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Abstract. This paper presents an Intelligent Scanning Collision Avoidance 

Device (Intelligent-SCAD) which is used to detect obstacles in a powered 

wheelchair surroundings to avoid related risk consequences. The Intelligent-

SCAD provides a safe direction for the wheelchair. Inputs to the Intelligent-

SCAD originate from a single rotating ultrasonic transducer fixed to the 

wheelchair. Readings from the ultrasonic transducer are used to train and test 

different Artificial Intelligence (AI) algorithms. The AI algorithms used were: 

Artificial Neural Network, Decision Tree, optimised Tree and optimised K-

Nearest Neighbour. An algorithm is selected based on a compromise between 

accuracy and complexity.  The optimised K-Nearest Neighbour algorithm 

provided the highest testing accuracy and relatively straightforward operation 

when compared with the other algorithms used. The new device applies 

optimised K-Nearest Neighbour to predict a safe direction for a wheelchair. The 

user can override the new system if necessary. 

Keywords: Artificial Intelligence, Collision Avoidance, Risk, Disabled, Steer, 

Wheelchair. 

1 Introduction 

The work presented in this paper is part of broader research conducted by the authors 

aiming to improve mobility, reduce risk and enhance the quality of life of disabled 

powered wheelchair users, increasing their self-confidence and reliance [1], 

suppressing risk and avoiding related risk consequences [2]. 

The number of people diagnosed with disability worldwide is on the rise. The type 

of disability is shifting from mostly physical to a more complex mix of 

physical/cognitive disability. New systems to address that shift in disability are 

required. Powered mobility is becoming more acceptable and useful to support 

individuals with disability [3]. Powered mobility is expected to revolutionize the 



quality of life of people with disabilities in the next two decades. Many researchers 

have presented novel approaches for navigating powered mobility [3-6] by creating 

Human Machine Interfaces [7], intelligent collision avoidance systems and intelligent 

controllers [8], sensors and sensor fusion [9], Deep Learning [3,4], expert systems 

[10], and image processing and computer vision [11,12] and they have analysed the 

behaviour of powered wheelchair drivers to improve mobility [13]. 

Langner [3] created a Scanning Collision Avoidance Device (SCAD) that used a 

single rotating ultrasonic transducer to detect obstacles in the wheelchair surroundings 

by sending ultrasonic pulses through stepped periods. The distance from a detected 

obstacle was determined by measuring the time of flight required by a pulse to be sent 

and reflected to the receiver [3]. The area in front of the wheelchair was divided into 

six sectors: Extreme Left, Mid Left, Front 1, Front 2, Mid Right and Extreme Right. 

The area scanned by the SCAD and sector division is shown in Figure 1. 

 

Fig. 1. The area scanned by the SCAD and sector division [3]. 

The work presented in this paper aims to develop the original SCAD by introducing 

advanced machine learning algorithms for obstacle detection to improve the accuracy 

of the SCAD, accommodate the changing nature of disabilities, save costs by 

developing the equipment already in use instead of replacing them, saving time and 

improving user convenience by using the same original approaches in [3] instead of 

introducing new devices that would require training. 

2 The Intelligent SCAD (Intelligent-CAD) 

A new Intelligent Scanning Collision Avoidance Device (Intelligent-SCAD) was 

created. It used the K-Nearest Neighbour algorithm to provide a safe direction for a 

powered wheelchair. Inputs to the Intelligent-SCAD were readings from a SCAD 

head used in the original SCAD. An electronic circuit was inserted between the 

SCAD head and the Control box. The electronic circuit used a voltage divider circuit, 



an op-amp isolation circuit and a Raspberry Pi. Python programming language was 

used to create a program that analysed readings from the SCAD head. Readings were 

used to identify the location of obstacles in the surroundings. The program was 

installed onto the Raspberry Pi. 

The program considered three readings from the SCAD head. The readings were: 

start of the forward scan, start of the backward scan and echo if an obstacle was 

detected.  

The SCAD operated using a 5 Volts power supply, however, such voltage would 

have damaged the inputs of the Raspberry Pi. A high-impedance voltage divider was 

used to reduce the 5 Volts used in the SCAD to 3.3 Volts compatible with the 

Raspberry Pi input voltage similar to the circuit used in [6,7]. An Op-Amp isolation 

circuit was installed to provide isolation between the SCAD electronic circuit and the 

Raspberry Pi. Three inputs were used from the SCAD:  

• Start Forward Scan: This input identified the start of the forward sweep 

cycle of the stepper motor. A falling edge on this input identified the start 

of a forward sweep.  

• Start Backward Scan: This input identified the start of the backward 

sweep of the stepper motor. A rising edge on this input identified the start 

of a backward sweep. 

• Echo: This pin was used to receive echo reflected from detected obstacles. 

A rising edge on this pin identified that an echo was received.  

Figure 2 shows the three inputs from the SCAD, voltage divider and the Op-Amp 

isolation circuits, and outputs. The outputs were used as inputs to the Raspberry Pi. 

 

Fig. 2. The schematic diagram of the voltage divider and Op-Amp isolation circuits [14]. 

Figure 3 shows the Start of the Forward Scan, the Start of the Backward Scan and the 

Echo signal received when objects were detected in different sectors. 

 

Fig. 3. A screenshot of the signals received from the SCAD head. 



Python program identified the start time of the forward sweep cycle, the start time of 

the backward sweep and the time an echo was received. A setting was prepared to 

collect training and testing datasets used to train and test the intelligent algorithms. 

Small plastic cones were considered as obstacles as shown in Figure 4. 

 

Fig. 4. The setting used to collect training and testing datasets used to train and test the 

intelligent algorithms. 

The small plastic cones were placed at different locations and distances from the 

SCAD head. The locations considered were: Extreme Left, Mid Left, Front 1, Front 2, 

Mid Right and Extreme Right. Distances considered were 15, 25, 35 and 45 cm away 

from the SCAD head. The time needed for echoes to be reflected from the cones 

during the forward sweep cycle and backward sweep cycle were recorded. 16231 

echo times were recorded. A (4 by 16231) matrix was created. Table 1 shows the 

structure of the matrix. 

Table 1. The structure of the Matrix used to train and test the intelligent algorithms. 

Sweep Direction Distance (cm) Time (msec.) Location 

Forward/Backward 15/25/35/45  Extreme Left 

   Mid Left 

   Front 1 

   Fron 2 

   Mid Right 

   Extreme Right 

 

3 Training and Testing the Intelligent Algorithms 

The (4 X 16231) matrix was imported to a MATLAB platform and used as training 

and testing sets. The matrix was split into two sets of 12000 and 4231 for training and 

testing sets respectively. Training and testing of intelligent algorithms were conducted 

using the (4 by 16231) matrix. A (4 by 12000) matrix was used for training and a (4 

by 4231) matrix was used for testing.  

MATLAB was used to create four intelligent algorithms: 

3.1. BiLSTM (Bidirectional Long-Short Memory) Neural Network 

3.2. Fine Tree classification model 

3.3. Optimised Tree classification model 



3.4. Optimised K-Nearest Neighbour (KNN) classification model 

 

3.1 BiLSTM Neural Network 

The BiLSTM Neural Network used is shown in Figure 5. It considered five layers: 

1. Sequence Input Layer with three inputs. 

2. BiLSTM Layer (100 hidden units) 

3. Fully Connected Layer with six nodes. 

4. Softmax Layer. 

5. Classification Layer. 

 

Fig. 5. The BiLSTM Neural Network structure. 

Training and testing of the BiLSTM Network was conducted using the (4 by 16231) 

matrix. A (4 by 12000) matrix was used for training and a (4 by 4231) matrix was 

used for testing. Figure 6 shows Network training progress with an initial learning 

rate of 0.01 and 100 epochs, as Network training progressed. The Network accuracy 

increased and Network training loss decreased. 

 

Fig. 6. BiLSTM Neural Network training progress. 

Network training accuracy reached 65.22% and Network testing accuracy reached 

64.81% when tested with the testing set Figure 7 shows the resulting confusion chart. 



 

Fig. 7. The confusion chart produced from testing the BiLSTM Neural Network. 

3.2 Decision Tree Classification Model 

Default settings in MATLAB for the Decision Tree classification model were used to 

create the Decision Tree classification model used in this paper.  

Training and testing of the Decision Tree model was conducted using the (4 by 

16231) matrix. A (4 by 12000) matrix was used for training and a (4 by 4231) matrix 

was used for testing. By the end of training, Model training accuracy reached 99.8% 

and testing accuracy reached 99.8% when tested with the testing set. Figure 8 shows 

the resulting confusion chart. 

 

Fig. 8. The confusion chart produced from testing the Decision Tree model. 

3.3 Optimised Decision Tree Classification Model  

Default settings in MATLAB for the optimised Decision Tree classification model 

were used to create the optimised Tree classification model used in this paper. 

Training and testing of the optimized Decision Tree model was conducted using 

the same (4 by 16231) matrix. The same (4 by 12000) and (4 by 4231) matrices were 



used for training and testing respectively. By the end of training, Model training 

accuracy reached 99.8%. and testing accuracy reached 99.8% when tested with the 

testing set. Figure 9 shows the resulting confusion chart. 

 

Fig. 9. Confusion chart produced from testing the optimised Decision Tree model. 

3.4 Optimised K-Nearest Neighbour (KNN) Classification Model 

Default settings in MATLAB for the optimised KNN classification model were used 

to create the optimised KNN classification model used in this paper. 

Training and testing of the optimised KNN model was conducted using the same (4 

by 16231) matrix. The same (4 by 12000) and (4 by 4231) matrices were used for 

training and testing respectively. By the end of training, model training accuracy 

reached 99.9% and testing accuracy reached 99.9% when tested with the testing set. 

Figure 10 shows the resulting confusion chart. 

 

Fig. 10. Confusion chart produced from testing the optimised KNN model. 



4 Discussion 

The BiLSTM Neural Network achieved 64.81% accuracy when tested using the 

testing set. The BiLSTM had the lowest accuracy when compared to other intelligent 

algorithms considered in this paper. Moreover, the BiLSTM Neural Network required 

the longest training time when compared to the other algorithms.  

Real-world testing revealed BiLSTM poor performance when obstacles were 

introduced into the wheelchair’s surroundings, as depicted in Figure 11. Different 

locations for the obstacles were tested: Figure 11.A for the Mid Left sector, Figure 

11.B for the Front 1 sector, Figure 11.C for the Extreme Left sector, Figure 11.D for 

the Mid Right sector, Figure 11.E for the Extreme Right sector, and Figure 11.F for 

the Front 2 sector. Despite these tests, it became evident that the BiLSTM model 

suffered from underfitting, requiring further hyperparameter tuning and extended 

training for accuracy improvement. 

 

Fig. 11. The outcome of the BiLSTM Neural Network when tested in a real-world 

environment. 

In contrast, the Decision Tree model proved highly accurate, achieving a 99.8% 

testing accuracy with minimal training time. Figure 12 demonstrates its successful 

performance in a real-world setting, indicating the locations of obstacles in various 

sectors surrounding the wheelchair. The model's proficiency is evident in Figure 12.A 

for the Mid Left sector, Figure 12.B for the Front 1 sector, Figure 12.C for the 

Extreme Left sector, Figure 12.D for the Mid Right sector, Figure 12.E for the 

Extreme Right sector, and Figure 12.F for the Front 2 sector. The Decision Tree 

classification model accurately identified the positions of all six obstacles in the 

wheelchair's surroundings. 

 

Fig. 12. The outcome of the Decision Tree model when tested in a real-world environment. 

Furthermore, the optimised Decision Tree model, despite a longer training time, 

achieved the same remarkable 99.8% accuracy when tested with the dataset. Figure 

13 illustrates its performance under real-world conditions, successfully identifying 



obstacle locations in different sectors: Figure 13.A for the Mid Left sector, Figure 

13.B for the Front 1 sector, Figure 13.C for the Extreme Left sector, Figure 13.D for 

the Mid Right sector, Figure 13.E for the Extreme Right sector, and Figure 13.F for 

the Front 2 sector. The optimised Decision Tree classification model consistently 

recognised the positions of all obstacles in the wheelchair's surroundings. 

 

Fig. 13. The outcome of the optimised Decision Tree when tested in a real-world environment. 

Lastly, the optimised K-Nearest Neighbour (KNN) model demonstrated the highest 

accuracy among all intelligent algorithms considered, reaching 99.9% in testing, 

though it required more training time than the Decision Tree and optimized Decision 

Tree models. Figure 14 showcases the model's performance in a real-world 

environment, successfully pinpointing obstacle locations in different sectors: Figure 

14.A for the Mid Left sector, Figure 14.B for the Front 1 sector, Figure 14.C for the 

Extreme Left sector, Figure 14.D for the Mid Right sector, Figure 14.E for the 

Extreme Right sector, and Figure 14.F for the Front 2 sector. The optimised KNN 

classification model consistently and accurately identified the positions of all six 

obstacles surrounding the wheelchair. 

 

Fig. 14. Outcome of the optimised KNN when tested in a real-world environment. 

5 Risk Assessment and Mitigation 

This section presents the risk overview and mitigation. 

5.1 Risk Overview 

There is no single activity or system that has no risk embedded in it [15]. Risks can be 

inherent in almost whatever activity or system is developed or used. As such, 

wheelchair users are not an exception and are subject to technical failures, improper 

operation, software and/or hardware malfunctioning, or other manufacturing defects. 

The wheelchair may encounter such failures individually or collectively.  

Amongst many different types of risks, wheelchair users face mainly what is called 

pure risk. That is to say, “Loss or No Loss.” In other words, “Injury or No Injury.” 



This situation could hold the manufacturer and or the sales company liable for 

compensation or other penalties according to the laws of specific countries. What 

complicates the situation is that such failures can put the life or health of the 

wheelchair user in jeopardy. 

The direct implication is that wheelchair risks need to be mitigated in order to 

minimise the probability and impact of risks that wheelchair users are subjected to.   

The way forward is to implement the five-phase risk management cycle in order to 

identify, assess (evaluate and estimate), mitigate such risks and monitor and control 

any residual risk.   

 

5.2  Risk Mitigation 

In principle, there are two established approaches to applying the risk management 

cycle [15, 16]: 

 

1. The reactive approach: This is to take necessary actions once the risk 

manifests itself. However, this approach is not successful in the case of a 

wheelchair since the damage has occurred and users need to mitigate the risk 

by going to a hospital, as an example.  

2. The proactive approach: This is to identify the risk before it manifests itself, 

and take corrective actions to mitigate it.  

The direct implication is to mitigate wheelchair impact risks using an intelligent 

system similar to the Intelligent-SCAD setup presented in this paper. 

6 Conclusions and Suggested Future Work 

A new Intelligent Scanning Collision Avoidance Device (Intelligent-SCAD) was 

created and presented in this paper. The new device successfully identified the 

location of obstacles in a wheelchair surroundings.  

Four intelligent algorithms were used to identify the location of obstacles in the 

wheelchair’s surroundings. Results from testing the intelligent algorithms were 

compared and an analysis was conducted to determine the best compromise between 

accuracy and complexity. The optimised K-Nearest Neighbour (KNN) model 

achieved the highest accuracy. It provided 99.9% accuracy when tested against the 

testing set and achieved the lowest loss compared to the other intelligent algorithms 

used in this paper. Also, the KNN model provided straightforward operation.  

The Intelligent-SCAD successfully identified the location of all obstacles in the 

wheelchair’s surroundings when tested in a real-world environment. 

Data used to train and test the intelligent algorithms used in this paper was the raw 

data collected from placing an obstacle in a wheelchair surrounding and calculating 

the time needed for an echo signal to be sent and reflected from the obstacle. During 

the backward sweep, ghost echoes were received especially when the detected 

obstacle was in close proximity to the wheelchair at the start of both the forward 

sweep cycle and the backward sweep cycle. These ghost echoes were from pulses 

transmitted during the previous sweep. Data pre-processing could be conducted to 

eliminate the problem caused by ghost echoes received from previous transmissions. 



Conducting data pre-processing could improve the accuracy of the BiLSTM Neural 

Network used in this paper. 

The new approach will be used with other intelligent systems created by the 

authors [11-13] to improve powered wheelchair users’ mobility, avoid related risks, 

enhance their quality of life and reduce the need and cost of carers. 

Future work will consider using mathematically inexpensive Machine Learning 

and Artificial Intelligence algorithms to detect driving patterns and intelligently avoid 

obstacles in the wheelchair’s surroundings. 

Data collected in this paper will be used to improve the accuracy of the Deep 

Learning Collision Avoidance systems presented in [3,4]. 
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