components. The higher-order10

nature of these interactions, involving many units at once, and their temporal dynamics constitute crucial properties11

that shape the behaviour of the system itself. An adequate description of these systems is offered by temporal12

hypergraphs, that integrate these features within the same framework. However, tools for their temporal and13

topological characterization are still scarce. Here we develop a series of methods specifically designed to analyse14

the structural properties of temporal hypergraphs at multiple scales. Leveraging the hyper-core decomposition of15

hypergraphs, we follow the evolution of the hyper-cores through time, characterizing the hypergraph structure and its16

temporal dynamics at different topological scales, and quantifying the multi-scale structural stability of the system.17

We also define two static hypercoreness centrality measures that provide an overall description of the nodes aggregated18

structural behaviour. We apply the characterization methods to several data sets, establishing connections between19

structural properties and specific activities within the systems. Finally, we show how the proposed method can be20

used as a model-validation tool for synthetic temporal hypergraphs, distinguishing the higher-order structures and21

dynamics generated by different models from the empirical ones, and thus identifying the essential model mechanisms22

to reproduce the empirical hypergraph structure and evolution. Our work opens several research directions, from the23

understanding of dynamic processes on temporal higher-order networks to the design of new models of time-varying24

hypergraphs.25

26
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I. INTRODUCTION30

Many complex systems composed of interacting ele-31

ments can be effectively described within the theory of32

static networks [1–3]. This powerful framework pro-33

vides a wide set of techniques and tools to characterize34

the interactions at different topological scales, through35

global graph properties (e.g. density), possibly focus-36

ing on specific groups of relevant nodes (e.g. k-cores)37

and providing various measures of node centralities. Fur-38

thermore, this multi-scale characterization helps identify39

nodes and mesostructures with relevant roles in dynam-40

ical processes, since the interaction structure deeply im-41

pacts processes unfolding on networks [3, 4]. Despite the42

power of network theory, recently several empirical ev-43

idences have brought out the limits of this framework,44

which by definition is restricted to a static description of45

systems involving only binary interactions.46

On the one hand, several systems present time-varying47

interactions, which follow specific dynamics and tempo-48

ral patterns [5–7]: for example, human social interactions49

[8], scientific collaborations [9] and neural systems [5, 10].50

These systems are represented using temporal networks, a51

generalization of static networks in which nodes interact52
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via links with specific activation and deactivation times53

[5, 6]. Several structural characterization tools for static54

networks have been generalized to time-varying graphs,55

showing the non-trivialities emerging from the introduc-56

tion of the temporal dimension [5–7]: for instance, span-57

cores can decompose a temporal graph into subgraphs of58

controlled duration and increasing connectivity [11, 12].59

Moreover, dynamic processes on temporal networks are60

also impacted by the network dynamics, especially when61

the dynamics of and on the network have comparable62

time scales [5, 6, 13, 14].63

On the other hand, many complex systems also fea-64

ture interactions between groups of agents, not reducible65

to sets of pairs [15, 16]: this is the case for example of66

human social interactions [17], scientific collaborations67

[18] and species interactions in ecosystems [19]. An ade-68

quate description of these systems involves hypergraphs,69

a generalization of networks in which nodes can interact70

in groups of arbitrary size, i.e., hyperedges [15]. Tak-71

ing into account such higher-order nature of interactions72

leads to the definition of new structures and concepts73

and to new dynamical phenomena [15, 16, 20–22]. In-74

deed, several dynamical processes, including contagion75

dynamics, synchronization phenomena and consensus for-76

mation, exhibit richer and more complex dynamics when77

defined on higher-order networks, with important differ-78

ences with respect to the dynamics occurring on pair-79
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wise networks, such as changes in the nature of the phase80

transitions observed [15, 20, 21, 23]. Despite the rele-81

vance of such higher-order effects, tools to characterize82

hypergraphs at various scales have only recently been pro-83

posed: for example, efforts have been devoted to defin-84

ing explicitly higher-order centrality measures, account-85

ing for information otherwise impossible to retrieve by86

pairwise measures [15, 24]; moreover, a few techniques87

and methods have been developed to identify relevant88

higher-order substructures in hypergraphs [15, 25–27].89

Among them, the hyper-core decomposition [26, 27] iden-90

tifies a doubly nested hierarchy of mesoscopic subhyper-91

graphs, the hyper-cores, composed of nodes progressively92

more densely connected to each other through interac-93

tions of increasing size. This technique provides a global94

fingerprint of systems described using hypergraphs and95

identifies structurally central mesostructures that play an96

important role in higher-order dynamical processes [26].97

This decomposition also comes with an associated cen-98

trality measure for nodes, the hypercoreness, which is99

based on the node structural position at the various in-100

teraction orders [26].101

The increasing attention to the development of frame-102

works to handle time-varying and non-pairwise structures103

speaks for the need of using both the temporal and the104

higher-order nature of interactions to adequately describe105

and model several complex systems and dynamical pro-106

cesses. The integration of these two features has occurred107

relatively recently within temporal hypergraphs, where hy-108

peredges present specific activation times and duration,109

describing evolving group interactions [15]. Some works110

focused on defining procedures to construct temporal hy-111

pergraphs from data [28, 29], others on the impact of112

the hypergraph dynamics on dynamic processes [30, 31].113

Only few attempts have been made to investigate the114

temporal-topological properties of temporal hypergraphs115

[29, 32–36], and a complete structural characterization is116

still missing. Moreover, synthetic models of temporal hy-117

pergraphs have been proposed to identify and replicate118

the mechanisms that govern the evolution of empirical119

systems [9, 35–38], but model-validation tools are still120

scarce. Therefore, it becomes necessary to develop ded-121

icated multi-scale characterization methods tailored for122

temporal hypergraphs. These techniques are essential to123

accurately describe empirical systems, construct and val-124

idate synthetic models, and ultimately identify crucial125

temporal structures for higher-order dynamic processes:126

how does the higher-order structure evolve at different127

scales over time? Are there persistent groups of nodes128

exhibiting dense connections at different interaction or-129

ders, or do these configurations change dynamically? Are130

the most structurally central nodes always the same, or131

do they undergo changes over time?132

Here, we tackle such issues by proposing a multi-scale133

method for the characterization of temporal hypergraphs134

at different topological scales. By applying the hyper-135

core decomposition to successive snapshots of a tempo-136

ral hypergraph, and by following the evolution of the re-137

sulting hierarchical structure, we are able to characterize138

the structure and its evolution at different scales: macro-139

scopically, following the evolution of the relative sizes of140

the hyper-cores; mesoscopically, focusing on the dynam-141

ics of specific hyper-cores; microscopically, following the142

position of single nodes in the hyper-core structure over143

time. Measuring the similarity between the hyper-core144

structure at different times enables the quantification of145

the structural stability of the system at different topo-146

logical scales. We also define two time-aggregated hyper-147

coreness centralities for nodes, based on the node instan-148

taneous hypercoreness and its evolution, which together149

provide an overall description of its structural behavior.150

We apply the proposed approach to several data sets rep-151

resenting systems of diverse nature. This enables us to152

identify differences and similarities in their structure and153

evolution, unveiling temporal patterns, and to establish154

connections between structural properties and specific ac-155

tivities within the systems. Finally, we illustrate how156

the proposed method provides a model-validation tool for157

synthetic models of temporal hypergraphs. To this aim,158

we propose several models of activity-driven temporal hy-159

pergraphs [9, 13, 39, 40] which progressively implement160

mechanisms for the formation of group interactions of161

increasingly complexity. We tune these models to mimic162

the activity patterns of the interaction data sets and show163

how, following the hyper-core decomposition over time,164

we are able to distinguish between the hyper-core struc-165

tures and dynamics generated by the models at different166

topological scales, providing a quantitative comparison167

between synthetic models and empirical hypergraphs.168

The paper is organized in the following way: in Section169

IIA we describe the hyper-core decomposition and how170

it provides a multi-scale method for the characterization171

of temporal hypergraphs; in Section II B we define two172

time-aggregated centrality measures for nodes; in Section173

II C we present the empirical data sets considered, and in174

Sections IID, II E we apply the proposed method to dif-175

ferent data sets; in Section II F we show how our method176

can be used as a model-validation tool, considering dif-177

ferent hypergraph models; in Section III we summarize178

the main results, discuss their implications and outline179

some future perspectives. In order to avoid accumulating180

too many technical details in the previous sections, we181

leave the detailed presentation of several aspects of our182

methodology to Section IV-Methods (on the hyper-core183

decomposition in Section IVA, on the data preprocess-184

ing in Section IVB, on reshuffling procedures in Section185

IVC and on the temporal hypergraph models in Section186

IVD).187

II. RESULTS188

A. Following the hyper-core decomposition of189

temporal hypergraphs190

Let us consider a time-varying hypergraph H observed191

over the time interval (0, tmax]. We consider a snapshot192

representation of H with temporal resolution τ [28], i.e.,193

the interval (0, tmax] is divided into n = tmax/τ time194

windows of length τ : H = {Ht}nt=1, where in each time195

window t the instantaneous hypergraph Ht = (Vt, Et) is196

an unweighted static hypergraph formed by the set Vt197

of nodes active at least once in ((t − 1)τ, tτ ] and by the198

set Et of hyperedges active at least once in ((t − 1)τ, tτ ]199

(with Nt = |Vt| and Et = |Et|). A hyperedge e =200

{i1, i2, ..., im} ∈ Et represents a group interaction between201
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nodes ik ∈ Vt ∀k = 1, ...,m: it consists in a set of m202

nodes, with m ∈ [2,Mt], where Mt = maxe∈Et |e|. We203

denote with Ψt(m) the hyperedge size distribution in the204

time-window t [41].205

We propose to characterize the structural evolution of206

the temporal hypergraph H by applying the hyper-core207

decomposition procedure to each snapshot Ht [26]. The208

hyper-core decomposition decomposes static hypergraphs209

into series of subhypergraphs of increasing connectivity,210

ensured by hyperedges of increasing sizes. Specifically,211

the (k,m)-hyper-core of the snapshot Ht = (Vt, Et) is212

defined as the maximum subhypergraph that contains all213

the nodes i ∈ Vt involved in at least k distinct hyperedges214

of size at least m within the subhypergraph itself (see215

Methods and [26]).216

The set of nodes belonging to the (k,m)-core but not217

to the (k+1,m)-core forms the (k,m)-shell. Each node i218

in the temporal hypergraph can thus be assigned a time-219

varying m-shell index Cm(i, t), which defines the maxi-220

mum k such that i belongs to the (k,m)-hyper-core but221

not to the (k + 1,m)-hyper-core at time t. This leads to222

the definition of the hypercoreness R(i, t) of node i in Ht223

by [26]:224

R(i, t) =

Mt∑
m=2

Cm(i, t)/kmmax(t) , (1)

where kmmax(t) is the maximum connectivity at order225

m for the snapshot t, such that the (kmmax(t),m)-core226

is not empty, but the (kmmax(t) + 1,m)-core is empty.227

R(i, t) ∈ [0,Mt − 1] summarizes the centrality proper-228

ties of i with respect to the hyper-core decomposition at229

time t by taking into account its relative depth in the230

(k,m)-core structure at all interaction orders [26] [42].231

By considering the hyper-core decomposition of the232

successive snapshots forming the temporal hypergraph,233

we can thus follow the temporal evolution of its higher-234

order hierarchical structure, and obtain a characteriza-235

tion of the higher-order dynamics at several scales, as we236

now discuss.237

Macroscopic scale. The fraction of nodes within the238

(k,m)-hyper-cores, n(k,m), as a function of k and m con-239

stitutes the filling profile of the hyper-cores, and provides240

information on the distribution of nodes in the various241

cores and shells. Following its evolution across successive242

snapshots yields information on how the overall system’s243

cohesiveness changes over time. The filling profile can in-244

deed detect changes in the underlying higher-order hier-245

archical structure, since different distributions of nodes in246

the hyper-cores reflect different configurations of interac-247

tions in the nested hierarchy [26]: for instance, a smooth248

decay of n(k,m) with k and m suggests the presence of249

nodes progressively more densely connected with each250

other through interactions of larger sizes (homogeneously251

populated shells), while the alternation of plateaus and252

abrupt drops reveals the presence of a non-trivial struc-253

ture, with nodes poorly or densely connected with each254

other, without intermediate behaviours (unevenly filled255

shells). Thus, the similarity between the hyper-cores256

filling profiles of two different snapshots, n(k,m)(t) and257

n(k,m)(t
′), provides a quantitative estimate of the sta-258

bility of the macroscopic hyper-core structure over time.259

While several similarity measures can be defined between260

the filling profiles of two hypergraphs, we consider here261

the root-mean-square deviation similarity, defined as fol-262

lows for the filling profiles a(k,m) and b(k,m) of two static263

hypergraphs A and B with respective maximum connec-264

tivities kmmax(A) and kmmax(B) ∀m, and respective maxi-265

mum hyperedge sizes MA and MB:266

Σ(A,B) = 1−

√√√√√√ K∑
k=1

M∑
m=2

(
a(k,m) − b(k,m)

)2
K (M − 1)− 1

, (2)

with K = max
m

{max{kmmax(A), kmmax(B)}} and M =267

max{MA,MB} (in this way Σ ∈ [0, 1]) [43] [44]. The268

temporal similarity matrix Σ(t, t′) = Σ(Ht,Ht′) provides269

then a way to explore the existence of various temporal270

patterns in the hyper-core decomposition of the system271

at different times, and to unveil the presence of stable pe-272

riods, recurrences or sudden changes [7, 10, 45, 46] [47].273

Mesoscopic scale. By following the hyper-core de-274

composition over time, it is moreover possible to study275

the temporal stability and changes occurring in subhyper-276

graphs with specific structural roles. To this aim, we can277

consider a given set of shells or cores, and compare their278

sets of nodes A in two different snapshots t and t′ through279

the Jaccard similarity J(t, t′) = |At∩At′ |/|At∪At′ |. The280

matrix J(t, t′) quantifies the stability over time of the set281

of nodes forming the cores under scrutiny. In particular,282

we will here focus on the set of the most central hyper-283

cores of each snapshot, i.e. the (kmmax,m)-hyper-cores284

∀m. We can then determine whether these cores are sta-285

ble, involving always the same nodes across snapshots, or286

whether their composition evolves, due to changes of con-287

nectivity of individual nodes: this can happen even when288

the macroscopic structure remains similar (as found in289

temporal networks where the most connected nodes can290

vary with time [48], or a core-periphery structure can be291

stable even when the composition of the core strongly292

fluctuates [10]).293

Moreover, empirical data include sometimes meta-data294

(see Methods) describing properties or attributes of the295

nodes or hyperedges, and dividing them into classes based296

on their specific function or context. For instance, data297

describing social interactions can be enriched by informa-298

tion on the individuals involved (e.g., to which class they299

belong in a school environment, to which department300

or which role they have in a work environment). Such301

information makes it possible to study whether differ-302

ent groups or classes of nodes have different higher-order303

structural properties, and whether specific hyper-cores304

are preferentially composed by specific nodes or specific305

types of hyperedges. For instance, one can identify the306

most represented class in each hyper-core at each time,307

and follow over time which types of nodes or hyperedges308

are dominant in the most central hyper-cores.309

Microscopic scale. At the node level, the hypercore-310

ness R(i, t) gives an instantaneous measure of the cen-311

trality of a node in each snapshot. It is thus possible, for312

each node of interest, to follow its trajectory in the hyper-313

core structure through the evolution of its hypercoreness.314

More precisely, in order to make the hypercoreness val-315

ues comparable across different snapshots, we consider316

the temporal evolution of the relative position of each317
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node i in the hypercoreness ranking:318

r(i, t) =
R(i, t)

max
j∈Vt

{R(j, t)}
. (3)

The evolution of r(i, t) with t indeed reflects the move-319

ments that node i undergoes within the hierarchical struc-320

ture, potentially navigating towards more central or more321

superficial cores.322

The set of all R(i, t) moreover provides an instanta-323

neous node hierarchy within the time window t. Such324

a hierarchy might fluctuate from one snapshot to the325

next [48], and the Pearson correlation coefficient ϱ(t, t′) =326

ϱ(R(i, t), R(i, t′)) of the nodes hypercoreness values be-327

tween two time snapshots t and t′ provides information328

on the stability of the node ranking over time, i.e., on329

how the nodes change their respective structural posi-330

tions over time. Just as Σ(t, t′) for the global scale and331

J(t, t′) for intermediate scales, this measure can unveil332

correlation patterns at various time-scales: for example,333

a high and constant ϱ(t, t′) indicates that nodes tend to334

keep their relative structural positions over time, while335

constantly low values correspond to an unstable situation336

with nodes continuously changing place in the hierarchy.337

Note that, as not all nodes are active in each snapshot,338

we can compute ϱ(t, t′) in two ways: (i) ρ∗(t, t′) takes339

into account only the nodes that are active in both t340

and t′, while (ii) ρ(t, t′) is computed considering all nodes341

active in at least one of them (setting the hypercoreness342

of inactive nodes to 0). The difference between ρ(t, t+1)343

and ρ∗(t, t + 1) provides information on the structural344

properties of nodes just after entering the system or right345

before leaving it: ρ ≲ ρ∗ indicates that nodes have mainly346

low hypercoreness when joining/leaving the system, while347

ρ ≪ ρ∗ indicates that nodes joining/leaving the system348

tend to be central.349

B. Time-aggregated hypercoreness centralities350

The hypercoreness centrality of nodes in static hyper-351

graphs has been shown to provide information on their352

importance for dynamic processes involving higher-order353

interactions unfolding on such hypergraphs [26]. Many354

processes however unfold on time-varying hypergraphs355

[30, 31], hence a time-aggregated ranking of nodes sum-356

marizing the evolution of their instantaneous coreness357

could prove useful.358

We first define the snapshot activity aw(i) ∈ [0, n],359

given by the number of time windows in which node i360

is active, and the average number of interactions361

when active h(i) = D(i)/aw(i), where D(i) is the total362

number of hyperedges in which i is involved in the tempo-363

ral hypergraph. We then introduce two time-aggregated364

centrality measures that summarize the positions of the365

nodes in the hyper-core structure over time:366

• the aggregated hypercoreness W :367

W (i) =

n∑
t=1

R(i, t)

max
j∈Vt

{R(j, t)}
=

n∑
t=1

r(i, t), (4)

takes into account how deep i is in the hyper-core368

structure at the various interaction orders in each369

time window, and simply aggregates this informa-370

tion over time.371

• the activity-averaged hypercoreness W :372

W (i) =

n∑
t=1

r(i, t)

aw(i)
=

W (i)

aw(i)
, (5)

averages W over the activity of the nodes.373

W and W provide complementary information. Indeed,374

a high W can be obtained either for a node i that is very375

active (high aw(i)) but not very central (small r(i, t)) or376

for a node j that is not very active (low aw(j)) but cen-377

tral when active (high r(j, t)). These two situations are378

distinguished when taking into account also W , as W (i)379

will then be small while W (j) will be large. Together,380

the time-aggregated hypercoreness measures W (i) and381

W (i) thus provide a two-dimensional picture taking into382

account both the activity of nodes and the evolution of383

their relative centralities over time.384

C. Empirical temporal hypergraphs385

The approach outlined is general and can be applied to386

empirical data of higher-order interactions evolving over387

time describing a variety of systems. In the following, we388

showcase its interest using: a data set of scientific collab-389

orations [49, 50], several data sets of physical proximity390

interactions between individuals in various environments391

[51–59] (a hospital [55], a conference [53], three schools392

[56–58], a university [59] and a workplace [52, 53]), and393

a data set of email communications [60–62]. These data394

sets present different statistical, topological and tempo-395

ral properties (e.g., interaction size distribution, tempo-396

ral patterns due to system-specific activities). Full details397

on all the data sets and on the preprocessing procedures398

are available in the Methods Section (Section IV) and in399

the Supplementary Material (SM). In the main text we400

specifically analyse data describing three different sys-401

tems, while results for the other data sets are reported in402

the SM. In particular, here we consider:403

• the scientific collaborations data set of the Ameri-404

can Physical Society (APS), which provides the list405

of papers published in APS journals from 1893 to406

2021 [49, 50]. We build a temporal hypergraph (see407

Methods) in which each node corresponds to an au-408

thor, each hyperedge represents a paper connecting409

its co-authors and is endowed with a label indicat-410

ing the journal in which the paper was published.411

• a data set of face-to-face human interactions in a412

hospital (LH10), collected within the SocioPatterns413

collaboration [51, 55]. The data set has a temporal414

resolution of 20 seconds and covers a period of 96415

hours. We build a temporal hypergraph in which416

each node corresponds to an individual and each417

hyperedge represents a group interaction, defined418

with a temporal resolution of 5 minutes (see Meth-419

ods) [20]. Each node is assigned with a label in-420

dicating its social role: Med for doctors, Param for421

nurses, Admin for administrative staff, and Patient422

for patients.423
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• a data set of proximity human interactions in a uni-424

versity, collected within the Copenhagen Network425

Study (CopNS) [59]. The data set has a tempo-426

ral resolution of 5 minutes and covers a period of 4427

weeks. We build a temporal hypergraph from the428

data by considering each individual as a node, and429

each hyperedge as a group interaction with a tem-430

poral resolution of 5 minutes (see Methods) [36].431

For the university data set, we also show how the analysis432

of the hyper-core structure over time can contribute to433

the validation of models of time-varying hypergraphs.434

D. Dynamics of the higher-order structure of435

scientific collaborations436

We represent the APS scientific collaborations data set437

through a time-varying hypergraph in which each node438

corresponds to an author and each hyperedge represents a439

paper connecting its co-authors (see Methods). We con-440

sider a 5-years temporal resolution, i.e., each temporal441

snapshot is formed by all papers published in a 5-years442

time window (see SM for a different temporal resolution),443

and we consider the period 1962-2021 (earlier years hav-444

ing only much smaller numbers of nodes and hyperedges).445

Figure 1a shows the evolution of the global hyper-cores446

structure as given by the filling profiles, which do not447

simply expand in a monotonous fashion as the numbers448

of nodes and hyperedges increase over the years. Initially449

the system presents only (k,m)-hyper-cores with low con-450

nectivity k, especially for large hyperedge sizes m; then,451

the filling profile undergoes an expansion towards higher452

k and higher m values. At first, kmmax increases for high453

interaction orders m and only later at low orders. Fur-454

thermore, the increase in kmmax is non-monotonic with455

respect to time, especially for low m: kmmax for m ≳ 2456

grows up to a maximum in the 1997-2001 snapshot, and457

then decreases and stabilizes in the following years (as458

we will discuss below, this behavior can be traced back459

to a specific scientific community and its collaboration460

dynamics). Thus, the cohesiveness of the scientific com-461

munity first increased through connected large size col-462

laborations, then an increase in cohesiveness occurred at463

all orders until 1997-2001. The cohesiveness of the com-464

munity then relaxed to a lower but stationary level in the465

last 20 years.466

Although the size of the interactions and the density467

of collaborations change over time, the overall structure468

of the filling profiles remains similar instead (Fig. 1a).469

In fact, the hyper-cores always present a rapid and pro-470

gressive emptying of the cores as k and m increase: su-471

perficial shells (low k) are densely populated, and shells472

become gradually less populated with increasing k and473

m. The root-mean-square deviation similarity Σ(t, t′)474

between the hyper-cores filling profiles at time t and t′475

presents very high values for all pairs (t, t′) (Fig. 1b),476

indicating a stable structure: the similarity is particu-477

larly high between consecutive snapshots (Fig. 1e), and478

decreases monotonically when |t′ − t| increases.479

We investigate the mesostructural level through the480

similarity J∗(t, t′) between the sets of nodes belonging481

to the most central cores, i.e. to the (kmmax,m)-hyper-482

cores ∀m at different times. Figure 1c,f shows that the483

stability of the central cores is low, even between adjacent484

time windows. This is not only due to the fact that the485

set of authors change over time, as J∗ is much lower than486

the Jaccard coefficient JN between the sets of authors in487

different time windows. J∗(t, t′) moreover decreases to488

0 as soon as the time difference |t′ − t| exceeds 2-4 time489

windows, indicating a completely different composition of490

the central hyper-cores. Note that a tendency to increase491

the stability of the central cores can be seen until ≈ 2010492

(Fig. 1c,f), although it decreases again afterwards. Over-493

all the J∗ values remain low, indicating that the nodes494

sitting in the most central hyper-cores change over time.495

We further explore this instability using the correla-496

tion ρ(t, t′) of nodes hypercoreness across different time497

windows, as shown in Fig. 1d,g. A positive correlation498

is observed between the hypercoreness values of nodes in499

successive snapshots, but the correlation ρ(t, t+ 1) com-500

puted using all nodes active at least once in (t, t + 1)501

is lower than ρ∗(t, t + 1), which takes into account only502

nodes active in both snapshots (Fig. 1g). As discussed503

above, this indicates that some nodes with high centrality504

leave the system, and/or nodes enter the system and gain505

immediately a central position. As the temporal distance506

|t′ − t| increases, the correlation ρ(t, t′) progressively de-507

creases. Moreover, the correlations tend to increase with508

t: ρ(t, t + 1) increases with t and the decrease of ρ(t, t′)509

with t − t′ becomes slower (Fig. 1d,g), indicating an510

increased stability in centrality rankings as time evolves.511

The correlation between hypercoreness values decays to512

zero in approximately 3-5 time windows and then reaches513

negative values: this suggests a progressive inversion of514

the rankings over time, with nodes successively increas-515

ing and decreasing their hypercoreness and rankings, as516

driven by the unfolding of their academic careers. Figure517

2 indeed gives some examples of the evolution of indi-518

vidual nodes’ relative hypercoreness r(i, t), which are a519

reflection of the academic trajectories of the correspond-520

ing scientists. Some nodes have a bell-shaped hypercore-521

ness profile, entering the system with a low centrality,522

progressively moving towards the more central cores and523

then back to lower ranks. This can describe the aca-524

demic trajectory of a young researcher, who enters into525

the scientific community, becomes central and then pro-526

gressively leaves the community due to retirement or a527

change in the topic/journals reference of their research.528

Other nodes present instead a rather stable ranking, and,529

for individuals having entered the system more recently,530

only the upward trend of increasing centrality is observed.531

To characterize the nodes’ overall behaviours, we more-532

over compute their time-aggregated centrality measures,533

and show the results in Fig. 3. On average, the ag-534

gregated hypercoreness ⟨W ⟩ increases with the activity535

snapshot aw (Fig. 3a), but a large variability in the val-536

ues of W is observed at given aw. Some nodes can be537

very active but display a low centrality, while nodes with538

moderate activity can reach large values of W . The av-539

erage number of interactions per active window h is also540

only weakly correlated with W , and the nodes with high-541

est W do not coincide with those with largest h (see Fig.542

3b). Finally, the aggregated and activity-averaged hy-543

percoreness, W and W , also do not produce the same544

ranking (see Fig. 3c). Some nodes are not often active545

(low aw) with medium-low W but high W : these au-546
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thors appear in few windows but within very connected547

communities, therefore are very central on average when548

active but their low aw make them less relevant in ag-549

gregated terms. Other nodes are very active (high aw)550

with medium-high W but relatively low W : such authors551

are often active either with a low centrality or with non-552

monotonous hypercoreness profile (see Fig. 2). Overall,553

the combined information of W and W provide a more554

complete description of nodes structural behavior on the555

whole time span than when considering only one of these556

centralities.557

We finally leverage the fact that each hyperedge repre-558

senting a scientific article is labelled by the journal it was559

published in to examine the importance of the various560

APS journals in the hyper-core structure. The APS jour-561

nals can be interdisciplinary (e.g. PRL) or specialized in562

a specific research field (e.g. PRC for nuclear physics,563

PRD for high-energy physics, PRB for condensed matter564

physics), thus representing a specific research area [50]565

(see SM).566

For each (k,m)-core we consider all the hyperedges it567

contains and their labels, and we identify the dominant568

journal (namely, whose frequency exceeds 0.5; if no jour-569

nal is represented by more than half of the hyperedges,570

we consider that no journal dominates) [63]. Figure 4a571

shows the resulting evolution of the hyper-cores domi-572

nant journal. Initially, PR and PRL dominate within all573

the hypercores, since they were the only available jour-574

nals together with RMP (not shown in the figure, see575

SM). Then, the more superficial cores present a mixed576

composition, while the most central ones are first domi-577

nated by PRL in the period 1962-1981; subsequently in578

1982-1986, central cores are mostly formed by the high-579

energy physics community (PRD) for large collaboration580

sizes, while at low order the nuclear physics area dom-581

inates (PRC). Starting from 1992, PRC dominates the582

most central hyper-cores at all orders: the non-monotonic583

behavior observed in the core structure, with the maxi-584

mum connectivity in 1997-2001, is predominantly due to585

interactions within the nuclear physics area. This could586

be due to several discoveries in the field occurring in the587

preceding years (e.g. the discovery of the W and Z bosons588

[64] or the discovery of top quarks [65, 66]), which boosted589

collaborations in the community, favouring and increas-590

ing cohesion. After this phase the nuclear physics area591

remains overall dominant. Moreover, this non-monotonic592

behavior can also be identified in the hyper-core decom-593

position of the hypergraphs obtained by considering only594

the papers published in PRC (see SM). Recently, the con-595

densed matter physics community (PRB) is also expand-596

ing its contribution to the central cores at low interaction597

orders. The relative contribution of the scientific commu-598

nities to the set of the most central cores is summarized599

in Fig. 4b: PRL is the dominant journal in the first600

time windows, while the share of PRC increases rapidly601

starting in the 80s; the share of PRB becomes also im-602

portant from 2012-2016 and in 2017-2021 new journals603

start gaining relevance (e.g. PRX).604

As the number of scientists and articles in various fields605

are neither homogeneous nor constant, we check whether606

such patterns are simply due to the relative abundance607

of authors and articles in the different journals. To this608

aim, we build a randomized version of the temporal hy-609

pergraph, which preserves in each time window the hy-610

pergraph structure and the total number of interactions611

of each order for each label, but destroys any correlation612

between the nodes and the label of the hyperedges in613

which they participate (see the reshuffling procedure in614

Methods). We consider 50 randomized realizations and615

for each hyper-core we estimate the average frequency616

of each label. The patterns of topic dominance in the617

most central cores is significantly different in the reshuf-618

fled version compared to the empirical case (see Fig. 4b,c619

and SM). For example, in the reshuffled case PRA, PRB620

and PRE are significantly more represented in the central621

cores, while PRC is instead less represented than in the622

original data.623

It is also possible to consider a different time resolution624

for building the temporal hypergraph, to investigate e.g.625

the dynamics at shorter time-scales, or to focus on one626

specific scientific community by considering the hyper-627

graph formed by articles published in one specific journal.628

We refer to the SM for some results in such directions.629

E. Higher-order structure dynamics of interactions630

in a hospital631

We now consider the data set of face-to-face interac-632

tions in a hospital (LH10), represented through a time-633

varying hypergraph where nodes correspond to individu-634

als and hyperedges to group interactions (see Methods).635

We first study differences in the daily aggregated hyper-636

graph structures, i.e., we aggregate the temporal hyper-637

graph over 24-hours time windows (thus obtaining n = 4638

time windows).639

The maximum size of interactions Mt and the maxi-640

mum connectivity values kmmax(t) ∀m, i.e. the cohesive-641

ness of the system, are rather stable over different days642

(Fig. 5a,b). However, nodes are differently distributed643

within the cores. On the first day, the population of the644

(k,m)-cores features sharp drops when k increases, fol-645

lowed by plateaus: these correspond to densely popu-646

lated shells at small k followed by almost empty shells.647

In other days, the structure instead presents a more648

progressive emptying of the cores as k increases, hence649

shells are populated more homogeneously (even if some650
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jumps and plateaus of reduced sizes are still present).651

The root-mean-square deviation similarity Σ(t, t′) be-652

tween the hyper-cores filling profiles at time t and t′ still653

presents high values for all pairs (t, t′) (see Fig. 5c), how-654

ever the similarity is lower than the one observed for the655

APS data set. Moreover, the similarity Σ between con-656

secutive snapshots increases over time (Fig. 5f).657

Mesoscopically the system is quite stable (see Fig.658

5d,g): the similarity J∗(t, t′) between the nodes in the659

most central cores at time t and t′ presents medium-high660

values, and J∗(t, t′) slightly decreases when increasing661

|t′ − t| and in consecutive time windows it still assumes662

values close to the similarity of the entire population JN ,663

even if decreasing over time. The composition of the most664

central cores is thus quite stable, therefore in general the665

nodes maintain the same position in the core structure.666

This is confirmed by the correlation ρ(t, t′) in the nodes667

hypercoreness between two snapshots (see Fig. 5e,h).668

The correlation ρ(t, t′) presents high values. As we will669

explore further below, this stability in the composition670

of central cores and in the behavior of the nodes is due671

to the difference in the roles played by the different indi-672

viduals in the hospital, which limits the mobility of the673

nodes in the hyper-core structure.674

Note that, even if the position of the nodes in the675

hyper-core structure is fairly stable over time, the evo-676

lution of the hypercoreness r(i, t) for single nodes can677

show different trajectories. This is evident when disag-678

gregating by social role, as for the examples in Fig. 6:679

the nodes can present a stable dynamic with a constant680

position in the core structure, as shown by the patient681

and the paramedic cases, or a non-monotonic dynamic,682

with movements from more central cores towards more683

superficial ones and vice-versa, as for the doctor and the684

administrative staff member.685

These different behaviours are summarized by the686

time-aggregated centrality measures. In general the ag-687

gregated hypercoreness W increases with the snapshot688

activity aw (see Fig. 7a), however nodes with the same aw689

can have very different W . Analogously, W and the av-690

erage number of interactions when active h are positively691

correlated, but there are outliers, which produce differ-692

ent top positions in the corresponding rankings (see Fig.693

7b). By taking the structure into account, the aggregated694

hypercoreness can thus provide a different and more de-695

tailed information than the activity or the average num-696

ber of interactions. The aggregated and activity-averaged697

hypercoreness show that the nodes that are globally rel-698

evant are also relevant, on average, when active (see Fig.699

7c). Nevertheless, the produced rankings are still dif-700

ferent since some nodes are relevant when active (high701

W ), but not globally (low W ). By combining the two702

time-aggregated hypercoreness measures we obtain infor-703

mation on the different overall behaviors of the nodes (see704

Fig. 6).705

We finally expose strong differences in the temporal706

and structural properties of specific roles in the hospital.707

Figure 7 shows that the activity aw is quite independent708

of the social role; however, the patients have a homoge-709

neous behavior occupying always the lower positions in710

all the rankings produced by the other time-aggregated711

centrality measures; on the contrary the nurses, doctors712

and administrative staff present a more heterogeneous713

behaviour, presenting a wide range of centrality values.714

Nurses constitute the most structurally and temporally715

relevant group according to all the time-aggregated cen-716

trality measures, always occupying the top positions of717

the rankings (see Fig. 7).718

The nurses have a key role also mesoscopically: in each719

(k,m)-hyper-core indeed, we identify the dominant social720

role when possible by checking whether more than half721

of the nodes of a core belong to one category. In the722

superficial cores it is not possible to identify a dominant723

role, however in the most central cores the nurses dom-724

inate in all time windows and at all interaction orders725

(see Fig. 8a). Nurses thus constitute the most densely726

connected social group at all the orders of interaction,727

thus the interactions structure in the most central cores728

is attributable to their activities.729

The dominant role of nurses is further highlighted730

microscopically by considering the evolution of the731

average hypercoreness r(i, t) within each specific class732

(see Fig. 8b). All roles present a quite stable average hy-733

percoreness: patients and nurses present a hypercoreness734

notably lower and higher than the average, respectively,735

while doctors and administrative staff are close to the736

average behavior. Moreover, if we consider the instan-737

taneous ranking produced by the hypercoreness and738
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estimate the frequency of each role, we find that nurses739

always dominate the top positions (see Fig. 8c). This740

pattern is not due to a difference in numbers of nodes or741

hyperedges, as we check by comparing the results with a742

reshuffled data set in Fig. 8d: we generate 50 random743

realizations of the hypergraph, which completely preserve744

in each time window the structure of the hypergraph and745

the total number of nodes with each label, but destroys746

correlations between the labels of interacting nodes (see747

the reshuffling procedure in Methods). The frequencies748

of the different social roles in the top positions of the749

hypercoreness ranking, averaged over all the realizations,750

shows strong differences compared to the original case.751

752

While we have here focused on the changes occurring753

between different days, it is possible to consider a differ-754

ent temporal resolution to focus e.g. on specific activities755

in the system occurring at a different time scales: in the756
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SM we consider as an example the evolution occurring757

within a single day with 2-hours time windows.758

In the SM we also apply the proposed analysis to data759

sets describing interactions between individuals in differ-760

ent contexts (see Methods). In some contexts, the com-761

position of the hyper-cores present a strong structural762

variability and instability: this corresponds e.g. to con-763

ferences or workplaces where different days can bring very764

different patterns of connections. A more stable structure765

is obtained in others, with high stability of the cores com-766

position, e.g. systems in which patterns of interactions767

are repeated over time due to role and activities con-768

straints, such as in schools and hospitals (see SM). Such769

differences in the results highlight and confirm the inter-770

est of following the hyper-core decomposition over time771

as a characterization tool for temporal hypergraphs.772

F. A validation tool for time-varying hypergraph773

models774

We now illustrate how the hyper-core decomposition775

can also help with the validation of synthetic models of776

temporal hypergraphs. More precisely, it can serve as777

a tool to quantitatively validate whether a model repro-778

duces given hierarchical structures and structural dynam-779
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ics of interest, such as those of an empirical temporal hy-780

pergraph, at several topological and temporal scales. To781

showcase the potential of this as a tool, we consider sev-782

eral models of temporal hypergraphs of increasing com-783

plexity, and tune them to reproduce the activity patterns784

of a data set. We then apply the previously described ap-785

proach to each model and to the original data set, iden-786

tifying differences among the models, and ultimately in-787

vestigating which model ingredients make it possible to788

generate a non-trivial hierarchical structure that resem-789

bles the one found in the data.790

For simplicity, we consider models within the class of791

activity-driven (AD) networks: these models are based on792

simple mechanisms for the formation of interactions [13],793

and can be refined to include increasing complex realis-794

tic features and tuned to reproduce many properties of795

empirical data sets [40, 67–70]. We consider here several796

generalizations taking into account higher-order interac-797

tions, in a similar spirit as [9, 37]. In each model, we798

consider a population of N nodes: each node is assigned799

at each time t an activity parameter at(i), which repre-800

sents the node propensity to generate interactions and801

sets its activation rate (Poissonian activation dynamics).802

When a node is active, it generates a hyperedge of size803

m, drawn from a distribution Ψt(m) (which potentially804

depends on the time step t). The remaining (m−1) nodes805

are selected in the population with mechanisms depend-806

ing on the specific AD model. We consider the following807

models:808

• Higher-order activity-driven model (HAD).809

This model is the hypergraph generalization of810

the standard AD network [13] and of the simpli-811

cial activity-driven model (SAD) [9]. Each active812

node creating an hyperedge of size m chooses the813

m − 1 nodes to interact with uniformly at random814

from the whole population. This model takes into815

account only the heterogeneity of the agents be-816

haviour, through their activities, and the one of the817

size of the groups. Interactions are instantaneous818

and there is no memory between successive time819

steps.820

• HAD model with attractiveness (HADA).821

This model corresponds to the hypergraph gener-822

alization of the AD network with attractiveness823

[39, 40, 69, 70]. Each node is also assigned with824

an attractiveness parameter bt(i), which defines the825

intensity with which the node attracts active inter-826

actions. Each active node, to create an interac-827

tion of size m, selects the m− 1 other nodes in the828

population randomly with probability proportional829

to their attractiveness b. The interactions are in-830

stantaneous and there is no memory. We consider831

bt(i) = at(i) ∀i at each time, i.e. the most (less) ac-832

tive nodes are also the most (less) attractive ones,833

as observed in empirical systems [69, 70].834

• HAD model with memory (HADAM). This835

model is the HADA with the introduction of an836

additional memory mechanism, similar to that pro-837

posed in the AD networks with memory [67, 68].838

For each active node i, we denote by lt(i) the num-839

ber of other nodes with which it has already inter-840

acted in previous time steps. The active node i,841

to create an interaction of size m, selects the m− 1842

other nodes (i) with probability pt(i) = 1/(1+lt(i)),843

among those not yet encountered, (ii) with proba-844

bility (1 − pt(i)) among those already met. These845

nodes are selected: in the former case, with proba-846

bility proportional to their attractiveness b(j); in847

the latter case, with probability proportional to848

their attractiveness b(j) and to the number of times849

they have already met with the active node wij .850

Each model can be fed by empirical data in the follow-851

ing manner. Given an empirical temporal hypergraph H852

and its snapshot representation {Ht}nt=1, for each model853

we consider the same population size as the empirical hy-854

pergraph; moreover, we use the empirically observed hy-855

peredges size distribution Ψt(m) at each time step, and856

we tune the activities at(i) so that the total number of857

interactions at each time, ntot
t , and the total number of858

interactions in which each node is involved, nt(i), repli-859

cate the empirical ones (see Methods for more details on860

the hypergraphs generation).861

Here specifically, we consider the data set of human in-862

teractions in a university (CopNS), represented through863

a temporal hypergraph where nodes correspond to indi-864

viduals and hyperedges to group interactions (in the SM865

we also apply the same analysis to the hospital data set).866

Once we have generated the three synthetic temporal hy-867

pergraphs, we aggregate both data and models on 1-day868

time windows (see Methods). We then apply the hyper-869

core decomposition to each time window and compare870

the resulting structures and their temporal evolution at871

this time scale. We mainly focus here on the first work-872

ing days of the first week of the data, and we show in873

the SM that similar temporal and structural patterns are874

obtained also for other days and weeks.875

The original data set presents a non-trivial filling of876

the cores, with significant differences over time (see Fig.877

9a): on Monday the (k,m)-cores present a rapid emp-878

tying for all orders when k increases, with a rapid drop879

in the population (densely populated shells), followed by880

an extended plateau (empty shells); a similar structure881

is obtained on Wednesday and Thursday, but with some882

differences in the drops widths, in the plateaus exten-883

sions and in the maximum connectivity values; on Tues-884

day instead, the structure is very different, the maximum885
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connectivity values are much lower and the plateau ob-886

served in the other time windows is almost absent. These887

filling profiles suggest the presence of a rich hierarchical888

structure in the hypergraph that changes over time.889

The HAD model, despite replicating the activities and890

hyperedge distribution sizes of the data, has a very dif-891

ferent hyper-core decomposition, which does not dis-892

play any hierarchical structure (Fig. 9a): all (k,m)-893

cores are equally populated by the whole population until894

k ∼ kmmax, then n(k,m) quickly collapses to zero; all the895

shells are empty apart for those with k ∼ kmmax which con-896

tain the entire population. The model thus does not repli-897

cate the empirical hierarchical structure nor its evolution,898

neither mesoscopically, since all cores coincide with the899

entire population, nor microscopically, since all the nodes900

have the same position in the core structure. This is ex-901

pected due to the interaction mechanism of the model902

—which generates a completely mean-field structure.903

By contrast, the temporal hypergraph obtained from904

the HADA model does present a hierarchical structure:905

the population of the (k,m)-cores decreases progressively906

and smoothly with k at all orders m, indicating the pres-907

ence of uniformly populated shells. The system presents908

a hierarchy both mesoscopically, since there are groups909

of nodes more densely connected, and microscopically,910

since the nodes are distributed on the various shells. The911
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model partially replicates the changes in the maximum912

connectivity, but it does not completely reproduce the913

empirical hierarchical structure, as the shapes of n(k,m)914

vs. k are rather different from the empirical ones (insets915

of Fig. 9a).916

Finally, the synthetic hypergraphs generated using the917

HADAM model present a rich hierarchical structure that918

reproduces quite well the empirical one and its evolution,919

both in the maximum connectivity and in the filling pro-920

files. Indeed, the memory effect drives the creation of921

interactions between nodes that have already met several922

times in the past, thus favoring non-trivial patterns with923

densely connected groups of nodes. Some quantitative924

differences with the empirical structure are still observed,925

such as a more progressive emptying of the cores with k,926

and slightly different kmmax values.927

Figure 9b provides a quantitative comparison of the928

hyper-core structures generated by each model with the929

empirical one, through the root-mean-square deviation930

similarity Σ between the respective hyper-cores filling931

profiles in each time window. As expected from the above932

considerations, the hyper-core structure of the HADAM933

model is the most similar to the empirical one with934

Σ ∼ 0.95, followed by the HADA model (Σ ∼ 0.80), and935

by the HAD model (Σ ∼ 0.60). Similar results are also936

obtained with other similarity measures (see SM).937

At the mesoscopic scale, the empirical data present a938

strong instability in the most central cores (see Fig. 9c),939

with a very low similarity J∗(t, t+1) between consecutive940

snapshots. The HAD model, on the contrary, presents941

a very high stability in the deepest cores, reproducing942

the empirical similarity JN of the entire population, as943

expected since the whole population composes the most944

central cores (see Fig. 9a). The HADA and the HADAM945

models yield a lower stability of the central cores: the946

variations in activity and memory effects are enough to947

generate changes in the mesoscopic hierarchical structure948

and similarities closer to the empirical case, even if still949

higher. At the microscopic level, the empirical data set950

alternates phases with low and high hypercoreness cor-951

relations in consecutive snapshots ρ∗(t, t + 1), (see Fig.952

9d): during the weekdays the structural position of nodes953

change a lot across days (low ρ∗), because of varying ac-954

tivities, while during the weekends it is quite stable (high955

ρ∗). On the contrary, the three models present approxi-956

mately constant correlation values: the HAD model triv-957

ially does not present any correlation ρ∗ ∼ 0, since the958

model does not generate any hierarchy of nodes in any959

time window; the HADA model instead presents higher960

correlations ρ∗ ∼ 0.30, as the system generates a hierar-961

chical structure with high-activity nodes being the most962

central over time; finally, the HADAMmodel presents the963

highest correlations ρ∗ ∼ 0.60, since the memory forces964

the creation of correlations in nodes behavior over time965

and could be balanced only by strong changes in nodes966

activity.967

These results are further confirmed by comparing the968

entire similarity matrices of the models with the ones of969

the empirical hypergraph at different scales (see SM, for970

the matrices Σ(t, t′), J∗(t, t′), ρ(t, t′) and ρ∗(t, t′)): the971

HADAM model better reproduces the evolution and tem-972

poral stability of the empirical system at all the temporal973

and structural scales, while the HADA and HAD models974

feature larger differences, with the HAD model leading975

to the widest discrepancy (see SM).976

We finally compare in Fig. 10 the behaviour of the977

time-aggregated centralities measures in the data and978

models. The original data set presents a wide variability.979

In fact, even if the aggregated hypercoreness W and the980

activity-averaged hypercoreness W are positively corre-981

lated, there are nodes very central on average when ac-982

tive (high W ) but globally not relevant (low W ) and vice-983

versa. This suggests different node hypercoreness trajec-984

tories and node movements across the core structure (see985

SM). The system also presents a heterogeneous distribu-986

tion of the aggregated hypercoreness W , P (W ), which987

provides a clear ranking of nodes. Moreover, nodes with988

the same snapshot activity aw can present very different989

structural behaviors, indeed the activity is unevenly dis-990

tributed in the W classes: the nodes with relevant struc-991

tural role (high W ) are frequently active (high aw), but992

nodes poorly structurally relevant (low W ) can have very993

different activity values.994

In the HAD model all nodes have approximately the995

same activity-averaged hypercoreness W but different996

values of the aggregated one W (see Fig. 10): the HAD997

model does not produce any hypercoreness hierarchy of998

nodes in any time window, therefore on average when a999

node is active it has the same centrality as the others W .1000

The aggregated hypercoreness W differentiate among the1001

nodes only through their temporal persistence in the sys-1002

tem, i.e. through aw. The distribution of W appears1003

homogeneous and peaked.1004

The HADA model creates a hierarchy of nodes both1005

in terms of W and W (see Fig. 10): in this case, the1006

most globally central nodes are also relevant on average1007

when active, while nodes that are less central globally1008

can feature different behaviours when active, either be-1009

ing very central or not. The distribution P (W ) appears1010

homogeneous and peaked, with a gradual increase in the1011

activity aw of nodes more relevant. Even if it features1012

a hypercoreness hierarchy, the model does not reproduce1013

the empirical distribution of the aggregated hypercore-1014

ness P (W ), and yields a stronger correlation between W1015

and aw than in the empirical data.1016

The HADAM model yields a hierarchy both in terms1017

of W and W (see Fig. 10), replicating quite well1018

the empirical patterns, even if there are nodes with1019

time-aggregated hypercoreness values, W and W , higher1020

than those empirically observed. The distribution P (W )1021

is heterogeneous, with few nodes with very high W , and1022

also the heterogeneity in nodes structural and temporal1023

behaviours is well reproduced, since the distribution of1024

aw in the W classes well replicate the empirical case.1025

1026

Overall, these results show how the hyper-core decom-1027

position allows to validate the hypergraph models struc-1028

turally and temporally at different scales. The three1029

temporal models are generated starting from the same1030

amount of information extracted from the empirical data1031

set and are tuned to replicate the same statistical and1032

temporal properties. The HAD model fails to produce1033

and replicate the hierarchical structure at any of the1034

scales considered, as the model generates a mean-field1035

structure without hierarchy. The introduction of attrac-1036

tiveness in the HADA model generates a hierarchical1037
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structure that however still strongly differs from the em-1038

pirical one, as the model generates a more progressive1039

core-periphery structure. The memory effect introduced1040

in the HADAM model makes it possible to obtain a hier-1041

archical structure that resembles quite well the empirical1042

one at all scales, except for a stronger correlation between1043

the nodes hypercoreness rankings. Note that analogous1044

results can be obtained also considering other data sets1045

(see the SM).1046

III. DISCUSSION1047

Recently, there has been a recognition of the impor-1048

tance of going beyond pairwise and static representations1049

for complex systems [5, 15]. In this article, we have put1050

forward a method for the structural and dynamic charac-1051

terization of temporal hypergraphs, which represent time-1052

varying systems involving higher-order interactions. The1053

approach is based on decomposing the hypergraph into1054

hyper-cores over time, and it provides a multi-scale char-1055

acterization: macroscopically, it follows the higher-order1056

hierarchical structure over time, monitoring the stabil-1057

ity of the overall hyper-core structure; mesoscopically, it1058

follows the evolution of specific hyper-cores, observing1059

whether stable groups of nodes are densely connected to1060

each other or whether they change over time; microscop-1061

ically, it follows the structural behavior of single nodes,1062

monitoring their movements across the hierarchical struc-1063

ture, towards more superficial or more central hyper-1064

cores. The approach provides several similarity measures1065

that quantitatively estimate the higher-order structural1066

stability of the system at different topological scales, also1067

identifying temporal patterns in the structure evolution.1068

We moreover introduced two time-aggregated centrality1069

measures of nodes, by aggregating the instantaneous hy-1070

percoreness or by averaging it over the node’s activity.1071

These last measures provide additional information on1072

the behavior of the nodes, as opposed to other centrality1073

measures that do not account for higher-order structural1074

properties.1075

We applied the method to a wide range of data sets1076

describing different systems, characterizing each of them1077

and identifying similarities and differences: for example,1078

stronger instability characterizes systems where the na-1079

ture of the interactions favors variability in the inter-1080

action patterns, such as scientific collaborations, confer-1081

ences, universities and workplaces; a more stable struc-1082

ture is observed instead in systems with patterns of1083

repeated interactions due tho functional roles, such as1084

schools and hospitals. We also linked structural proper-1085

ties of nodes to specific roles and activities in the sys-1086

tems, thus identifying relevant functions and their evolu-1087

tion over time.1088

The proposed method represents also an effective1089

model-validation tool, since it allows to quantitatively1090

estimate whether a synthetic temporal hypergraph can1091

replicate the structure of an empirical hypergraph and1092

its evolution at different topological scales, and to com-1093

pare several candidate models. In this direction, we pro-1094

posed several models of activity-driven hypergraphs with1095

increasing complexity in the mechanisms that drive the1096

hyperedges formation and we estimated their structural-1097

temporal differences and similarities with respect to the1098

empirical systems. We have shown that models taking1099

into account solely the node activities and the hyper-1100

edges size distribution over time cannot reproduce the1101

empirical higher-order structure and its evolution. By1102

contrast, introducing attractiveness and memory, while1103

keeping the model simple, yields non-trivial hyper-core1104

structures and to obtain a behaviour closer to the one1105

empirically measured.1106

Our work opens several research directions and future1107

perspectives. It lays the foundations for the development1108
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of new characterization techniques for time-varying hy-1109

pergraphs [15]: for example, it represents a first step for1110

the definition of a core decomposition of temporal hy-1111

pergraphs, which is a highly challenging task because of1112

the difficulties in defining a procedure taking into account1113

both non-dyadic interactions and the temporal dimension1114

to generalize e.g. the span-core decomposition of tempo-1115

ral networks [11, 12]. Our work also provides insights for1116

the understanding of higher-order dynamic processes on1117

temporal hypergraphs, since hyper-cores play an impor-1118

tant role in dynamic processes [26]: understanding how1119

the multi-scale evolution of the underlying hypergraph1120

affects dynamic processes is of great interest, in order to1121

fully assess the coupling between the dynamics of and on1122

the hypergraph. This is crucial also for the planning of1123

adaptive measures and interventions, e.g. to maximize or1124

prevent the spread of information on a time-varying hy-1125

pergraph. Finally, our approach provides tools to guide1126

the design of new models for temporal hypergraphs ca-1127

pable of reproducing higher-order structural properties of1128

empirical systems at different topological scales. Here we1129

have proposed examples of activity-driven hypergraphs1130

featuring different interesting properties [9, 13, 39], how-1131

ever more complex models could be devised [35–38, 40],1132

for example introducing correlations between the activ-1133

ity of nodes and the size of hyperedges of which they1134

are member, or considering memory and attractiveness1135

mechanisms involving groups of nodes.1136

IV. METHODS1137

A. Hyper-core decomposition1138

Let us consider an unweighted static hypergraph Ht =1139

(Vt, Et), composed by the set of its nodes Vt and by the set1140

of its hyperedges Et. A hyperedge e = {i1, i2, ..., im} ∈ Et1141

consists in a set of m nodes ik ∈ Vt ∀k = 1, ...,m, with1142

m ∈ [2,Mt], where Mt = maxe∈Et
|e|.1143

The hyper-core decomposition is a procedure that de-1144

composes the hypergraph Ht into (k,m)-hyper-cores, i.e.,1145

a double hierarchy of nested subhypergraphs of increas-1146

ing connectivity, provided by hyperedges of increasing1147

size. Specifically, the (k,m)-hyper-core of Ht, denoted1148

as F (k,m)
t = (A(k,m)

t ,S(k,m)
t ), is defined as the maximum1149

subhypergraph that contains all the nodes i ∈ Vt involved1150

in at least k distinct hyperedges of size at least m within1151

the subhypergraph itself. It contains all the hyperedges1152

that are subsets of interactions in the original hypergraph1153

Ht, of size at least m and that contain only nodes of1154

A(k,m)
t . Therefore, A(k,m)

t = {i ∈ Vt s.t.D
F(k,m)

t
m (i) ≥ k}1155

and S(k,m)
t = {e ∩ A(k,m)

t s.t. e ∈ Et ∧ |e ∩ A(k,m)
t | ≥ m},1156

where D
F(k,m)

t
m (i) is the number of distinct interactions of1157

size at least m in which the node i is involved in F (k,m)
t .1158

Note that the (k,m)-hyper-core includes the (k,m + 1)-1159

and (k + 1,m)-hyper-cores, producing a doubly nested1160

hierarchical structure which, by increasing k and m, pro-1161

gressively identifies groups of nodes more densely con-1162

nected with each other through interactions of increasing1163

order [26]. The (k,m)-hyper-core is obtained by removing1164

progressively and iteratively all the nodes with Dm < k1165

and all the hyperedges of size smaller than m [26].1166

B. Data description and preprocessing1167

We consider data sets covering a wide range of interac-1168

tion systems and present different statistical, topological1169

and temporal properties (see SM).1170

Scientific collaborations. The American Physical So-1171

ciety (APS) scientific collaborations data set [49, 50] con-1172

sists in all the APS publications from 1893 to 2021: for1173

each paper the date of publication, the journal and the1174

list of authors are indicated.1175

We initially addressed some issues appearing in the1176

data: (i) information is missing for some papers, for ex-1177

ample on the author list: in these cases we removed the1178

corresponding entries from the data set; (ii) the same1179

author ”Name Surname” can appear with the full ex-1180

tended name, as ”N. Surname”, ”N Surname” or ”Na.1181

Surname”; analogously with middle names ”Name Sec-1182

ond Surname” or ”Name-Second Surname”. To minimize1183

the impact of these inconsistencies, we: (a) identified all1184

entries with the same ”Surname”; (b) reassigned the pa-1185

pers associated to dotted names to the corresponding ex-1186

tended name, carrying out the reassignment only in case1187

of uniqueness. Some dotted names do not have or have1188

several extended correspondences, making a unique reas-1189

signment impossible: in these cases we consider the con-1190

tracted name as if it were a unique additional author. See1191

the SM for further details on the size of the various issues.1192

The performed approach reduces the problems related to1193

author identification, but does not completely eliminate1194

the issue: it is still possible that two authors have the1195

same name, therefore the publications are attributed as1196

if they were a single individual. Moreover, in the pres-1197

ence of large collaborations, not all authors are listed [71].1198

Such issues cannot be eliminated through preprocessing1199

of the data without additional information sources to per-1200

form a cross-source analysis [71]. However, even without1201

such additional information, the preprocessed data set1202

gives a good enough picture of the scientific interactions1203

as our purpose is here demonstrative and we do not seek1204

to give precise ranking indications concerning scientists,1205

nor follow in detail some careers.1206

We thus use the data to build a hypergraph in which1207

each node is an author, a hyperedge represents a paper1208

connecting the co-authors, and it is assigned with a la-1209

bel indicating the corresponding journal. Since we focus1210

on the pattern of collaborations between authors, rather1211

than on the absolute scientific production, we do not take1212

into consideration papers with a single author. We ob-1213

tain a temporal hypergraph with 1-day resolution, and we1214

focus on 1942-2021. We consider 5-years adjacent time1215

windows and aggregate the temporal hypergraph within1216

each of them, obtaining a sequence of unweighted static1217

hypergraphs. Each static hypergraph is composed of all1218

the nodes and hyperedges active at least once in the con-1219

sidered time window. The same group of authors can1220

have co-authored several papers in the same time win-1221

dow producing fully overlapping hyperedges: in this case1222

we consider only one hyperedge (unweighted hypergraph)1223

and we assign a multiple label to it, including all the jour-1224

nals in which the same group of authors published.1225

Physical proximity. We consider several data sets of1226

human face-to-face interactions obtained through RFID1227

wearable proximity sensors, made publicly available by1228
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the SocioPatterns collaboration [51, 53, 54] and by the1229

Contacts among Utah’s School-age Population project1230

[58]. These data sets describe interactions between in-1231

dividuals in several settings and cover different time pe-1232

riods: a workplace (InVS15 [52, 53] - 2 weeks), a confer-1233

ence (SFHH [53] - 2 days), a hospital (LH10 [55] - 4 days),1234

two primary-schools (LyonSchool [56], Utah elem [58] - 21235

days) and a high-school (Thiers13 [57] - 1 week). The1236

data consist in each case in lists of time-resolved pairwise1237

interactions between individuals (nodes), i.e., temporal1238

networks with a time resolution of 20 seconds. To identify1239

group interactions and transform such temporal networks1240

into temporal hypergraphs, we carried out the following1241

procedure [23, 26]: (i) pairwise interactions are aggre-1242

gated over 5-minutes time intervals; (ii) cliques, i.e. fully1243

connected clusters, are identified in each time step; (iii)1244

in each time interval the maximum cliques, i.e. cliques1245

not fully contained in another clique, are identified and1246

promoted to hyperedges. This procedure generates tem-1247

poral hypergraphs with 5-minutes resolution. Some data1248

sets have moreover node labels providing information on1249

single nodes properties, e.g. class of each student for1250

LyonSchool, Thiers13, Utah elem, social role for LH101251

and working department for InVS15.1252

We also consider time-resolved data describing physical1253

proximity events between students in a University, col-1254

lected through the Bluetooth signal of cellphones during1255

4 weeks within the Copenhagen Network Study [36, 59]1256

(CopNS). The data set provides pairwise interactions be-1257

tween individuals (nodes) with a temporal resolution of 51258

minutes and with information on the signal intensity: we1259

perform the preprocessing procedures described in [36],1260

obtaining a temporal hypergraph with 5-minutes resolu-1261

tion.1262

Email. Finally, we consider a data set describing1263

email communications within an European institution1264

(email-EU [60–62] - 17 months). This data set is pub-1265

licly available as a temporal hypergraph: each node rep-1266

resents a user, each hyperedge corresponds to an email1267

and involves both the recipients and the sender of the1268

message. The sending time is provided for each hyper-1269

edge with 1-second resolution and the information on the1270

directionality of the email is discarded.1271

C. Labels reshuffling procedures1272

We implement two reshuffling procedures, one for1273

systems with hyperedge labels (e.g. APS), and one for1274

those with node labels (e.g. LH10).1275

1276

Hyperedge labels reshuffling. We consider a tem-1277

poral hypergraph H = {Ht}t=n
t=1 , in which each hyperedge1278

e is assigned with one or multiple labels. We obtain1279

a reshuffled realization of the temporal hypergraph H′
1280

in the following way: for each static snapshot Ht, we1281

randomly select two hyperedges e and f of the same size1282

m and, if they have different labels le and lf , we perform1283

a label swap so that e will have the new label l′e = lf1284

and f will have the new label l′f = le. In the case of1285

hyperedges e with multiple labels [l1e , l
2
e , ..., l

n
e , ..., l

q
e], one1286

of the labels is randomly selected lne , and the label swap1287

is performed only with it. The procedure is repeated1288

105 times for each size m ∈ [2,Mt] and for each static1289

snapshot Ht (if the number of hyperedges of size m is1290

at least 4 and at least two different labels are available).1291

The described procedure preserves in each temporal1292

snapshot the hypergraph structure, the overall number of1293

hyperedges with each label at each order of interaction,1294

while it destroys the correlations between the nodes and1295

the labels of the hyperedges in which they are involved.1296

1297

Node labels reshuffling. We consider a temporal1298

hypergraph H = {Ht}t=n
t=1 , in which each node i is as-1299

signed with a label li. We obtain a reshuffled realiza-1300

tion H′ of the temporal hypergraph in the following way:1301

for each temporal snapshot Ht, we randomly select two1302

nodes i and j and, if they have different labels li and lj ,1303

we perform a label swap so that i will have new label1304

l′i = lj and j will have new label l′j = li. The procedure1305

is repeated 104 times for each temporal snapshot. The1306

described procedure preserves the hypergraph structure1307

and the overall number of nodes with a specific label in1308

each temporal snapshot, but it destroys the correlations1309

between the labels of interacting nodes.1310

D. Temporal hypergraphs models1311

We generate different synthetic temporal hypergraphs1312

starting from the properties of the empirical hypergraph1313

we want to model. Let us consider an empirical tem-1314

poral hypergraph H observed over the time interval1315

(0, tmax]. We consider n = tmax/τ adjacent time win-1316

dows ((t−1)τ, tτ ] with t ∈ [1, ..., n]. Within each of them1317

we extract the set of active nodes (of size Nt), the dis-1318

tribution of the hyperedge size Ψt(m), the total number1319

of interactions ntot
t and the total number of interactions1320

in which each node is involved nt(i). Then we generate1321

synthetic temporal hypergraphs H′ with the same nodes1322

of the empirical hypergraph, that within each temporal1323

window t have the same set of available nodes Nt, the1324

same distribution Ψt(m) of the hyperedge sizes of the1325

empirical data and that, by an opportune tuning of the1326

model parameters, reproduce quite well ntot
t and nt(i) ∀i.1327

We consider three different models of temporal hyper-1328

graphs. Then, we can perform temporal aggregations for1329

both the empirical {Ht}t=n
t=1 and each synthetic {H′

t}t=n
t=11330

hypergraphs. For instance, starting from data having a1331

5-minutes resolution, we generate synthetic hypergraphs1332

with the same temporal resolution, and then we consider1333

hypergraphs aggregated over 1-day time-windows for the1334

analysis.1335

Activity-driven hypergraph (HAD)1336

The higher-order activity-driven model (HAD) is the1337

hypergraph generalization of the AD network [13] and of1338

the simplicial activity-driven model (SAD) [9]. In this1339

model, given a population of N nodes, each node is as-1340

signed with an activity a(i). In the discrete-time version1341

of this model, in each time-step ∆t each node i can acti-1342

vate with probability a(i)∆t. When a node activates, it1343

generates a hyperedge of size m, drawn from the distri-1344

bution Ψ(m). The remaining (m−1) nodes participating1345
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in the interaction are selected uniformly at random from1346

the entire remaining population, i.e. each node is selected1347

with probability 1/(N − 1). At the following time-step1348

all hyperedges are erased and the process continues iter-1349

atively. Here moreover, we take into account that the set1350

of available nodes (of size Nt), the hyperedge size distri-1351

bution Ψt(m) and the activity of a node at(i) can change1352

over time.1353

The number of interactions in which a node is involved1354

in the time window t of extension τ is:1355

nt(i) = at(i)τ +
∑
j ̸=i

at(j)τ
⟨m− 1⟩t
Nt − 1

, (6)

where the first term is due to the activation of the node1356

i itself and the second term to the activation of another1357

node j. Moreover, ntot
t =

∑
i at(i)τ . Therefore, the HAD1358

model replicates the nt(i) ∀i and ntot
t of the empirical1359

data set by fixing the activity of each node as:1360

at(i) =
nt(i)− ⟨m−1⟩t

Nt−1 ntot
t

τ
(
1− ⟨m−1⟩t

Nt−1

) , (7)

where Nt, Ψt(m), nt(i) and ntot
t are fixed as in the em-1361

pirical dataset. We set the time-step ∆t equal to the1362

duration of the interactions in the empirical data set.1363

The model takes into account the hyperedge size distri-1364

bution, the activity of each single node and their tempo-1365

ral evolution. The mechanism of hyperedges formation1366

is uniform, random and without memory, therefore the1367

generated temporal hypergraph structure is mean-field.1368

Activity-driven hypergraph with attractiveness (HADA)1369

The higher-order activity-driven model with attractive-1370

ness (HADA) is a generalization of the AD network with1371

attractiveness [39, 69, 70], and it differs from the HAD1372

model through the introduction of an attractiveness pa-1373

rameter which describes the propensity of nodes to at-1374

tract active interactions. Given a population of N nodes,1375

each node is assigned with an activity a(i) and an attrac-1376

tiveness b(i): in each discrete time-step ∆t each node i1377

can activate with probability a(i)∆t. When a node i ac-1378

tivates, it generates a hyperedge of size m, drawn from1379

the distribution Ψ(m). The remaining (m−1) nodes par-1380

ticipating in the interaction are randomly selected from1381

the population with probability proportional to their at-1382

tractiveness, i.e. each node j is selected with probability1383

b(j)/
∑

k ̸=i b(k). At the following time-step all the hyper-1384

edges are destroyed and the process is iterated. For sim-1385

plicity, hereafter we will assume that b(i) = a(i) ∀i, i.e.1386

the most (less) active nodes are also the most (less) at-1387

tractive ones, as observed in several real systems [69, 70].1388

The set of available nodes, the hyperedge size distribution1389

and the activity of a node can change over time.1390

The number of interactions in which a node is involved1391

in the time window t of extension τ is:1392

nt(i) = at(i)τ +
∑
j ̸=i

at(j)τ
⟨m− 1⟩tat(i)∑

k ̸=j

at(k)
, (8)

where the first term is due to the activation of the node1393

itself and the second term to the activation of another1394

node. The HADA model reproduces the nt(i) ∀i observed1395

in the empirical data, if the activity is:1396

at(i) =
nt(i)

τ

(
1 + ⟨m− 1⟩t

∑
j ̸=i

at(j)
ntot
t /τ−at(j)

) , (9)

where Nt, Ψt(m), nt(i) and ntot
t are fixed as in the em-1397

pirical dataset. When Nt ≫ 1, we can approximate1398

at(i) ∼ nt(i)/⟨m⟩tτ since
∑

j ̸=i at(j) ∼ ntot
t /τ : this holds1399

for all the time windows of all the datasets considered.1400

We set the time-step ∆t equal to the duration of the in-1401

teractions in the empirical data set.1402

The model takes into account the hyperedge size distri-1403

bution and the activity of each node, together with their1404

temporal evolution; the hyperedges formation mechanism1405

is still random and without memory, but favors interac-1406

tions with high activity nodes. The generated temporal1407

hypergraph has a progressive core-periphery structure:1408

high-activity nodes compose the core, being densely con-1409

nected to each other and to the rest of the population;1410

nodes with progressively lower activity become gradually1411

more peripheral, being increasingly less connected to each1412

other and only connected to the nodes in the core.1413

Activity-driven hypergraph with memory (HADAM)1414

The higher-order activity-driven model with memory1415

differs from the HADA model for the introduction of a1416

memory mechanism, analogous to that introduced in the1417

AD network with memory [67, 68]. Given a population1418

of N nodes, each node is assigned an activity a(i) and1419

an attractiveness b(i): in each discrete time-step ∆t each1420

node i can activate with probability a(i)∆t. Here we1421

consider activities and attractiveness depending on time.1422

At time t moreover, we define the aggregated neighbour-1423

hood Nt(i) of i as the set of nodes i has interacted with1424

in previous time steps. When a node i activates at time1425

t, it generates a hyperedge of size m, drawn from the1426

distribution Ψt(m):1427

• with probability pt(i) = 1/(1 + lt(i)), the m − 11428

nodes i will interact with are selected among nodes1429

that i has not yet encountered, i.e. who do not1430

belong to its neighbourhood Nt(i) at time t, where1431

lt(i) = |Nt(i)|. In this case each node j /∈ Nt(i) is1432

selected with probability b(j)/
∑

k/∈Nt(i)
b(k);1433

• with probability (1−pt(i)), they are selected among1434

nodes that i has already met, i.e. who belongs to1435

its neighbourhood Nt(i) at time t. In this case1436

each node j ∈ Nt(i) is contacted with probability1437

ωt
ijb(j)/

∑
k∈Nt(i)

ωt
ikb(k), where ωt

ij is the number1438

of times that i and j have participated together in1439

a hyperedge up to time t.1440

At the following time-step all the hyperedges are erased,1441

the process continues iteratively and correlations are gen-1442

erated over time by the memory. For simplicity, hereafter1443

we use bt(i) = at(i) ∀i, t [69, 70].1444

In the HADAM model, we cannot determine the activ-1445

ity of the nodes in order to reproduce nt(i) as observed1446
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in the empirical data, since nt(i) depends on the full de-1447

tailed history of contacts of i up to time t. We fix the1448

activities as in the HADA model, with Eq. (9), and we1449

have checked that this ansatz reproduces well ntot
t and the1450

average total degree in the aggregate snapshots. We set1451

the time-step ∆t equal to the duration of the interactions1452

in the empirical data set.1453

The model takes into account the hyperedge size distri-1454

bution and the activity of each node, together with their1455

temporal evolution. Initially, the hypergraph evolves as1456

the HADA model since p(i) ∼ 1 for all nodes. Then p(i)1457

decreases and memory effects become relevant: at first an1458

active node generates hyperedges with both new and old1459

contacts, and then preferentially with only nodes already1460

met, selecting those contacted several times in the past.1461

This memory-attractiveness mechanism favors dense in-1462

teractions between groups of nodes with high activity and1463

between groups of nodes that contact each other several1464

times, thus generating a rich topological structure.1465
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[5] Holme, P. & Saramäki, J. Temporal networks. Phys. Rep.1522

519, 97–125 (2012).1523

[6] Masuda, N. & Lambiotte, R. A Guide to Temporal Net-1524

works (World Scientific, 2016).1525

[7] Braha, D. & Bar-Yam, Y. Time-dependent complex net-1526

works: Dynamic centrality, dynamic motifs, and cycles1527

of social interactions. In Gross, T. & Sayama, H. (eds.)1528

Adaptive Networks: Theory, Models and Applications,1529

39–50 (Springer, 2009).1530

[8] Karsai, M., Jo, H.-H. & Kaski, K. Bursty human dynam-1531

ics (Springer, 2018).1532

[9] Petri, G. & Barrat, A. Simplicial activity driven model.1533

Phys. Rev. Lett. 121, 228301 (2018).1534

[10] Pedreschi, N. et al. Dynamic core-periphery structure1535

of information sharing networks in entorhinal cortex and1536

hippocampus. Netw. Neurosci. 4, 946–975 (2020).1537

[11] Ciaperoni, M. et al. Relevance of temporal cores for epi-1538

demic spread in temporal networks. Sci. Rep. 10, 125291539

(2020).1540

[12] Galimberti, E., Barrat, A., Bonchi, F., Cattuto, C. &1541

Gullo, F. Mining (maximal) span-cores from temporal1542

networks. In CIKM ’18: Proceedings of the 27th ACM1543

https://journals.aps.org/datasets
http://www.sociopatterns.org/
https://royalsocietypublishing.org/doi/suppl/10.1098/rsif.2015.0279
https://royalsocietypublishing.org/doi/suppl/10.1098/rsif.2015.0279
https://royalsocietypublishing.org/doi/suppl/10.1098/rsif.2015.0279
https://royalsocietypublishing.org/doi/suppl/10.1098/rsif.2015.0279
https://royalsocietypublishing.org/doi/suppl/10.1098/rsif.2015.0279
https://www.cs.cornell.edu/~arb/data/
https://doi.org/10.6084/m9.figshare.7267433


20

international Conference on Information and Knowledge1544

Management, 107–116 (2018).1545
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[56] Stehlé, J. et al. High-resolution measurements of face-to-1685

face contact patterns in a primary school. PLoS ONE 6,1686

e23176 (2011).1687

[57] Mastrandrea, R., Fournet, J. & Barrat, A. Contact pat-1688

terns in a high school: A comparison between data col-1689

lected using wearable sensors, contact diaries and friend-1690

ship surveys. PLoS ONE 10, e0136497 (2015).1691

[58] Toth, D. J. A. et al. The role of heterogeneity in con-1692

tact timing and duration in network models of influenza1693

spread in schools. J. R. Soc. Interface 12, 201502791694

(2015).1695

[59] Sapiezynski, P., Stopczynski, A., Lassen, D. D. &1696

Lehmann, S. Interaction data from the copenhagen net-1697

works study. Sci. Data 6, 315 (2019).1698

[60] Paranjape, A., Benson, A. R. & Leskovec, J. Motifs in1699

temporal networks. In WSDM ’17: Proceedings of the1700

Tenth ACM International Conference on Web Search and1701

Data Mining, 601–610 (2017).1702

[61] Benson, A. R., Abebe, R., Schaub, M. T., Jadbabaie, A.1703

& Kleinberg, J. Simplicial closure and higher-order link1704

prediction. Proc. Natl. Acad. Sci. U.S.A. 115, E11221–1705

E11230 (2018).1706

[62] Austin R. Benson datasets. https://www.cs.cornell.1707

edu/~arb/data/ (2022). Accessed: 2022-12-11.1708

[63] In the aggregation procedure to create each snapshot,1709

some hyperedges can fully overlap (i.e., the same group of1710

authors can publish more than one article). Although we1711

do not consider weighted hyperedges, in such a case we1712

assign a multiple label composed of the set of journals in1713

which these articles with the same co-authors were pub-1714

lished.1715

[64] Pais, A. Inward Bound: Of Matter and Forces in the1716

Physical World (Oxford University Press, 1988).1717

[65] Abe, F. et al. Observation of top quark production in1718

pp collisions with the collider detector at fermilab. Phys.1719

Rev. Lett. 74, 2626 (1995).1720

[66] Abachi, S. et al. Observation of the top quark. Phys.1721

Rev. Lett. 74, 2632 (1995).1722

[67] Karsai, M., Perra, N. & Vespignani, A. Time varying1723

networks and the weakness of strong ties. Sci. Rep. 4,1724

4001 (2014).1725

[68] Ubaldi, E. et al. Asymptotic theory of time-varying social1726

networks with heterogeneous activity and tie allocation.1727

Sci. Rep. 6, 35724 (2016).1728

[69] Alessandretti, L., Sun, K., Baronchelli, A. & Perra, N.1729

Random walks on activity-driven networks with attrac-1730

tiveness. Phys. Rev. E 95, 052318 (2017).1731

[70] Pozzana, I., Sun, K. & Perra, N. Epidemic spreading on1732

activity-driven networks with attractiveness. Phys. Rev.1733

E 96, 042310 (2017).1734

[71] Tomasello, M. V., Vaccario, G. & Schweitzer, F. Data-1735

driven modeling of collaboration networks: a cross-1736

domain analysis. EPJ Data Sci. 6, 22 (2017).1737

FIGURE LEGENDS1738

FIG. 1. Evolution of the hyper-core structure in APS scientific collaborations. a: fraction of nodes n(k,m) in the
(k,m)-core as a function of k and m for each 5-years time window. The numbers of active nodes Nt and hyperedges Et are
also reported and the insets show n(k,m) as a function of k for m = 2, m = 6 and m = 10. b: root-mean-square deviation
similarity Σ(t, t′) between n(k,m)(t) and n(k,m)(t

′) (grey diagonal: Σ(t, t) = 1). c: Jaccard similarity J∗(t, t′) between the sets
of nodes belonging to the most central hyper-cores, i.e. to the (km

max,m)-cores ∀m, at time t and t′ (grey diagonal: J∗(t, t) = 1).
d: Pearson correlation coefficient ρ(t, t′) between the nodes hypercoreness at times t and t′, considering all the nodes that are
active in at least one of the snapshots (grey diagonal: ρ(t, t) = 1). e: similarity Σ(t, t + 1) vs. t. f: temporal evolution of
J∗(t, t + 1) and Jaccard similarity JN (t, t + 1) between the entire population in two consecutive time windows. g: temporal
evolution of the correlation between the nodes hypercoreness in consecutive snapshots, considering all the nodes that are active
in at least one of the snapshots, ρ(t, t+1), or only those active in both, ρ∗(t, t+1). Note that macroscopically the size and the
density of the interactions evolve in a non-trivial way, however the overall filling of the hyper-cores remains quite similar over
time; the composition of the most central hyper-cores is highly unstable, suggesting a high system instability at the mesoscopic
and microscopic scales.

FIG. 2. Hypercoreness evolution for selected nodes in the APS scientific collaborations. We show the temporal
evolution of the hypercoreness r(i, t) for four authors and the mean ⟨r⟩(t) value (average on active nodes): we show the authors
I.Y. Lee (#W 1) and R.V.F. Janssens (#W 2), who occupy respectively the first and second position in the ranking produced
by the aggregated hypercoreness W over the period 1942-2021, and the authors Guang-Can Guo (#h1) and Loren N. Pfeiffer
(#h5), who occupy respectively the first and fifth position in the ranking produced by the average number of interactions per
active windows h̄ over the period 1942-2021. Nodes can have different behaviors, ranging from a stable to a bell-shaped temporal
profile of the hypercoreness: these profiles mirror movements of the node in the hyper-cores structure towards more central or
more superficial hyper-cores, and can reflect the authors’ academic trajectories.

https://www.cs.cornell.edu/~arb/data/
https://www.cs.cornell.edu/~arb/data/
https://www.cs.cornell.edu/~arb/data/
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FIG. 3. Time-aggregated hypercoreness in APS scientific collaborations 1942-2021. a: scatter plot of the aggregated
hypercoreness W (i) as a function of the snapshot activity aw(i) for all nodes i, and average aggregated hypercoreness ⟨W ⟩ as a
function of aw. b: aggregated hypercoreness W (i) vs. average number of interactions per active window h(i) for all nodes i. c:
aggregated hypercoreness W (i) as a function of the activity-averaged hypercoreness W (i). In all panels the points are colored
according to the activity aw of the corresponding node. Note that the two time-aggregated hypercoreness measures provide
complementary information and a complete description of the structural behavior of the nodes over the entire observation
period; moreover, they distinguish different behaviors not identified by other centrality measures.

FIG. 4. Prevalent APS scientific communities in hyper-cores. a: temporal evolution over 5-years time windows of the
prevalent journal within each (k,m)-hyper-core of the APS data set, defined as the most frequent hyperedge label in each core
(we consider a journal dominant only if its frequency is larger than 0.5; white indicates hyper-cores which are empty or where
a dominant journal cannot be defined). b: relative frequency P of the various journals within the most central hyper-cores, i.e.
(km

max,m)-cores ∀m, and its temporal evolution. c: same as b for the randomized data. We average the relative frequency over
50 randomized realizations of the hypergraph (see Methods). The error bars give the standard errors. We identify the scientific
communities most densely connected at different orders of interaction: this pattern evolves over time, following specific trends
of collaborations in the different research areas, and is significant when compared with appropriate randomized systems.

FIG. 5. Hyper-core structure evolution in daily interactions within a hospital (LH10). a: relative population n(k,m)

of the (k,m)-core as a function of k and m for each time window. The number of active nodes Nt and hyperedges Et is reported
for each snapshot. b: n(k,m) as a function of k for fixed values of m. c: root-mean-square deviation similarity Σ(t, t′) between
n(k,m)(t) and n(k,m)(t

′) – the grey diagonal corresponds to Σ(t, t) = 1; d: Jaccard similarity J∗(t, t′) between the sets of nodes
belonging to the most central hyper-cores, i.e. the (km

max,m)-cores ∀m, at time t and t′ – the grey diagonal corresponds to
J∗(t, t) = 1. e: Pearson correlation coefficient ρ(t, t′) between the nodes hypercoreness at time t and t′, considering all the
nodes that are active in at least one of the snapshots – the grey diagonal corresponds to ρ(t, t) = 1. f: similarity Σ(t, t + 1)
as a function of t. g: temporal evolution of both the similarity J∗(t, t+ 1) and the Jaccard similarity JN (t, t+ 1) between the
entire population in consecutive time windows. h: temporal evolution of the correlation between the nodes hypercoreness in
consecutive snapshots, considering all the nodes that are active in at least one of the snapshots, ρ(t, t + 1), or that are active
in both, ρ∗(t, t+ 1). Note that macroscopically the density and the size of the interactions are quite stable, even if the overall
filling of the hyper-cores changes over time; the composition of the most central hyper-cores is highly stable, suggesting a high
system stability at the mesoscopic and microscopic scales.

FIG. 6. Hypercoreness evolution in the temporal hypergraph of daily interactions within a hospital (LH10).
We show the temporal evolution of the hypercoreness r(i, t) for four agents with different social role: a paramedic (id=1210),
a medic (id=1144), a member of the administrative staff (id=1098) and a patient (id=1383). The dashed line shows the
mean ⟨r⟩(t) (averaged only on active nodes). Nodes can have different behaviors, ranging from a stable to a non-monotonous
temporal profile of hypercoreness. This profile reflects changes in an individual’s interaction patterns, corresponding to the
node’s movements within the hyper-cores structure, either towards more central or more superficial hyper-cores. Note how the
patient’s hypercoreness is always lower than the average, while the paramedic’s hypercoreness is always maximal.

FIG. 7. Time-aggregated hypercoreness in a hospital (LH10). a: scatter plot of the aggregated hypercoreness W (i)
as a function of the snapshot activity aw(i) for all nodes i, and averaged aggregated hypercoreness ⟨W ⟩ as a function of aw.
b: aggregated hypercoreness W (i) vs. average number of interactions per active window h(i) for all nodes i. c: aggregated
hypercoreness W (i) as a function of the activity-averaged hypercoreness W (i). In all panels points are colored according to the
node’s social role. Note that the two time-aggregated hypercoreness provide a complete and complementary description of the
structural behavior of the nodes over the full observation period. Different social roles present different behaviors, e.g., patients
present low values of all centrality measures, doctors and administrative staff have heterogeneous behaviors, while nurses feature
high values of all centralities.

FIG. 8. Prevalent social role in hyper-cores of a hospital (LH10). a: temporal evolution over 24-hours time windows
of the prevalent social role in each (k,m)-hyper-core of the LH10 data set, defined as the most frequent label in the core: we
use a color code for identifying social roles and we consider a role dominant only if its frequency is larger than 0.5. In white are
indicated hyper-cores which are empty or where no dominant role can be identified. b: temporal evolution of the hypercoreness
r(i, t) averaged over all nodes (dashed black line) and averaged over each distinct class. c: temporal evolution of the relative
frequency P of the various social roles within the top 15% positions of the nodes ranking given by the hypercoreness r(i, t). d:
same as b, but in this case we consider the relative frequency P averaged over 50 randomized realizations of the hypergraph
(see Methods). In this case, we also show error bars corresponding to the standard errors. We identify the social roles most
densely connected at different orders of interaction. This pattern is very stable, with nurses being the most densely connected
at all interaction orders. Nurses present higher hypercoreness than other social roles, while patients have values lower than the
average. This pattern is significant when compared to appropriate randomized systems.
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FIG. 9. Hyper-cores structure in time-varying hypergraphs models. We consider the CopNS data set as well as the
HAD, HADA and HADAM models adjusted to the CopNS node activities and hyperedge size distributions, and aggregated over
1-day time windows. a: relative population n(k,m) of the (k,m)-core as a function of k and m from Monday to Thursday of the
first week; the number of active nodes Nt and hyperedges Et are also reported. The insets show n(k,m) as a function of k for fixed
values of m. The first row corresponds to the empirical data; the second, third and fourth rows correspond to the hypergraphs
generated respectively with the HAD, the HADA and the HADAM models. b: similarity Σ between the hyper-cores filling
profiles of the empirical hypergraph Ht and each of the synthetic models H′

t in the same time window t. c: similarity J∗(t, t+1)
between the most central hyper-cores, i.e. (km

max,m)-cores ∀m, in two consecutive snapshots, and Jaccard similarity JN (t, t+1)
between the entire population of the data set in consecutive time windows. d: Pearson correlation coefficient ρ∗(t, t+1) between
the nodes hypercoreness in two consecutive snapshots, considering all the nodes that appear in both time snapshots. In panels
c-d we consider both the data set and the corresponding synthetic models. The results presented here show that the hyper-core
decomposition provides a tool for the validation of temporal hypergraph models: the HADAM model reproduces quite well
the empirical hierarchical structure and its evolution at all the topological scales, while the HADA and HAD models fail to
reproduce it at all scales.

FIG. 10. Time-aggregated hypercoreness in time-varying hypergraphs models. We consider the CopNS data set with
1-day time windows over four weeks, as well as the three synthetic models. a: scatter plots of the aggregated hypercoreness W
as a function of the activity-averaged hypercoreness W for each node: the points are colored according to the snapshot activity
aw of the corresponding node. b: histograms giving the number of nodes P (W ) with aggregated hypercoreness W : within each
bar we distinguish the relative frequency of nodes belonging to each class aw, through stacked bars. In all panels, we consider
both the empirical hypergraphs (first column) and the corresponding synthetic temporal hypergraphs (second column - HAD,
third column - HADA, and fourth column - HADAM). Note that the two time-aggregated hypercoreness provide a description
of the structural behavior of the nodes. The distributions of these measures and their correlations help validate synthetic models
concerning the structural and temporal properties of single nodes. The HADAM model reproduces the empirical distributions
and correlations quite well, while the HADA and HAD models fail to do so.
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