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We propose an ansatz quantum circuit for the variational quantum eigensolver (VQE), suitable for
exploring the phase structure of the multiflavor Schwinger model in the presence of a chemical potential.
Our ansatz is capable of incorporating relevant model symmetries via constrains on the parameters, and can
be implemented on circuit-based as well as measurement-based quantum devices. We show via classical
simulation of the VQE that our ansatz is able to capture the phase structure of the model, and can
approximate the ground state to a high level of accuracy. Moreover, we perform proof-of-principle
simulations on superconducting, gate-based quantum hardware. Our results show that our approach is
suitable for current gate-based quantum devices, and can be readily implemented on measurement-based
quantum devices once available.
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I. INTRODUCTION

In recent years, methods originating from quantum
information theory have emerged as a promising alternative
for numerically investigating lattice field theories [1–5]. In
particular, methods based on tensor network states, a family
of entanglement-based ansätze for the wave function of a
quantum many-body system, have demonstrated their
potential for overcoming the limitations of conventional
Monte Carlo (MC) methods [1,2]. Here, successful com-
putations have been performed for lattice field theories in
the presence of a topological term [6–10] or chemical
potentials [11–13], regimes in which conventional MC
approaches suffer from the sign problem.

Moreover, quantum technologies heavily improved dur-
ing recent years. This might provide another option for
computationally investigating lattice field theories, even in
potentially highly-entangled regimes such as out-of-
equilibrium dynamics where tensor networks have limited
applicability [14]. Using the Hamiltonian lattice formu-
lation allows for directly simulating the theory under
consideration on a quantum device, thus bypassing limi-
tations of classical numerical methods. Several proof-of-
principle experiments have demonstrated that such param-
eter regimes can indeed be investigated via simulations on
quantum computers [3–5].
In order to fully utilize the potential of currently

available noisy intermediate-scale quantum (NISQ) devi-
ces, appropriate algorithms in combination with circuit
optimization and error mitigation techniques are required
[15–22]. The VQE has proven itself to be particularly
suited for NISQ devices [23,24]. This hybrid quantum-
classical algorithm tries to approximate the ground state of
a given Hamiltonian using a parametric quantum circuit as
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a variational ansatz, whose parameters are optimized in
order to minimze the energy expectation value of the
Hamiltonian. In order to achieve a good performance of
the VQE, it is essential to choose a suitable ansatz. For an
implementation on current NISQ devices, the variational
ansatz must be sufficiently simple while still being
expressive enough to reach the target ground state in
the Hilbert space. Additionally, it is desirable to incor-
porate the relevant symmetries of the underlying
Hamiltonian in the variational ansatz to reduce the number
of parameters in the classical optimization of the VQE.
Very recently, it was shown that combining all these
techniques carefully, a VQE for a (1þ 1)-dimensional
gauge theory could be realized on hardware with up to 100
qubits [25]. In addition, the approximation for the ground
state obtained from VQE can also serve as an initial state
for simulating out-of-equilibrium phenomena, which are
in general hard to access with tensor networks [26].
In this work, we present an ansatz which is suitable for

VQE of the multiflavor Schwinger model in the presence
of a chemical potential. The Schwinger model [27], which
represents QED in 1þ 1 dimensions, and its extension to
multiple fermion flavors shows many similarities to more
complicated gauge theories such as quantum chromody-
namics. These include chiral symmetry breaking, confine-
ment, an axial quantum anomaly [28], a topologically
nontrivial vacuum structure [8], and a Dashen phase for
two fermion flavors [10]. Hence, the lattice-regularized
version of the Schwinger model provides an ideal test bed
for developing and testing new numerical techniques
(see e.g. Refs. [1,29,30] and references therein). This
model is, in general, inaccessible with MC methods in
the presence of a chemical potential due to the sign
problem. Focusing on the case of three fermion flavors,
we develop a suitable variational ansatz circuit for the
model. We show via classical simulations of the VQE
that the ansatz is able to capture the relevant physics at a
low circuit depth. Additionally, we demonstrate how to
incorporate symmetries of the model in our ansatz,
reducing the number of variational parameters in the
classical optimization. Besides presenting our ansatz in
the circuit model, we demonstrate that it also lends it
to the formalism of measurement-based quantum compu-
tation [31,32] allowing for a future implementation on a
one-way quantum computer. Finally, we show proof-of-
principle results on IBM’s circuit-based superconducting
quantum hardware.
The paper is organized as follows. In Sec. II, we briefly

introduce the staggered Hamiltonian lattice formulation for
the multiflavor Schwinger model. Moreover, we discuss its
symmetries and the phase structure in the presence of a
chemical potential. We proceed with presenting our ansatz
for the VQE in Sec. III. Finally, we show the performance

results of the ansatz in various parameter regimes in Sec. IV,
before concluding in Sec. V.

II. MODEL AND METHODS

A. Lattice Hamiltonian and spin formulation

For our study, we use a Hamiltonian lattice formulation
of the Schwinger model with staggered fermions, which
reads [11,33,34]

H ¼ −
i
2a

XN−2

n¼0

XF−1
f¼0

ðϕ†
n;fe

iθnϕnþ1;f − H:c:Þ

þ
XN−1

n¼0

XF−1
f¼0

ðmfð−1Þn þ κfÞϕ†
n;fϕn;f

þ g2a
2

XN−2

n¼0

L2
n; ð1Þ

for F fermion flavors on a lattice with N sites and staggered
spacing a. In the expression above, ϕn;f (ϕ†

n;f) are single-
component fermionic fields annihilating (creating) a particle
of flavor f at site n. The parameter g denotes the coupling,
while mf and κf correspond to the bare mass and the bare
chemical potential for flavor f. The operators Ln and eiθn act
on the links in between two adjacentmatter sites n andnþ 1,
where Ln and θn are canonical conjugate variables fulfilling
the commutation relation ½θn; Ln0 � ¼ iδnn0 . Thus, in the
eigenbasis of the electric field operator Ln, eiθn corresponds
to the lowering operator. The first line of the Hamiltonian in
Eq. (1) represents the kinetic term, corresponding to fer-
mionic hopping while simultaneously changing the electric
field. The second line corresponds to the mass and the
chemical potential term whereas the third line represents the
electric energy. The physical states jψi of the Hamiltonian in
Eq. (1) have to fulfill Gauss law, i.e., they have to be
eigenstates of the operators

Gn ¼ Ln − Ln−1 −Qn: ð2Þ

The operators Gn are the generators for time-independent
gauge transformations, and Qn ¼

P
F−1
f¼0 ϕ

†
n;fϕn;f − F

2
ð1 −

ð−1ÞnÞ is the staggered charge. The integer eigenvalues qn of
Gn correspond to static external charges. For the rest of the
paper, we choose to work in the sector of vanishing external
charges, Gnjψi ¼ 0, for each site n.
For open boundary conditions, Eq. (2) allows us to

reconstruct the electric field values purely from the fermionic
charge content of the sites after fixing the value l−1 of the
electric field on the left boundary, Ln ¼ l−1 þ

P
n
k¼0Qk.

Inserting this into Eq. (1), applying a residual gauge trans-
formation, andmaking the resultingHamiltonian dimension-
less [9,34,35], we find
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W ¼ −ix
XN−2

n¼0

XF−1
f¼0

ðϕ†
n;fϕnþ1;f − H:c:Þ

þ
XN−1

n¼0

XF−1
f¼0

ðμfð−1Þn þ νfÞϕ†
n;fϕn;f

þ
XN−2

n¼0

�Xn
k¼0

Qk þ l−1

�
2

: ð3Þ

In the expression above, we use the dimensionless quantities
x≡ 1=ðagÞ2, μf ≡ 2

ffiffiffi
x

p
mf=g, and νf ≡ 2

ffiffiffi
x

p
κf=g. The

parameter l−1 represents a constant background field, and
corresponds to the lattice discretization of a topological
θ-term [6,8,28]. Here, we focus on the case of a vanishing
background field and set l−1 ¼ 0 for the rest of the paper.
Note that in Eq. (3) the gauge fields are no longer present.We
therefore obtain a formulation directly restricted to the gauge
invariant subspace of the theory. This comes at the expense of
creating long-range interactions between the fermionic
degrees of freedom.
In this work, we aim at studying the phase structure of

the model using VQE. In order to measure the expectation
value of the dimensionless Hamiltonian W on a quantum
device, we choose to translate the fermionic degrees of
freedom into spins using a Jordan-Wigner transformation
[11,34]. The fermionic operators appearing in the kinetic
term, the mass term and the electric energy term of the
Hamiltonian are mapped according to

ϕ†
n;fϕnþ1;f → σþn;fðiZn;fÞ…ðiZnþ1;f−1Þσ−nþ1;f; ð4Þ

ϕ†
n;fϕn;f →

1

2
ðZn;f þ 1Þ: ð5Þ

In the expression above, σ� ≡ ðX � iYÞ=2 and X, Y, and Z
are the usual Pauli matrices. Inserting this transformation
into Eq. (3), we obtain a spin chain of length NF. This
allows for obtaining the expectation value of the
Hamiltonian by arranging the different Pauli terms into
commuting groups and measuring them individually.
Regarding the symmetries of ourmodel Hamiltonian, note

thatW conserves the total chargeQtot ¼
P

N−1
n¼0 Qn. We will

therefore restrict ourselves to the sector of vanishing total
charge, Qtotjψi ¼ 0. Additionally, for an odd number of
flavors F and the special choice of νf ¼ −νF−1−f,
μf ¼ μF−1−f, f ≤ bN=2c, the spin Hamiltonian is invariant
under flipping all spins, followed by a spatial reflection
around the lattice center. The corresponding unitary S
implementing the transformation acts on the Pauli matrices
occurring in the Hamiltonian as

SAjS† ¼ ðXAXÞNF−1−j; ð6Þ

whereA∈ fX; Y; Z; σ�g. Note here that the index of the spin
operators does not correspond to the fermionic sites, since

each of the fermion flavorswithin a site ismapped onto a spin
degree of freedom by the Jordan-Wigner transformation.

B. Phase structure of the model

For themassless case, the phase structure of the continuum
model in a finite volume with periodic boundary conditions
has been determined analytically in Refs. [36,37]. It was
found that the model undergoes an infinite number of first-
order phase transitions, whose locations only depend on the
difference of the chemical potentials νf − νf0 with respect to
a single, arbitrarily chosen flavor f0. Each of the phases is
characterized by the particle numbers

Nf ¼
XN−1

n¼0

ϕ†
n;fϕn;f ð7Þ

of the different flavors f. For two flavors of fermions,
Ref. [11] showed that the picture also qualitatively persists
on a finite lattice with open boundary conditions. Moreover,
when taking the continuum limit, the results obtained from
the lattice calculations agreed with the theoretical prediction
of Ref. [36]. Additionally, it was demonstrated for the case of
two fermion flavors that these first-order phase transitions
also occur for nonvanishing bare fermionmass [11], and also
for quantumelectrodynamics in 2þ 1 dimensions [38]. Note
that the phase structure of the model can in general not be
assessed numerically with conventional MC methods, as
these suffer from a sign problem as soon as

P
f κf ≠ 0.

A theoretical prediction for the locations of the phase
transitions in the lattice model can be obtained following
the ideas in Ref. [11]. Since the Hamiltonian in Eq. (3)
commutes with Nf for each flavor, the energy eigenstates
are simultaneously eigenstates of the particle number
operators. Consequently, W has a block-diagonal form in
which each block can be labeled with ðN0;…; NF−1Þ. In
order to derive a theoretical prediction for the phase
transition points it will be convenient to rewrite W as

W ¼
XF−1
f¼0

νfNf þWaux; ð8Þ

where Waux contains all parts of W which are independent
of νf [11]. The minimum eigenvalue in a given block is
then

EðN0;…;NF−1Þðν0;…; νF−1Þ

¼
XF−1
f¼0

νfNf þ EminðWauxjðN0;…;NF−1ÞÞ; ð9Þ

where EminðWauxjðN0;…;NF−1ÞÞ is a block-dependent con-
stant. Therefore, measuring the ground-state energy
EðN0;…;NF−1Þðν0;…; νF−1Þ as well as all particle numbers
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Nf at one point ðν0;…; νF−1Þ is sufficient to determine this
constant for the whole block. We can now simplify Eq. (9)
to the case of three fermion flavors, F ¼ 3, considered
throughout the rest of the paper and set ν2 ¼ −ν0,

1 which
yields

EðN0;N1;N2Þðν0; ν1Þ ¼ ν0ðN0 − N2Þ þ ν1N1

þ EminðWauxjðN0;N1;N2ÞÞ: ð10Þ

In the following, we will consider ν0 as a variable to scan
through the phase diagram and ν1 to be a constant. This
allows us to derive an analytical expression for the
transition points ν0jjump. During a first-order phase tran-
sition, it becomes energetically favorable to go from one
block characterized by ðN0; N1; N2Þ to a neighboring block
with ðN̄0; N̄1; N̄2Þ. Directly at the critical point, the energy
levels of the neighboring blocks are degenerate,
EðN0;N1;N2Þðν0; ν1Þ ¼ EðN̄0;N̄1;N̄2Þðν0; ν1Þ. Using this equality
together with Eq. (10), we obtain the following expression
for the critical point:

ν0jjump ¼
EminðWauxjðN̄0;N̄1;N̄2ÞÞ − EminðWauxjðN0;N1;N2ÞÞ

ðN0 − N̄0Þ − ðN2 − N̄2Þ

−
ν1ðN1 − N̄1Þ

ðN0 − N̄0Þ − ðN2 − N̄2Þ
:

As outlined above, the block-dependent constants
EminðWauxjðN0;N1;N2ÞÞ can be obtained from measuring
EðN0;N1;N2Þ and Nf at an arbitrary point ðν�0; ν�1Þ inside each
block. In particular, the point can be far away from the
transition point. Considering this in the above equation, we
find for the transition point

ν0jjump ¼
EðN̄0;N̄1;N̄2Þðν̄�0; ν1Þ − ν̄�0ðN̄0 − N̄2Þ

ðN0 − N̄0Þ − ðN2 − N̄2Þ

−
EðN0;N1;N2Þðν�0; ν1Þ − ν�0ðN0 − N2Þ

ðN0 − N̄0Þ − ðN2 − N̄2Þ
: ð11Þ

Alternatively, we can label each block of W with the
differences in the particle numbers ΔNf ¼ Nf − Nf0 with
respect to a single, arbitrarily chosen flavor f0 and the total
particle number

P
f Nf. Equation (11) can thus be rewritten

in terms of the particle number differences ΔNf ¼Nf−N1

for f0 ¼ 1, yielding

ν0jjump ¼
EðΔN̄0;ΔN̄1;ΔN̄2Þðν̄�0;ν1Þ− ν̄�0ðΔN̄0−ΔN̄2Þ

ðΔN0−ΔN̄0Þ− ðΔN2−ΔN̄2Þ

−
EðΔN0;ΔN1;ΔN2Þðν�0;ν1Þ−ν�0ðΔN0−ΔN2Þ

ðΔN0−ΔN̄0Þ− ðΔN2−ΔN̄2Þ
: ð12Þ

We will use Eq. (12) in Sec. IV D to predict the relevant
phase transition points from our hardware data.

III. VQE PROTOCOL

In the following, we will introduce our parametric ansatz
circuit for the VQE protocol. After introducing the ansatz,
we will show how to incorporate the symmetries of the
model into the ansatz, which allows for reducing the
number of variational parameters. We will give a general
description of the ansatz, which can be straightforwardly
realized on any circuit-based quantum device, in Sec. III A.
Additionally, we show that our ansatz lends itself also to the
one-way model of quantum computation in Sec. III B,
which opens up the possibility of implementing our
algorithm on measurement-based quantum computers in
the future.

A. Quantum circuit model

The VQE utilizes a parametric circuit ansatz realized on
a quantum device, in conjunction with a closed feedback-
loop with a classical optimization routine to find an
approximation for the ground state of our model
Hamiltonian W [23]. The quantum device is capable of
efficiently preparing a set of trial states fjΨðθkÞig depend-
ing on the variational parameters θk ∈Rp, starting from a
fixed initial state jΨ0i. After the state preparation, the
energy hΨðθkÞjWjΨðθkÞi is measured and handed to the
classical optimizer as a cost function. The optimizer
attempts to minimize this cost function by iteratively
adjusting the algorithm parameters, θk → θkþ1, and hand-
ing them back to the quantum device [cf. Fig. 1(a)].
The ansatz we propose, consists of a series of L layers.

Each layer l realizes the following unitary operation on the
NF qubits corresponding to a system with N sites

UlðθlÞ ¼
YNF−1

i¼0

Rz
i ðθlNF−1þiÞ

Y
i odd

Uxy
i;iþ1ðθliÞ

Y
i even

Uxy
i;iþ1ðθliÞ;

ð13Þ

where

Uxy
ij ðθÞ ¼ e−i

θ
2
ðXiXjþYiYjÞ; ð14Þ

Rz
i ðθÞ ¼ e−i

θ
2
Zi : ð15Þ

and θl is a real vector representing the parameters of layer l.
One layer thus consists of two-qubit entangling gates

1This restriction is contained in the considered symmetry
subspace as introduced in Sec. II A, see Eq. (6), but it is also used
in our simulations outside of this symmetry subspace for
simplicity (cf. Sec. IV C).
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arranged in an odd-even pattern, followed by local Rz-
rotations on all qubits [cf. Fig. 1(b) for an illustration]. All
L layers are applied sequentially to the initial state jΨ0i,
realizing the trial state

jΨðθÞi ¼
YL
l¼1

UlðθlÞjΨ0i;

with2 θ ¼ ðθ1; θ2;…; θLÞ andUlðθlÞ given in Eq. (13). The
whole VQE protocol is shown schematically in Fig. 1(a).
As one can easily show, the gate operations in Eq. (13)
conserve the total charge. Moreover, we can ensure that our
algorithm is invariant under the symmetry operation from
Eq. (6) by restricting the parameters in Eq. (13) to

θli ¼ θlNF−2−i for i∈ ½0; NF − 2� ð16Þ

θli ¼ −θl3NF−3−i for i∈ ½NF − 1; 2NF − 2� ð17Þ

where Eq. (16) corresponds to the parameter restriction for
the two qubit gates,Uxy

i;iþ1, ofUl and Eq. (17) represents the
parameter restriction for the local z-rotations, Rz

i , of Ul.
Equations (16) and (17) together reduce the number of
optimization parameters from p ¼ 2NF − 1 per layer to
p ¼ NF, when investigating this symmetry subspace of
our model. For investigations outside of this subspace, i.e.,
κf ≠ −κF−1−f or mf ≠ mF−1−f, f ≤ bF=2c, we can simply
relax the parameter restriction of Eqs. (16) and (17), and
treat all parameters as independent. For increasing system
sizes the number of parameters per layer as well as the
required number of layers to approximate the ground state
increases. This increases the time of the classical optimi-
zation as well, making it a bottleneck for large systems.
However, there are several methods to overcome this
problem, for example by reducing the number of simulta-
neously optimized parameters [39] or by choosing a initial
state closer to the optimal solution [40]. Both methods
could be easily implement in our VQE workflow. To obtain
a state in the correct symmetry sector, not only the ansatz
must respect the symmetry, but also the initial state jΨ0i
must be in the same symmetry sector that one targets
(cf. Sec. II A). In our simulations, we will use the Neel state
jΨ0i ¼ j0101 � � � 1i, which has vanishing total charge and
remains invariant under the symmetry operation from
Eq. (6). This state can easily be obtained from the state
j00 � � � 0i the qubits are typically initialized in on circuit-
based devices by flipping the corresponding qubits with
X-gates.

B. One-way model of quantum computation

Besides the widespread circuit model of quantum com-
putation, also measurement-based approaches exist. While
it can be shown that both models are equivalent, such
measurement-based models could provide a better suited
path to quantum computation for certain physical plat-
forms, e.g., photonic setups [41,42]. In particular, VQE
protocols for measurement-based quantum hardware [43]
as well as hybrid approaches [44] have already been
discussed. Here, we will translate our parametric ansatz
circuit into the one-way model of quantum computation, a
measurement-based model proposed in Refs. [31,32]. This
allows for implementing our algorithm on such one-way
quantum computer hardware in the future. In the following,
we introduce the basics of the one-way model of quantum
computation before we translate our ansatz circuit to this
framework.

1. Basic concepts of the one-way
model of quantum computation

The basic idea of the one-way model of quantum
computation is to perform a series of single-qubit mea-
surements on specific qubits of a highly entangled resource
state, thereby effectively performing unitary operations on

(a)

(b)

FIG. 1. (a) VQE protocol using a layered circuit ansatz UlðθlkÞ
with L layers to prepare trial states fjΨðθkÞig from initial state
jΨ0i ¼ j0101 � � � 1i and a classical optimizer to iteratively find
the approximate ground state of W. Here, Rn

i indicate post
rotations needed to measure the energy expectation value
hΨðθkÞjWjΨðθkÞi. (b) Illustration of the circuit corresponding
to Eq. (13) for six qubits representing two lattice sites.

2We consider θ and all θl to be row vectors.
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the unmeasured qubits. Typically a special class of entangled
states called graph states are used a resource. As the name
suggests, these can be conveniently represented as math-
ematical graph: the vertices of the graph correspond to qubits
initialized in the state jþi ¼ ðj0i þ j1iÞ= ffiffiffi

2
p

, the edges
connecting two qubits correspond to a controlled-Z gate
applied between the qubits. For example, Fig. 2(b) shows the
two-qubit linear graph state given by

CZ01jþi0jþi1; ð18Þ

andFig. 3(b) shows the three-qubit linear graph stategivenby

CZ01CZ12jþi0jþi1jþi2: ð19Þ

Here, CZij represents a controlled-Z gate between qubits i
and j, and jþii corresponds to the state of qubit i.
Unitary operations can be implemented on the basis of

the generalized single-qubit teleportation scheme, which is
illustrated in Fig. 2(a). This circuit allows for teleporting
any single-qubit quantum state jψi from qubit 0 to qubit 1
while applying a z-rotation and a Hadamard gate to jψi.
Additionally, if the measurement outcome of qubit 1 is
m ¼ 1, a Pauli-X operator is added. The application of
RzðθÞH together with the measurement in the computa-
tional basis correspond to a measurement in the rotated
X-basis, jθ�i ¼ ðj0i � e−iθj1iÞ= ffiffiffi

2
p

[cf. right-hand side of
Fig. 2(a)]. The teleportation example shows that applying a
measurement in the correct basis to qubit 0 will teleport its
initial state jψi to qubit 1 and additionally implement a set
of defined unitary operations on this state. This is because
the two qubits are entangled at the beginning with a CZ
gate. After the measurement, qubit 0 is projected to one of
the basis states and is no longer entangled with qubit 1.
Moreover, since the state of qubit 0 is in general not one of
the basis states jθ�i, the output in qubit 1 is probabilistic
and depends on the measurement outcome m obtained for
qubit 0, which is reflected in the Xm in the final state.
The circuit for the teleportation scheme can also be

illustrated conveniently in form of a mathematical graph, as
shown in Fig. 2(b). Choosing jψi0 ¼ jþi0 for the input
qubit 0 of the computation, the initial entangling CZ-gate
creates a graph state, represented by two vertices connected
by an edge. Subsequently the input qubit is measured in the
jθ�i basis, indicated by the color and label in the left vertex
which represents qubit 0. The output state, i.e., the final
result of the circuit, is then contained in the vertex not
carrying any color nor label, which represents the output
qubit of this computation.
This principle can now be generalized to perform

computational tasks involving a series of unitary opera-
tions. In particular, also two-qubit gates can be imple-
mented with this method which requires two-dimensional
graph states. To this end, a sequence of single-qubit
measurements is applied to qubits of a graph state.
These are either performed in the eigenbasis of one of
the Pauli operators X, Y, Z or in the rotated X-basis jθ�i.
Moreover, the measurement basis chosen at one point of the
sequence can depend on the previous measurement out-
come. Hence, in general the measurements have to be
chosen adaptively [45,46]. At the end of the sequence of
measurements, the subset of qubits that have not been
measured, called output qubits, contains the final state.
Qubits that have been measured, have been projected to one
of the basis states and are no longer entangled with the
subset of qubits that have not been measured. As illustrated
already in the teleportation example, the measurement
outcome is generally probabilistic, resulting in a set of
possible output states for the unmeasured output qubits. In
order to make the computation deterministic, one needs to

(a)

(b)

FIG. 2. (a) Illustration of the single-qubit teleportation protocol,
the upper quantum wire represents qubit 0, the lower one qubit 1.
The measurement in the computational basis following the Rz-
rotation gate and the Hadamard gate in the left part effectively
corresponds to a measurement in the rotated X-basis jθ�i≡
ðj0i � e−iθj1iÞ= ffiffiffi

2
p

as shown in the right part. The measurement
outcome m takes binary values, m∈ f0; 1g. (b) The correspond-
ing graph state for jψi0 ¼ jþi0 and measurement pattern for the
one-way computation.

(a)

(b)

FIG. 3. (a) Single-qubit-teleportation-based scheme of the z-
rotation RzðαÞ. (b) The corresponding graph state for jψi0 ¼ jþi0
and measurement pattern for the one-way computation.

STEPHAN SCHUSTER et al. PHYS. REV. D 109, 114508 (2024)

114508-6



keep track of the outcome of each individual measurement
and apply so-called Pauli corrections to the output qubits
depending on the measurement outcome. The Pauli cor-
rections can be shown to consist of Pauli X- and Z-
operators. Moreover, it is possible to compensate for the
Pauli corrections at the end of a computation instead of
after each individual measurement.
Following Refs. [45,46], we can translate circuits into the

one-way model by decomposing the operations into single-
qubit z-rotations, Rz, Hadamard gates, H, and CZ-gates.
These operations can then be further decomposed into
single-qubit-teleportation-based schemes as illustrated
above (cf. Fig. 2). The required graph state as well as
all (adaptive) measurement bases and the resulting Pauli
corrections can be extracted from this form.

2. Formulating the ansatz in the one-way
model of quantum computation

In the gate-based representation for our ansatz in
Eq. (13), we have two basic types of unitaries, single-
qubit Rz rotation gates and Uxy entangling gates. Here we
show how to represent both of them in the one-way gate set
fRz;H; CZg and translate the relevant operations into a
one-way computation. Subsequently the graphs for each of
the individual operations can be combined to obtain the full
ansatz in the one-way model.
Let us start with translating the single-qubit z-rotations

into the one-way model. To this end, we will have to
concatenate the single-qubit teleportation protocol of
Fig. 2 two times, first between qubits 0 and 1 and second
between qubits 1 and 2. The second time, we can omit the
z-rotation, which means we have to measure qubit 1 in the
Pauli-X eigenbasis. The whole teleportation scheme of a
simple z-rotation and the corresponding one-way computa-
tion is shown in Fig. 3. It is straightforward to show that the
output state in qubit 2 of Fig. 3(a) after bothmeasurements is
given by

Xm1Zm0RzðαÞjψi ð20Þ

where the first two terms are Pauli corrections depending on
measurement outcomesmi ∈ f0; 1g of qubit i. As before, the
combination of a z-rotation, a Hadamard gate and a meas-
urement in the computational basis on the first qubit
correspond to a measurement in the rotated X-basis, which
is defined by the rotation angle α of the z-rotation. From this
teleportation scheme type of circuit, we can directly extract
the required graph state aswell as the necessarymeasurement
pattern. Figure 3(b) shows the representation as a graph for
jψi0 ¼ jþi0. The twoCZ gates at the beginning again create
a three-qubit linear graph state, where colored vertices
indicate that the qubit is subsequently measured in the basis
indicated by the label of the vertex. The vertex surrounded by
a box indicates the input qubit, which is where the compu-
tation starts, and the vertex without filling indicates the

output qubit containing the final state at the end of the
computation.
Next, we will decompose the entangling gate Uxy

ij ðθÞ.
Therefore, we employ an efficient decomposition of the
unitary operation

Uxz
ij ðθÞ ¼ e−iθ=2ðXiXjþZiZjÞ ð21Þ

presented in Ref. [47] and shown in Fig. 4. Note thatUxz
ij ðθÞ

can be transformed into Uxy
ij ðθÞ by applying local unitaries

that change ZiZj to YiYj while leaving XiXj unchanged.
This can be achieved with the operation HΦH which
transforms the Pauli matrices X, Z as

ðHΦHÞ†XðHΦHÞ ¼ −X; ð22Þ

ðHΦHÞ†ZðHΦHÞ ¼ Y ð23Þ

where H is the usual Hadamard gate and Φ ¼ ei
π
4Rzðπ

2
Þ.

Using that HΦH ¼ ei
π
4Rxðπ

2
Þ, we can rewrite Uxy

ij ðθÞ in
terms of single-qubit gates andUxz

ij ðθÞ as shown in Fig. 5. If
we arrange the operations Uxy

ij ðθÞ in a odd-even structure,
as shown in Eq. (13) and Fig. 1(b), the last x-rotations
Rxð−π=2Þ of the even part cancel with the first x-rotations
Rxðπ=2Þ of the odd part for all qubits, except the first and
the last one. Hence, we do not need to reformulate operator
Uxy

ij ðθÞ explicitly in the teleportation scheme, but instead
we only reformulate the operator Uxz

ij ðθÞ and the general x-
rotation RxðαÞ. From those two operations and the general
z-rotation in Fig. 3, we can directly derive the one-way
implementation of a whole layer of the ansatz.
The teleportation scheme of RxðαÞ as well as the graph

representation of the one-way model is shown in Fig. 6.
The first qubit is measured in the Pauli-X eigenbasis, and
the second qubit is measured in the rotated X-basis, fjθ�ig.
As illustrated in Figs. 6(a) and 6(b), one has to change the
sign of the measurement in the rotated X-basis based on the
outcome of the Pauli-X measurement, which corresponds

FIG. 4. Efficient decomposition of UxzðθÞ in terms of
fRx;H;CZg gates.

FIG. 5. Decomposition ofUxyðθÞ into the gate set fRx;H; CZg.
The middle part part corresponds to the circuit for UxzðθÞ from
Fig. 4, which is padded with Rxð�π=2Þ rotation gates as
explained in the text.
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to an adaptive measurement. The state of the third output
qubit after both measurements are performed is given by

Xm1Zm0HRzðαÞHjψi ¼ Xm1Zm0RxðαÞjψi; ð24Þ

where two leftmost Pauli operations in the equation above
depend on the measurement outcomes m0; m1 ∈ f0; 1g of
the first two qubits. Note that, Fig. 6(b) looks very similar
to Fig. 3(b) with only the measurement basis of qubits 0 and
1 being interchanged, which in turn makes the rotated
X-basis measurement adaptive. The adaptive choice is

indicated by the possible minus sign of the rotated basis
angle depending on the measurement outcome m0 in
Fig. 6(a). The required graph state with the necessary
measurement pattern is shown in Fig. 6(b). Note that for
α ¼ −π=2 the rotated basis fjα�ig coincides with the Pauli
Y eigenbasis fjLi; jRig and that Rxðπ=2Þ ¼ XRxð−π=2Þ.
Hence, for the implementation of Rxð�π=2Þ the rotated
basis measurement becomes a nonadaptive Pauli Y meas-
urement with an additional Pauli X correction for
Rxðþπ=2Þ [cf. Fig. 6(c)].
Next, the teleportation scheme of Uxz

ij ðθÞ is shown in
Fig. 7, together with the corresponding one-way compu-
tation. The final state of the output qubits 6, 7 in Fig. 7(a) is
given by

jψouti67 ¼ UPCU
xz
67ðθÞjψ ini67; ð25Þ

with the Pauli correction

UPC ¼ ðXm2Zm0þm4Þ6ðXm5þm2þm3Zm4þm1Þ7: ð26Þ

The one-way computation of the whole ansatz layer can be
obtained by concatenating the individual one-way compu-
tations of Uxz

ij ðθÞ, Rxð�π=2Þ and RzðθÞ according to
Eq. (13) and Fig. 5.
Finally, Fig. 8 shows our algorithm layer for six input

qubits in the gate set fH;Rz; Rx; CZg [cf. Fig. 8(a)] and the
corresponding one-way implementation [cf. Fig. 8(b)]. In
Fig. 8(b), the adaptive basis choice and the resulting Pauli
corrections of the whole algorithm layer can be obtained by
concatenating the output states of the individual sub-
operations in the one-way scheme accordingly and then
permute all Pauli corrections to the outer left. Note that in

(a)

(b) (c)

FIG. 6. (a) Single-qubit-teleportation-based scheme of the x-
rotation gate RxðαÞ ¼ HRzðαÞH. (b) The corresponding graph
state for jψi0 ¼ jþi0 and measurement pattern for the one-way
computation. (c) Exemplary one-way computation for α ¼ −π=2.
In this case, the rotated basis fα�g coincides with the Pauli-Y
eigenbasis fjLi; jRig and the second measurement becomes
nonadaptive.

(a) (b)

FIG. 7. (a) Single-qubit-teleportation-based scheme of UxzðθÞ, shown in Eq. (21). (b) The corresponding graph state for jψ ini01 ¼
jþi0jþi1 and measurement pattern for the one-way computation.
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general all nonadaptive measurements in a one-way quan-
tum computation can be performed in parallel and in the
first step of the computation. All adaptive measurements
have to be performed in a temporal order prescribed by the
measurement dependencies in the adaptive basis choice.
The number of qubitsQowqc in the one-way computation of
the whole ansatz layer scales with the number of input
qubits NF (qubits on which the ansatz layer is applied) as

Qowqc ¼ 13 × NF − 6: ð27Þ

Thus, a large number of qubits is required to implement our
ansatz layer in a one-way computation, which is currently
beyond any physical realization of graph states. In princi-
ple, one could reduce the number of qubits by using the fact
that the nonadaptive Pauli measurements in a one-way
quantum computation correspond to a Clifford operations
[41,43]. Hence, they can all be performed in parallel in the
first step of the computation [41,43]. Furthermore, instead
of performing those Pauli measurements on the graph state,
they can also be efficiently simulated classically

beforehand thanks to the Gottesman-Knill Theorem [43].
More specifically, since all Pauli measurements on a graph
state yield a state which is local-unitary-equivalent (LU-
equivalent) to another graph state, the classical simulation
of Pauli measurements on graph states can be reformulated
in a set of graph modification rules. These transform the
initial graph state to the graph state LU-equivalent to
the state after the Pauli measurements [46,48]. Since all
the previously measured qubits are disentangled from the
resulting graph state, this procedure reduces the size of the
required graph state in the experiment. On the resulting
state, only the adaptive measurements (non-Clifford part of
the computation) have to be executed. However, as pointed
out in Ref. [41], the resulting graph states get additional
(possibly long-ranged) CZ connections between the
remaining qubits, which destroy the geometric structure
within the graph representation. While such unstructured
graph states require a smaller number of vertices and
correspondingly a smaller number of qubits, they become
increasingly complicated to realize experimentally with
growing system size due the unstructured CZ connections.

(a)

(b)

FIG. 8. (a) Decomposition of the ansatz layer, shown in Eq. (13), for 6 qubits in the set fH;Rz; Rx; CZg. (b) Implementation of the
ansatz layer for 6 qubits in the one-way model.
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IV. RESULTS

To benchmark our ansatz, we consider the Schwinger
model with three fermion flavors with flavor-dependent
chemical potentials. We simulate our VQE protocol clas-
sically assuming a perfect quantum computer without any
hardware or shot noise, and compare the results to the ones
obtained from exact diagonalization. As a classical opti-
mizer for the VQE, we choose the L-BFGS algorithm [49].
For each value of the chemical potential, ten different runs
of the simulation with randomly chosen initial parameters
are carried out. Subsequently we postprocess our data, and
mark simulations with a final energy that is 30% higher
than the lowest value obtained within the ten runs as
outliers. To assess the performance of our ansatz, we study
various parameter regimes, in particular, we investigate
(i) vanishing bare fermion mass (ii) nonvanishing bare
fermion mass, and (iii) a sign-problem afflicted regime for
conventional MC simulations. In addition, to demonstrate
the feasibility of our approach on quantum hardware, we
also carry out inference runs for six qubits (corresponding
to N ¼ 2 for F ¼ 3) on an actual IBM quantum hardware.
To this end, we take the optimal variational parameters
obtained from the classical simulations for two ansatz
layers and execute a pretranspiled version of our ansatz
with those parameters, measuring the relevant observables
directly on the quantum device.
Since our primary focus lies on investigating the per-

formance of our ansatz for the lattice system and do not
intend to take the continuum limit, we will not take the
additive mass renormalization into account in our simu-
lations. Note, that we provide some of the explicit param-
eters, obtained at the end of the VQE simulations in
Secs. IVA–IV C, in Appendix B.

A. Vanishing bare fermion mass

To begin with, we focus on the case of vanishing bare
fermion mass,3 μf ¼ 0, and consider ν2 ¼ −ν0 with ν1 ¼ 0.
Thus, we are in a regime in which the model has the
reflection symmetry discussed in Sec. II, allowing us to
constrain the parameters in the ansatz according to
Eqs. (16) and (17). Figure 9 shows our results for the
ground state energy, the particle number and the overlap
obtained by simulating the VQE classically for system sizes
N ¼ 2, 4 and 6, which correspond to 6, 12 and 18 qubits
respectively. The total number of parameters in the circuits
for those system sizes are 30, 60 and 90 respectively, for
five algorithm layers as used in all cases. Note that we
obtained in general also good accuracy for the smaller
system sizes with less algorithm layers as can be seen for
example in Sec. IV D. For the entire range of system sizes
and chemical potentials we study, we generally observe

good agreement between the VQE results and the exact
solution computed with exact diagonalization. Focusing on
the overlap with the exact solution in Figs. 9(c), 9(f),
and 9(i), we see that in most cases we achieve overlaps with
the exact ground state of more than 95%, and the values only
decrease marginally with increasing system size, although
we use a constant number of 5 layers in the ansatz for all
system sizes. The cases in which the overlap is significantly
lower than 95% correspond to outliers according to our
criterion that the energy is at least 30% higher than the lowest
one obtained within the ten runs, as the panels for the energy
in the first column of Fig. 9 reveal. While the exact ground
state energy as a function of the chemical potential already
indicates the onset of first-order quantum phase transitions in
formof cusps, these are harder to detect from theVQE results
for the energy, as one would need an extremely fine
resolution in the chemical potential. In contrast, the first-
order quantum phase transitions manifest themselves clearly
in the particle number in form of characteristic jumps when
going from one phase to another, as the panels in the middle
column of Fig. 9 show. The different phases are all well
captured by the VQE results and can be reliably identified
with a modest number of data points.
Looking at the outliers in Fig. 9, we see that these can be

easily identified via the energy and the particle numbers,
observables which can be efficiently measured on actual
quantum hardware. They consistently show noninteger
particle numbers and high energy values, giving a strong
indication that they are unphysical. This is confirmed by the
almost vanishing overlaps with the exact ground states.
Moreover, within our ten experiments only a small fraction
of simulations produced outliers, showing that our setup is
very likely to produce a good approximation for the ground
state of the model. Consequently, in the regime of vanish-
ing bare fermion mass our VQE protocol is able to reliably
capture the phase structure of the model, and occasional
outliers can be determined easily from the observables
considered.

B. Nonvanishing bare fermion mass

As a next step, we consider a nonzero bare fermion mass
of μf ¼ 0.8 while still keeping ν1 ¼ 0 and ν2 ¼ −ν0.
Moreover, we focus on the largest system size we studied
in the previous section, N ¼ 6 corresponding to 18 qubits
and 90 parameters in the whole circuit. Figure 10 shows our
VQE results for the ground-state energy and the particle
number in comparison to the results from exact diagonal-
ization as well as the overlap with the exact solution.
Focusing on the exact results energy and the particle
number in Figs. 10(a) and 10(b), we observe qualitatively
the same behavior as for the case of vanishing fermion
mass, the particle number shows again abrupt discontinu-
ities indicating the first-order phase transitions which are
accompanied by cusps in the energy. Our VQE results for
the energy and the particle number are in general in good

3Note, that this does not correspond to a vanishing renormal-
ized mass (see Appendix A).
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agreement with the exact solution, which is also corrobo-
rated by looking at the overlap between the VQE solution
and the exact wave function in Fig. 10(c). Again, we are
able to obtain overlaps that are around 95% for most of the
simulations we carry out.
Similar to the previous case of vanishing bare fermion

mass, for μf ¼ 0.8 we also see some data points that are
identified as outliers according to our criterion. A direct
comparison between Figs. 9 and 10 shows that for μf ¼ 0.8
we observe an even smaller fraction of simulations that
produced outliers than for μf ¼ 0, and our VQE converges
with high probability. These outliers can again reliably be
identified by looking at the physical observables, and
manifest themselves in high values for the energy and
noninteger particle numbers. This is likely caused by the

classical optimization routine getting stuck in a local
minimum, as in these cases the final VQE wave function
has almost vanishing overlap with the exact wave function,
despite the ansatz being capable of approximating it to a
good precision, as the other successful runs demonstrate.

C. Sign-problem afflicted regime

Next, we investigate a regime which is inaccessible with
MC methods, due to the sign problem. To this end, we
consider again μf ¼ 0 and ν2 ¼ −ν0, but now we addi-
tionally set ν1 ¼ 24. This results in

P
f νf ≠ 0, thus

triggering a sign problem for the conventional MC
approach. In addition, for this case the reflection symmetry
of the model is no longer present, and we cannot constrain

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 9. Classically simulated VQE results for vanishing bare fermion mass. The first column [panel (a), (d), and (g)] shows the
ground-state energy E0, the second column [panel (b), (e) ,and (h)] shows the particle number difference ΔN2, and the third column
[panel (c), (f), and (i)] shows the overlap jhψVQEjψ exactij of the VQE results, each as a function of the chemical potential difference
ν0 − ν1. The first row [panel (a)–(c)] shows the results for N ¼ 2, the second row [panel (d)–(f)] for N ¼ 4 and the third row [panel (g)–
(i)] for N ¼ 6, each for x ¼ 16, μf ¼ 0, ν2 ¼ −ν0, ν1 ¼ 0, and five algorithm layers. Successful runs are represented by filled orange
triangles. Every run, in which the obtained energy is 30% higher than the lowest obtained value, is marked as an outlier and is
represented by an open green circle. The solution obtained via exact diagonalization is shown as a dashed blue line in the first two
columns. The dash-dotted grey line in the third column marks the 95% overlap threshold. Note that, for each investigated point on the
ðν0 − ν1Þ-axis, we performed ten VQE runs. Note that the orange triangles are mostly on top of each other, because the most of the
simulations converged to the same value.
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the variational parameters in the ansatz anymore and treat
all the parameters in the ansatz as independent. Once again,
we investigate this regime for a system with 12 qubits,
corresponding to four lattice sites. Figure 11 shows the
results obtained for the simulations in this parameter regime.
Our VQE ansatz still produces results, which are in good
agreement with the exact solution, even though conventional
MCmethods would fail in this situation. Because we can no
longer constrain the number of parameters in our ansatz, we
get now 23 parameters per layer instead of 12 as before for
N ¼ 4which results in 115 parameters in the whole circuit.4

Nevertheless, the optimization is still capable of finding a
good approximation of the exact ground state, and we do not
see a significant increase in the number of outliers, comparing

Figs. 9(f) and 11(c). We do observe a single data point which
has vanishing overlap with the exact ground state, but is not
marked as a outlier since its energy is close to the exact one
and the particle number is approximately an integer value.
This data point lies close to a phase transition point, at which
the ground-state energy level is degenerate, whichmeans that
the energy levels of the ground states from each neighboring
phase are still close. It is likely that the VQE converged to the
wrong ground state, which would explain why the energy is
close to the exact solution but the particle number differs and
the overlap vanishes. In general, our ansatz still achieves high
overlaps with the exact solutions for a large fraction of the
simulation runs and shows overall a good performance, even
in this sign-problem afflicted regime.

D. Inference run on IBM quantum hardware

To demonstrate that our ansatz can be implemented on
current NISQ devices, we perform inference runs on real

(a) (b) (c)

FIG. 10. Classically simulated VQE results for nonvanishing bare fermion mass. Panel (a) shows the ground-state energy E0, panel
(b) the particle number difference ΔN2, and panel (c) the overlap jhψVQEjψexactij of the VQE results, each as a function of the chemical
potential difference ν0 − ν1 for N ¼ 6, x ¼ 16, μf ¼ 0.8, ν2 ¼ −ν0, ν1 ¼ 0, and five algorithm layers. Successful runs are represented
by filled orange triangles. Every run, in which the obtained energy is 30% higher than the lowest obtained value, is marked as an outlier
and is represented by an open green circle. The solution obtained via exact diagonalization is shown as a dashed blue line in the first two
panels. The dash-dotted gray line in the third panel marks the 95% overlap threshold.

(a) (b) (c)

FIG. 11. Classically simulated VQE results for sign-problem afflicted regime. Panel (a) shows the ground-state energy E0, panel
(b) shows the particle number difference ΔN2, and panel (c) shows the overlap jhψVQEjψexactij of the VQE results, each as a function of
the chemical potential difference ν0 − ν1 for N ¼ 4, x ¼ 16, μf ¼ 0.0, ν2 ¼ −ν0, ν1 ¼ 24, and five layers in the ansatz. Successful runs
are represented by filled orange triangles. Every run, in which the obtained energy is 30% higher than the lowest obtained value, is
marked as an outlier and is represented by an open green circle. The solution obtained via exact diagonalization is shown as a dashed
blue line in the first two panels. The dash-dotted gray line in the third panel marks the 95% overlap threshold.

4Note that for larger system sizes the classical optimization
might become a bottleneck due to the large number of parameters
and methods to improve the optimization time have to employed
(see Sec. III A).
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quantum hardware and directly measure the relevant
observables on the quantum computer. Specifically, we
prepare our ansatz with two layers using the optimal
parameters obtained from the classical simulations in the
regime of nonvanishing bare fermion mass on ibm_cairo.
We focus on the case of six qubits, corresponding to N ¼ 2
lattice sites for three fermion flavors and 12 parameters in
the whole circuit, for which we obtained essentially perfect
agreement with the exact solution with overlaps exceeding
99% with the exact ground state in the classical simulation,
as shown in Fig. 12.
For the hardware run, we decompose our ansatz circuit

into the natively available set of gates on ibm_cairo,
fCX;Rz;

ffiffiffiffi
X

p
; Xg. To this end, we employ the efficient

decomposition of our ansatz layers (see Fig. 8) and further
decompose those gates into the native basis gate set,
resulting in the structure shown in Fig. 13. In addition,
we eliminate all two-qubit gates in the ansatz which result
in operations close to the identity for a given parameter set.
Therefore, we checked if the parameter value for the two-
qubit gate agrees within 0.18 rad accuracy with
m × 2π rad, m∈Z. If that is the case, the corresponding
two-qubit gate is considered as a close-to-identity operation
and removed from the circuit. Every circuit was executed
with 15360 shots on the hardware.
In order to compensate for some of the hardware noise in

the remaining circuit, we use zero-noise extrapolation

(ZNE) [21] available in Qiskit Runtime [50]. The ZNE
in Qiskit runtime employs digital circuit folding, i.e.
inserting pairs of unitaries U†U in the circuit which would
result in an identity operation on an ideal quantum
computer. For a real device with noise, this effectively
allows for running the same circuit at different noise levels.
Subsequently, the results can be extrapolated to zero noise.
Figure 14 shows the data for the energy obtained on the
hardware for various noise levels. In general, we observe
the data points from the hardware do follow a linear
behavior as a function of the noise level for all the values
of the chemical potential we study. Performing a linear
extrapolation significantly improves energy values, but
does not fully compensate for the effects of noise, as the
final extrapolated value for the energy is still above the
exact one (cf. the solid blue lines and the dashed orange
lines at the origin of the panels in Fig. 14).
The results obtained from the quantum hardware for the

energy as well as the particle number after performing the
ZNE as a function of the chemical potential are shown
Fig. 15. Focusing on the energy in Fig. 15(a), we clearly see
a systematic offset ΔE between the hardware results
compared to the exact solution, as already apparent in
the ZNE data in Fig. 14. Compared to exact value of the
energy, this offset is rather modest in almost all cases, and
the relative error jΔE=E0j is within 10%, as Fig. 15(c)
shows. Only in one of our runs we have an outlier with

(a) (b) (c)

FIG. 12. Classically simulated VQE results for inference run on ibm_cairo. The panel (a) shows the ground-state energy E0, the panel
(b) shows the particle number difference ΔN2 and the panel (c) shows the overlap jhψVQEjψ exactij of the VQE results, each as a function
of the chemical potential difference ν0 − ν1 for N ¼ 2, x ¼ 16, μf ¼ 0.8, ν2 ¼ −ν0, ν1 ¼ 0, and two algorithm layers. Successful runs
are represented by filled orange triangles. The solution obtained via exact diagonalization is shown as a dashed blue line in the first two
panels. The dash-dotted gray line in the third panel marks the 95% overlap threshold.

FIG. 13. Illustration of the decomposition of a full layer of the ansatz [see Eq. (13)] into the native gate set fCX; Rz;
ffiffiffiffi
X

p
; Xg of

ibm_cairo for six qubits, corresponding to N ¼ 2, F ¼ 3.
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slightly higher relative error of around 17%. These devia-
tions are clearly the result of the hardware noise, since we
obtained perfect agreement between the exact solution and
the VQE results and the ideal simulations (cf. Fig. 12).
Looking at the particle number in Fig. 15(b), we see that

the hardware data agrees well with the exact result. In
particular, the particle number clearly reveals the first-order
phase transitions with the characteristic jumps being

evident in the data from the quantum hardware. Note, that
ZNE was also applied to the measurement of the particle
numbers, in the same way as for the energy measurement.
Moreover, the remaining error in the measured particle
numbers can be compensated completely. Since the
Hamiltonian conserves the particle number, only integer
values are intrinsically allowed. Since all our data points
within one phase are close to the same integer, we can

(a) (b) (c)

(d) (e) (f)

FIG. 14. Zero-noise extrapolation of the ground-state energy from the inference run on ibm_cairo. The filled orange triangles
correspond to the hardware data for different noise amplification factors. The dashed orange lines show the linear extrapolation. The
solid blue lines indicate the exact solutions obtained via exact diagonalization. Panel (a)–(f) correspond to the different chemical
potentials ν0 − ν1 ¼ −20, −10,−5, 5, 10, 20, each with 15360 measurement shots,N ¼ 2, x ¼ 16, μf ¼ 0.8, ν2 ¼ −ν0, ν1 ¼ 0, and two
algorithm layers. The noise factors indicate how often the original circuit, represented by a unitary U, was folded, i.e. noise factor 1
corresponds to the original circuit, noise factor 3 to UðU†UÞ and noise factor 5 to UðU†UÞðU†UÞ. Note that, the error bars resulting
from shot noise are for all energy values smaller than the markers because of the large number of shots. We have thus neglected those
error bars in this plot.

(a) (b) (c)

FIG. 15. Quantum hardware results for VQE inference run on ibm_cairo. The panel (a) shows the ground-state energy E0, the panel
(b) shows the particle number difference ΔN2 and the panel (c) shows the relative energy error jΔE=E0j of the inference run on
ibm_cairo with 15360 measurement shots as a function of the chemical potential difference ν0 − ν1 for N ¼ 2, x ¼ 16, μf ¼ 0.8,
ν2 ¼ −ν0, ν1 ¼ 0, and two algorithm layers. Hardware runs are represented by filled orange triangles. The solution obtained via exact
diagonalization is shown as a dashed blue line in the first two panels. The dashed orange lines together with the shaded orange area show
the critical points and their standard deviation obtained from the hardware results via Eq. (12).
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reliably determine the exact values by rounding them to the
nearest integer.
From our hardware data we can also determine the

location of the first-order phase transitions via Eq. (12). As
shown in Sec. II B, a single data point per phase is in
principle enough to determine the exact location of the
phase boundaries. In order to average over the fluctuations
between different runs in the phase characterized with
ΔN2 ¼ 0, we consider all possible pairs of data points for
neighboring phases and determine the transition point
according to Eq. (12) for all of them. Subsequently, we
average the results and compute the standard deviation, the
results are indicated in Figs. 15(a) and 15(b) as vertical
dashed orange lines. Note, that for every calculation of the
phase transition points we fully compensated the error in the
particle numbers by rounding to the nearest integer as we
explained above, leaving only the energy error to contribute
in the calculations. The numerical values obtained from our
hardware run are ν0 − ν1jijump;0 ¼ −14.91� 0.99 and
ν0 − ν1jijump;1 ¼ 15.78� 0.99. They are close to the exact
transition points ν0 − ν1jejump;0;1 ¼ �15.91. We observe that
the value extracted for the second transition point ν0 −
ν1jijump;1 shows a smaller deviation from the exact value
than the one for the first transition point ν0 − ν1jijump;0. This is
likely due to similar energy offsets in the hardware results for
points in thephaseswithΔN2 ¼ 0 andΔN2 ¼ 1.AsEq. (12)
reveals, adding the same constant offset to both energyvalues
in the formula does not affect the result. All in all, our data
from the quantum hardware allows us to determine the
critical points of the model with good accuracy, despite the
presence of noise in the device.

V. DISCUSSION AND CONCLUSIONS

We presented a VQE ansatz for solving the lattice
multiflavor Schwinger model in the presence of a chemical
potential. Our ansatz uses a layered structure that can easily
incorporate the relevant symmetries of the Hamiltoinan by
simply restricting certain parameters in each layer.
Moreover, we demonstrated that the ansatz lends itself to
both both circuit-based and measurement-based quantum
hardware.
Focusing on the case of three fermion flavors, we

simulated the VQE using our ansatz classically for various
parameter regimes, assuming a perfect quantum computer
without any noise. This performance benchmark of the
ansatz demonstrated that it can approximate the ground
state of the model well, even in regimes where conventional
MC methods suffer from the sign problem. Specifically, we
can resolve the first-order phase transitions that are present
in the model and reliably capture the phase structure with
our ansatz circuit. Moreover, our results for different
system sizes indicate that the number of layers required
to achieve a good performance scales only moderately with
the number of lattice sites in the model.

To demonstrate the suitability of our ansatz for gate-
based quantum hardware, we performed inference runs on
IBM’s superconducting quantum devices. To this end we
used a set of parameters obtained from classically simulat-
ing the VQE, and prepared the resulting state on the
quantum hardware to measure the energy and the particle
number. To compensate for part of the hardware noise, we
used ZNE to mitigate some of these effects. Despite ZNE
not being able to fully mitigate the hardware noise, we were
still able to reliably identify the different phases in the
investigated area of the phase diagram via the particle
numbers. Moreover, we were able to determine the critical
points using the quantum hardware results. The resulting
numerical values lie very close to the exact critical points,
allowing us to determine them with good accuracy from the
noisy hardware results.
In our proof-of-principle run on a quantum hardware we

only used ZNE to mitigate hardware noise, yielding results
are in good agreement with the theoretical expectation.
Thus, carefully using more elaborate error mitigation
methods, such as Pauli twirling [51], readout/measurement
error mitigation [17,52] and dynamical decoupling [53], we
expect that our ansatz can be scaled up to larger system sizes
on current quantum hardware. A systematic investigation of
our ansatz for larger system sizes and performing a full VQE
on quantumhardwarewill be done in futurework.Moreover,
while the effects of hardware noise and error mitigation can
be straightforwardly studied in the circuit model, error
mitigation for measurement-based quantum computers is a
lot less explored. In the future, we also plan to investigate the
potential of our ansatz for realistic, noisymeasurement-based
devices and to explore the possibility to mitigate errors on
such quantum hardware.
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APPENDIX A: MASS RENORMALIZATION FOR
STAGGERED FERMIONS

In general, the bare fermion mass that is chosen as a
parameter in the lattice discretization of a field theory does
not correspond to the physical fermion mass, and one has to
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consider renormalization effects to determine the physical
fermion mass. Recently, an analytical prediction for the
additive mass renormalization of staggered fermions was
derived for the lattice Schwinger model with periodic
boundary conditions, both for the single-flavor [54] and
the multiflavor [55] case. This derivation was based on
enforcing a discrete spurious chiral symmetry given by a
translation of one lattice site followed by shifting θ by π.
The resulting mass shift (MS) in units of the coupling is
given by [54,55]

MS
g

¼ F
8

ffiffiffi
x

p : ðA1Þ

Thus, the renormalized fermion mass mr is not equal to the
bare lattice fermion mass mf defined in the original lattice
Hamiltonian (1), but receives an additive mass renormal-
ization, such that ðmr=gÞ ¼ ðmf=gÞ þ ðMS=gÞ.
More generally, the additive mass renormalization for

the Schwinger model can be determined numerically using
the method proposed in Refs. [9,56], i.e., by identifying the
point mr=g ¼ 0 at which the electric field density vanishes,
independently of the boundary conditions. This approach
was demonstrated for the single-flavor Schwinger model in
Refs. [9,56], where it was found that the method can
significantly improve the convergence toward the con-
tinuum limit. Moreover, for sufficiently large volumes,
V ¼ N=

ffiffiffi
x

p ≳ 30, the results for the mass shift obtained
with open boundary conditions were shown to agree with
the theoretical prediction for periodic boundary conditions
[54]. Note that this technique can be straightforwardly
extended to the multiflavor Schwinger model, because the
condition that the electric field density vanishes at the point
mr=g ¼ 0 holds true also for multiple fermion flavors [28].

In particular, the method can be readily implemented in a
VQE setting by measuring the electric field density in the
ground state as a function of the lattice mass mf=g and by
determining the point at which the electric field density
vanishes.

APPENDIX B: DETAILED LISTING OF THE
PARAMETERS OBTAINED IN THE VQE

SIMULATIONS

Below we provide tables containing the explicit param-
eters obtained at the end of the VQE simulations in
Secs. IVA–IV C.
Tables I–III show the final parameters in the regime for

vanishing bare fermionmass, wherewe picked a single point
in the different phases shown in Fig. 9 for our largest system
size N ¼ 6 corresponding to 18 qubits. Tables IV–VI show
the final parameters in the nonvanishing bare fermion mass
regime, for a single point in each of the different phases
shown in Fig. 10. TablesVII–IX show the final parameters in
the sign-problem afflicted regime for a single point in each of
the different phases shown in Fig. 11. The layout of the
parameters corresponds to the arrangement of the gates
shown inFig. 1(b).Note that in order to enforce the symmetry
from Eq. (6) we constrain the parameters according to
Eqs. (16) and (17), thus the lower part of the Tables I–VI
is related to the upper one.
In general, the parameters do not directly hint toward

approximate translation invariance in the system, as we do
not observe the parameters in the bulk region around the
center of the system being equal. Note that this does not
necessarily imply that the final state is not (approxi-
mately) translation invariant, as the unitary operation
generated by the circuit could still create a translation
invariant state.

TABLE I. Final parameters at the end of the optimization for N ¼ 6, x ¼ 16, μf ¼ 0, ν0 ¼ −15.04, ν1 ¼ 0 (cf. Fig. 9).

−1.127 2.675 0.004 2.563 6.282 −0.258 −1.586 1.056 −6.246 4.037
−1.572 −3.95 2.295 −5.841 −3.974 0.437 5.144 −0.999 3.107 −4.235

5.275 1.93 4.715 3.1 −1.408 −0.597 −4.675 1.009 −1.586 4.428
−6.158 3.794 1.531 6.2 4.691 4.455 −4.52 4.629 4.713 3.469

3.832 0.376 −3.824 5.395 −5.75 0.617 5.553 6.176 3.611 2.655
−1.604 5.337 1.605 −2.354 4.67 −3.995 −4.321 6.07 1.909 4.449

2.255 −0.669 −4.73 5.959 −4.579 0.267 −1.57 −6.19 3.499 −1.896
−4.695 2.88 1.214 5.459 1.602 −4.934 −1.569 3.145 −4.714 3.927

−0.722 −2.591 0.952 −4.8 0.208 0.721 −5.536 −5.494 6.032 5.91
−4.695 2.591 1.214 4.8 1.602 −0.721 −1.569 5.494 −4.714 −5.91

2.255 −2.88 −4.73 −5.459 −4.579 4.934 −1.57 −3.145 3.499 −3.927
−1.604 0.669 1.605 −5.959 4.67 −0.267 −4.321 6.19 1.909 1.896

3.832 −5.337 −3.824 2.354 −5.75 3.995 5.553 −6.07 3.611 −4.449
−6.158 −0.376 1.531 −5.395 4.691 −0.617 −4.52 −6.176 4.713 −2.655

5.275 −3.794 4.715 −6.2 −1.408 −4.455 −4.675 −4.629 −1.586 −3.469
−1.572 −1.93 2.295 −3.1 −3.974 0.597 5.144 −1.009 3.107 −4.428

−1.127 3.95 0.004 5.841 6.282 −0.437 −1.586 0.999 −6.246 4.235
−2.675 −2.563 0.258 −1.056 −4.037
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TABLE II. Final parameters at the end of the optimization for N ¼ 6, x ¼ 16, μf ¼ 0, ν0 ¼ −5.0, ν1 ¼ 0.0 (cf. Fig. 9).

0.117 0.757 5.616 2.931 −2.176 4.643 4.517 1.342 0.0 1.414
5.709 3.689 −3.944 1.064 −2.261 3.227 4.713 4.236 3.141 3.926

0.964 1.508 −3.142 0.506 1.795 0.214 −1.571 4.312 −4.561 3.19
−4.713 2.282 4.712 −1.81 −4.712 −3.139 −1.736 −1.225 −0.0 6.246

−2.368 −2.766 3.821 −2.061 −4.108 6.164 3.709 −2.627 −1.571 −5.173
1.571 −4.673 −4.713 −5.201 4.712 −3.092 −4.712 −5.471 −2.694−0.135

−4.03 4.744 −1.143 4.431 −1.467 1.45 1.853 0.1 −4.857 −3.141
−1.57 −4.705 4.713 −1.956 1.571 −4.394 1.571 4.671 −1.571 4.04

1.32 −4.643 −4.825 3.567 −2.832 1.83 −6.071 −5.671 3.851 −1.158
−1.57 4.643 4.713 −3.567 1.571 −1.83 1.571 5.671 −1.571 1.158

−4.03 4.705 −1.143 1.956 −1.467 4.394 1.853 −4.671 −4.857 −4.04
1.571 −4.744 −4.713 −4.431 4.712 −1.45 −4.712 −0.1 −2.694 3.141

−2.368 4.673 3.821 5.201 −4.108 3.092 3.709 5.471 −1.571 0.135
−4.713 2.766 4.712 2.061 −4.712 −6.164 −1.736 2.627 −0.0 5.173

0.964 −2.282 −3.142 1.81 1.795 3.139 −1.571 1.225 −4.561 −6.246
5.709 −1.508 −3.944 −0.506 −2.261 −0.214 4.713 −4.312 3.141 −3.19

0.117 −3.689 5.616 −1.064 −2.176 −3.227 4.517 −4.236 0.0 −3.926
−0.757 −2.931 −4.643 −1.342 −1.414

TABLE III. Final parameters at the end of the optimization for N ¼ 6, x ¼ 16, μf ¼ 0, ν0 ¼ 15.04, ν1 ¼ 0.0 (cf. Fig. 9).

0.918 −3.172 3.137 −3.87 4.727 −1.035 0.671 2.758 −0.001 3.402
4.754 3.091 4.847 −3.743 4.712 −3.187 1.572 2.878 −3.142 1.693

−2.155 −0.082 1.554 4.316 4.658 0.047 −4.907 2.077 4.712 −6.184
−4.661 −1.912 −4.712 2.334 −4.749 2.849 −4.712 −4.134 6.283 2.512

−1.571 5.084 −0.511 −1.017 −2.663 −4.478 1.571 5.683 −6.281 −0.458
1.572 1.072 4.712 5.89 −1.571 −4.36 −3.161 4.482 4.713 1.122

−2.318 −5.451 4.712 −2.437 −4.713 1.344 −3.142 −2.177 4.712 −0.388
−1.571 −0.041 −2.316 4.404 4.318 3.142 3.668 −5.341 0.0 0.757

2.237 −5.132 −4.712 4.765 2.998 −6.282 −0.777 −1.571 −5.346 −3.322
−1.571 5.132 −2.316 −4.765 4.318 6.282 3.668 1.571 0.0 3.322

−2.318 0.041 4.712 −4.404 −4.713 −3.142 −3.142 5.341 4.712 −0.757
1.572 5.451 4.712 2.437 −1.571 −1.344 −3.161 2.177 4.713 0.388

−1.571 −1.072 −0.511 −5.89 −2.663 4.36 1.571 −4.482 −6.281 −1.122
−4.661 −5.084 −4.712 1.017 −4.749 4.478 −4.712 −5.683 6.283 0.458

−2.155 1.912 1.554 −2.334 4.658 −2.849 −4.907 4.134 4.712 −2.512
4.754 0.082 4.847 −4.316 4.712 −0.047 1.572 −2.077 −3.142 6.184

0.918 −3.091 3.137 3.743 4.727 3.187 0.671 −2.878 −0.001 −1.693
3.172 3.87 1.035 −2.758 −3.402
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TABLE V. Final parameters at the end of the optimization for N ¼ 6, x ¼ 16, μf ¼ 0.8, ν0 ¼ −5.0, ν1 ¼ 0.0 (cf. Fig. 10).

4.107 2.073 −3.289 3.629 5.021 3.999 −4.518 1.012 3.235 5.433
1.067 4.003 −0.453 4.902 −3.785 1.216 −1.429 0.419 0.067 0.605

0.291 4.381 −5.4 3.951 4.561 1.778 4.834 0.556 1.561 2.021
6.041 4.187 1.569 1.772 3.726 1.787 4.713 −2.794 2.384 1.211

−1.142 0.599 −3.663 4.02 5.28 2.56 1.675 4.236 1.538 5.267
−5.094 3.672 −4.923 −4.777 4.633 2.562 −2.161 2.751 1.57 5.803

−0.912 0.226 1.66 5.506 4.742 −2.578 3.428 1.229 1.552 1.651
4.676 4.191 1.544 5.94 −1.002 −4.747 1.552 1.243 −6.282 2.163

−0.926 6.003 −1.471 5.836 6.236 4.687 −4.563 3.34 −4.712 2.56
4.676 −6.003 1.544 −5.836 −1.002 −4.687 1.552 −3.34 −6.282 −2.56

−0.912 −4.191 1.66 −5.94 4.742 4.747 3.428 −1.243 1.552 −2.163
−5.094 −0.226 −4.923 −5.506 4.633 2.578 −2.161 −1.229 1.57 −1.651

−1.142 −3.672 −3.663 4.777 5.28 −2.562 1.675 −2.751 1.538 −5.803
6.041 −0.599 1.569 −4.02 3.726 −2.56 4.713 −4.236 2.384 −5.267

0.291 −4.187 −5.4 −1.772 4.561 −1.787 4.834 2.794 1.561 −1.211
1.067 −4.381 −0.453 −3.951 −3.785 −1.778 −1.429 −0.556 0.067 −2.021

4.107 −4.003 −3.289 −4.902 5.021 −1.216 −4.518 −0.419 3.235 −0.605
−2.073 −3.629 −3.999 −1.012 −5.433

TABLE IV. Final parameters at the end of the optimization for N ¼ 6, x ¼ 16, μf ¼ 0.8, ν0 ¼ −15.04, ν1 ¼ 0.0 (cf. Fig. 10).

2.553 −0.378 −2.525 1.623 −0.285 1.69 1.027 3.567 6.021 −2.875
2.745 0.301 4.055 −4.832 −2.149 −1.981 1.802 −0.458 6.042 0.049

0.377 −1.132 1.389 2.453 −4.671 −4.317 4.659 3.514 1.533 0.363
−3.739 −2.344 0.62 −0.537 1.862 2.776 −4.613 1.796 −3.3 4.511

4.297 0.334 −1.605 −2.779 −1.882 −2.813 2.559 −1.612 −1.863 −5.081
−1.114 6.216 −5.383 0.561 1.74 0.315 −4.414 0.86 −4.661 2.178

0.697 2.034 2.315 5.877 −1.77 4.376 1.268 −1.681 −2.765 2.427
1.642 1.658 1.857 3.969 −2.646 5.478 4.194 −5.934 3.028 −2.311

4.1 −1.208 4.735 −2.629 6.063 2.353 2.989 5.417 4.661 −2.017
1.642 1.208 1.857 2.629 −2.646 −2.353 4.194 −5.417 3.028 2.017

0.697 −1.658 2.315 −3.969 −1.77 −5.478 1.268 5.934 −2.765 2.311
−1.114 −2.034 −5.383 −5.877 1.74 −4.376 −4.414 1.681 −4.661−2.427

4.297 −6.216 −1.605 −0.561 −1.882 −0.315 2.559 −0.86 −1.863 −2.178
−3.739 −0.334 0.62 2.779 1.862 2.813 −4.613 1.612 −3.3 5.081

0.377 2.344 1.389 0.537 −4.671 −2.776 4.659 −1.796 1.533 −4.511
2.745 1.132 4.055 −2.453 −2.149 4.317 1.802 −3.514 6.042 −0.363

2.553 −0.301 −2.525 4.832 −0.285 1.981 1.027 0.458 6.021 −0.049
0.378 −1.623 −1.69 −3.567 2.875
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TABLE VI. Final parameters at the end of the optimization for N ¼ 6, x ¼ 16, μf ¼ 0.8, ν0 ¼ 15.04, ν1 ¼ 0.0 (cf. Fig. 10).

0.943 6.179 −3.171 2.639 3.119 5.613 4.733 2.74 −3.138 1.569
−4.734 2.739 2.967 0.016 −5.629 5.92 −1.818 2.709 −0.003 6.228

4.712 4.235 −1.571 3.151 1.527 2.806 −1.571 5.887 1.569 4.593
−4.712 2.392 4.717 4.431 −1.571 −2.551 −1.571 1.911 1.588 3.135

5.294 −4.356 −4.712 −1.36 −5.809 1.156 −4.712 2.716 6.283 −4.619
−0.515 4.26 −1.575 4.037 1.565 −3.351 1.825 −4.693 2.888 2.41

2.323 4.792 1.567 4.087 0.848 0.864 4.712 −4.693 −6.283 1.245
4.712 −5.681 −4.712 1.606 5.953 −4.323 0.001 4.741 −3.142 5.883

0.945 3.678 1.571 −3.563 4.712 −0.923 3.955 −3.142 2.328 5.79
4.712 −3.678 −4.712 3.563 5.953 0.923 0.001 3.142 −3.142 −5.79

2.323 5.681 1.567 −1.606 0.848 4.323 4.712 −4.741 −6.283 −5.883
−0.515 −4.792 −1.575 −4.087 1.565 −0.864 1.825 4.693 2.888 −1.245

5.294 −4.26 −4.712 −4.037 −5.809 3.351 −4.712 4.693 6.283 −2.41
−4.712 4.356 4.717 1.36 −1.571 −1.156 −1.571 −2.716 1.588 4.619

4.712 −2.392 −1.571 −4.431 1.527 2.551 −1.571 −1.911 1.569 −3.135
−4.734 −4.235 2.967 −3.151 −5.629 −2.806 −1.818 −5.887 −0.003−4.593

0.943 −2.739 −3.171 −0.016 3.119 −5.92 4.733 −2.709 −3.138 −6.228
−6.179 −2.639 −5.613 −2.74 −1.569

TABLE VII. Final parameters at the end of the optimization for N ¼ 4, x ¼ 16, μf ¼ 0, ν0 ¼ −20.0, ν1 ¼ 24.0 (cf. Fig. 11).

5.623 4.422 −5.111 5.425 2.879 1.708 6.253 0.321 −6.283 1.142
4.796 0.287 1.566 3.467 1.571 4.988 −4.712 0.953 4.712 4.374

3.142 0.344 3.142 1.392 1.571 5.416 1.571 0.775 1.571 5.684
−6.283 2.392 4.712 6.101 1.571 3.066 0.778 1.837 3.142 5.071

2.485 2.883 0.657 1.41 1.588 0.31 3.899 5.582 5.305 2.2
3.142 6.024 5.95 5.701 3.961 4.049 −6.283 2.441 1.571 2.039

0.717 3.463 4.7 −6.07 4.705 4.381 0.0 4.335 1.559 0.045
4.717 4.995 0.381 3.687 3.608 2.146 5.27 3.706 3.148 4.686

2.925 0.092 2.605 2.457 −5.626 4.982 3.838 1.861 0.067 2.107
1.525 3.628 −6.201 2.111 4.744 1.031 4.852 2.277 0.265 4.789

1.448 3.31 1.136 5.811 2.03 0.543 1.339 6.076 1.557 1.682
5.468 5.616 5.447 5.012 6.048

TABLE VIII. Final parameters at the end of the optimization for N ¼ 4, x ¼ 16, μf ¼ 0, ν0 ¼ −15.04, ν1 ¼ 24.0 (cf. Fig. 11).

5.571 −4.974 5.951 4.285 4.243 −0.531 −1.273 0.856 −0.156 −3.983
6.004 2.587 0.621 −3.755 5.617 2.965 0.0 −0.156 0.0 5.628

−6.283 2.968 −1.083 4.722 4.349 −0.901 4.958 0.277 −0.28 4.273
0.859 5.804 −0.898 2.338 4.577 0.937 −3.652 −0.277 −3.683 1.949

−0.561 5.258 4.815 −5.078 −4.712 0.937 0.0 −4.409 0.339 −1.857
−4.988 −4.808 −1.571 3.567 3.38 −6.251 3.142 4.276 1.571 3.834

−5.049 −1.21 −4.712 −4.398 5.521 1.725 −2.036 5.883 2.535 0.836
−1.571 3.31 3.142 2.175 4.399 0.819 −3.903 5.883 2.838 −1.784

4.003 −3.186 4.625 −4.399 −6.178 −1.176 −2.703 −5.883 −1.982 −2.749
−0.554 −5.242 2.148 −2.295 2.178 −5.915 −0.81 −2.151 1.772 −2.878

−0.534 1.665 5.978 −4.356 −5.041 2.233 −2.954 5.743 −2.338 0.213
0.329 1.389 0.035 −6.084 4.913
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