
Volitive Grey Wolf Optimizer
João Paulo F. G. da Silva

Department of Computer Engineering
University of Pernambuco

Recife, Brazil
jpfgs@ecomp.poli.br

Rodrigo Cesar Lira
Department of Computer Engineering

University of Pernambuco
Recife, Brazil

rcls@ecomp.poli.br

Mariana Macedo
Center for Collective Learning, ANITI

University of Toulouse
Occitania, France

mmacedo@biocomplexlab.org

Hugo Valadares Siqueira
Department of Electrical Engineering

Federal University of Technology - Parana
Ponta Grossa, Brazil

hugosiqueira@utfpr.edu.br

Carmelo Bastos-Filho
Department of Computer Engineering

University of Pernambuco
Recife, Brazil

carmelofilho@ieee.org

Abstract—Swarm-based metaheuristics have become the most
prominent method for solving optimization problems. Several
operators already proposed in the literature can also be reused to
expand the current metaheuristics. We present in this paper the
Volitive Grey Wolf Optimizer (VGWO), a Grey Wolf Optimizer
variant created by the addition of the collective volitive movement
proposed in Fish School Search. The Volitive operator allows a
self-regulated balance between exploration and exploitation that
generates diversity when necessary. We evaluate the performance
of VGWO and five other metaheuristics by simulating them in ten
different problems. VGWO has overcome in most cases compared
to other well-known metaheuristics. Therefore, we found that by
including a self-regulating operator as the volitive collective, we
can improve the quality of results provided by GWO.

Index Terms—Optimization, Metaheuristics, Swarm Intelli-
gence, Search algorithms, Grey Wolf Optimization, Fish School
Search

I. INTRODUCTION

Swarm intelligence (SI) has become a relevant tool for
solving optimization problems, especially in high-dimensional
search spaces. SI algorithms are population-based approaches
that use an iterative procedure to find a suitable solution
from an initial state or set of possible solutions [1]. The
simple reactive agents compose a population, and each agent
represents a candidate solution within the search space [2], [3].
Simple reactive agents perceive, act, and exchange information
in a small part of the environment in which they act using
a communication protocol [4].In this way, no centralized
control is necessary for its operation. The algorithm’s behavior
emerges as the synergistic result of the cooperation among the
agents and their interactions with the environment [5].

After three decades since the proposal of the first swarm
intelligence, hundreds of metaheuristics have been proposed
in the literature [6]. Many bioinspired algorithms have shown
to be suitable for solving different types of problems [7].
However, one of the main problems in this area is that many
of these inspirations result in similar computational mecha-
nisms, despite being inspired by swarms of different animals.
Nevertheless, some canonical algorithms have proven to be

very efficient in solving highly complex problems, such as
Particle Swarm Optimization (PSO) [8], Artificial Bee Colony
(ABC) [9], and Ant Colony Optimization (ACO) [10]. These
examples are well-known algorithms inspired by flocking and
foraging behavior.

Another interesting example that differs from the most
well-known metaheuristics is the Fish School Search (FSS).
The FSS was proposed in 2008 by Bastos-Filho and Lima-
Neto [11] and was inspired by the behavior of fish schools.
In this case, the swarm moves using three operators: (i)
individual, (ii) collective instinctive, and (iii) collective volitive
movements. Each agent has an attribute called ‘weight’ repre-
senting the success obtained during the search that is used to
guide the balance between exploration and exploitation. The
FSS is the first algorithm of the field with the ability to self-
regulate the search granularity by an operator called Volitive
movement.

On the other hand, the Grey Wolf Optimizer (GWO) [12]
presents efficient exploitation features. The GWO is a swarm-
based algorithm guided by the three fittest agents (alpha,
beta, and delta). Because of them, GWO has presented a
stable behavior in steep landscapes, and its variants have been
applied to various problems [13]–[15]. However, many authors
criticize GWO due to its limitations [16] and supposed lack
of novelty [17]. Thus, like the PSO, the most significant
limitation is the generation of diversity after exploitation in
one of the regions in the search space.

This paper introduces adding the volitive collective move-
ment proposed in Fish School Search to improve the Grey
Wolf Optimizer capabilities. We aim to demonstrate that
including a proper operator can improve the quality of the
results provided by the GWO. We addressed GWO since
it is simple to implement and presents promising results
in many optimization problems. Nevertheless, it does not
have a mechanism to avoid being trapped in local minima.
However, any metaheuristic could be used following the same
methodology.

This paper is divided as follows: Section II briefly de-

XVI Brazilian Conference on Computational Intelligence (CBIC 2023), Salvador, October 8th to 11th

1

scribes Grey Wolf Optimizer and Fish School Search. Our
proposal, Volitive Grey Wolf Optimizer (VGWO), is shown
in Section III. Section IV describes the methodology and
parameterization for the experiments. Section V presents our
findings and results, and we finish in Section VI with our
conclusions.

II. BACKGROUND

A. Grey Wolf Optimizer

Grey Wolf Optimizer (GWO) is a metaheuristic inspired by
the hunting behavior of grey wolves. They have a hierarchy
that divides the responsibilities among them. The most domi-
nant individual (leader) is the alpha that leads the pack. Beta
is the second layer. It reinforces the alpha’s commands to the
others and is an alpha advisor. Delta wolves are the scouts,
sentinels, elders, hunters, and caretakers. Delta wolves submit
to alphas and betas, but they dominate the lowest level in the
pack, the omegas.

Fig. 1. The social hierarchy of the grey wolves.

The wolves hunt their prey in a group, following a set of
specific steps: (i) tracking, chasing, and approaching the prey;
(ii) pursuing, encircling, and harassing the prey until it stops
moving; and (iii) attacking the prey.

These behaviors inspired the metaheuristic proposed by
Mirjalili et al. [12]. Tracking is done from the reference of
the three wolves at the top of the hierarchy (position indicated
by X). Their movement is based on a vector search, in which
the next position of the wolf will be defined through vectors
A and C. All the other wolves follow their average vector
position, as shown in Figure 2. One can observe that through
vector C, exploration (or pursuit) of the area is carried out,
and with vector, direct hunting by prey (exploitation) is carried
out.

The final position of the omega wolf would be in a random
place inside a circular region that is defined by the positions
of alpha, beta, and delta in the search space. In other words,
alpha, beta, and delta indicate the position of the prey, and
other wolves update their positions randomly around the prey.
The vector has a decreasing behavior that imitates the wolf’s
behavior when approaching the prey to attack the prey. C, on
the other hand, refers to the obstacles between the wolf and

Fig. 2. Graphical demonstration of GWO movement, where ω is the agent
that is being attracted to the region where α, β, and δ are located in the
search space.

the prey so that the wolf can explore the search space slowly.
The GWO movement uses Equations 1 and 2.

D =
∣∣C · xp(t)− x(t)

∣∣ . (1)

x(t+ 1) = xp(t)− A · D, (2)

where x(t) and xp(t) are the wolf position and the position
of the prey in the iteration t, respectively. A and C are the
coefficients calculated by:

C = 2 · r2, (3)

A = 2a · r1 − a, (4)

GWO pseudocode is described in Algorithm 1.

Algorithm 1: GWO Pseudocode
Initialize the a, A, and C
Initialize the N wolves randomly
Find the α, β, δ solutions based on fitness
while stop criterion is not reached do

Update the wolves’ position
Update a, A and C
Evaluate the current position of individual wolves
Update α, β, δ

end while
Return the best solution

B. Fish School Search

Bastos-Filho et al. [11] proposed Fish School Search (FSS),
inspired by the collective movement of a fish school to find
food. Each agent (fish) i has two attributes: a position vector
xi and its weight, Wi. The current position xi of a fish i is
a D-dimensional vector within the search space, representing
a candidate solution to an optimization problem. The school

XVI Brazilian Conference on Computational Intelligence (CBIC 2023), Salvador, October 8th to 11th

2

aims to reach the region in the search space with the highest
food quality (optimal solution).

The original version of the FSS algorithm presented four
operators, which can be grouped into feeding and swimming.
The feeding process updates the fish weights, whereas the
swimming operators drive the fish movements. FSS pseu-
docode is described in Algorithm 2.

Algorithm 2: FSS Pseudocode
Initialize the N fish randomly
while stop criterion is not reached do

Apply the individual movement
Apply the feeding operator
Apply collective instinctive movement
Calculate the fish school barycenter
Apply collective volitive movement
Update individual and volitive steps

end while
Return the best solution

1) Individual Movement: It is the first movement performed
by FSS. Each fish finds a random new position in the search
space in the individual movement using Equation 5.

ni(t+ 1) = xi(t) + s(t+ 1), (5)

where s(t + 1) is a random vector calculated for the entire
school at each iteration by sind(t + 1) · rand[−1; 1]. The
parameter sind(t + 1) is a hyperparameter called “individual
step”. rand[−1; 1] is a random value uniformly generated in
[−1; 1]. Each fish performs a greedy search and moves to
ni(t + 1) if the neighbor’s position (new position) is better
than the current position.

2) Feeding operator: The feeding operator is exclusive for
the fish that successfully moved in the individual movement.
The neighbor position ni(t + 1) is evaluated in terms of the
fitness function f [ni(t + 1)]. For each fish, the difference
between the fitness of the neighbor position f [ni(t+1)] and the
current position f [xi(t)] is evaluated (shown in Equation 6).
This difference ∆fi(t + 1) is used to calculate the weight
Wi(t+ 1) according to Equation 8.

∆fi(t+ 1) = f [ni(t+ 1)]− f [xi(t)]. (6)

Gi(t+ 1) =

{
∆fi(t+1)

max[∆f(t+1)] , max[∆f(t+ 1)] ̸= 0

0, otherwise
(7)

Wi(t+ 1) = Wi(t) +Gi(t+ 1). (8)

3) Collective Instinctive Movement: The collective instinc-
tive attracts the school to the regions where the fish were
moved successfully at iteration t+ 1 in the individual move-
ment. If a fish i moved in the individual movement, it means
that fish i now is in a better position than in the iteration
t, so the fish i should attract the school to that region.

Therefore, the instinctive movement is computed by the drift,
m(t+1) in Equation 9, which considers all the successful fish
displacements and fitness gain.

m(t+ 1) =

∑N
i=1 ∆xi(t+ 1) ·∆fi(t+ 1)

∑N
i=1 ∆fi(t+ 1)

, (9)

where ∆xi(t) is the displacement of the fish i generated by
the individual movement and N is the number of fish in the
school. This drift is then applied to update the positions of all
fish according to Equation 10:

xi(t+ 1) = xi(t) + m(t+ 1). (10)

4) Collective Volitive Movement: This movement is based
on the overall success of the entire school, i.e., the total school
weight, W (t + 1), which is the sum of weights of each fish
at iteration t + 1. If W (t + 1) > W (t), the school weight
has increased, so the search was successful, and the radius of
the school should contract to increase the exploitation ability
of the school. On the other hand, if W (t + 1) ≤ W (t), the
school expands to allow more exploration of the search space.
This movement is performed based on the swarm barycenter,
calculated as Equation 11.

B(t+ 1) =

∑N
i=1 xi(t+ 1) ·Wi(t+ 1)

∑N
i=1 Wi(t+ 1)

. (11)

Based on the overall weights of the school at iteration t+1,
the fish positions are updated as Equation 12.

xi(t+ 1) =

{
xi(t)− svol(t+ 1) · mv, if W (t+ 1) > W (t)

xi(t) + svol(t+ 1) · mv, otherwise,
(12)

where svol(t+ 1) is the volitive step, rand[0; 1] is a vector of
continuous random values from the interval of 0 and 1, and
mv is calculated as Equation 13.

mv = rand[0; 1] · xi(t)− B(t+ 1) (13)

where svol(t+ 1) parameter controls the size of the displace-
ment of each fish. The negative and positive signs in Equation
12 parameter attract or repel the agents toward the school’s
barycenter.

III. VOLITIVE GREY WOLF OPTIMIZER

This paper proposes a GWO variant called Volitive Grey
Wolf Optimizer (VGWO) that incorporates the collective
volitive movement from Fish School Search. Using this ap-
proach, we improve the GWO exploration ability, enabling a
movement based on the dilation or contraction regarding the
swarm’s barycenter. Therefore, we improve the capability of
VGWO to escape from local minima.

In our proposal, we changed the feeding operator to punish
the agents who do not change their fitness over iterations. In
this case, agents lose a small weight (ϵ) even when they do not
move to another position. We changed the operator due to the
GWO characteristics that lead the entire swarms to a region

XVI Brazilian Conference on Computational Intelligence (CBIC 2023), Salvador, October 8th to 11th

3

where it keeps exploiting the same position, as in Equation
14.

Gi(t+ 1) =

{
∆fi(t+1)

max[∆f(t+1)] , max[∆f(t+ 1)] ̸= 0

ϵ, otherwise
(14)

where ϵ is a small weight value that forces the swarm to
explore different regions when the fitness remains the same.

We also incorporated the exponential function for the decay
of each component of a, proposed by the modified GWO
(mGWO) [18], as shown in Equation 15. According to the
authors, the function improves the exploration capability.

a(t) = 2 ·
(
1− t2

max iteration2

)
. (15)

VGWO maintains the same structure as GWO (Pseu-
docode 3), adding the collective volitive movement after the
GWO movement. The feeding operator and the step update
are also required for the new movement to work properly.

Algorithm 3: VGWO Pseudocode
Initialize the a, A, and C
Initialize the N wolves randomly
Find the α, β, δ solutions based on fitness
while stop criterion is not reached do

Update the wolves’ position
Apply the feeding operator
Apply collective volitive movement
Update a, A and C
Update volitive steps
Evaluate the current position of individual wolves
Update α, β, δ

end while
Return the best solution

IV. METHODOLOGY

We compared our proposal VGWO with five metaheuristics
from the literature. Beyond FSS and GWO, we included mod-
ified GWO (mGWO), the PSO with global topology (GPSO),
and PSO with ring topology (LPSO) in our experiments.

We addressed ten benchmark functions with 30 dimensions,
being Rotated Hyper Ellipsoid (RHE), Rosenbrock, Dixon-
Price, Quartic-Noise, Schwefel, Ackley, Levy, Rastrigin, and
Griewank, a set of unimodal (Table I) and multimodal func-
tions (Table II). The five multimodal functions are differen-
tiable. Schwefel and Rastrigin are separable functions, while
Ackley, Levy, and Griewank are non-separable.

We developed the code using the Python programming
language, and the experiments were conducted on a PC with an
i7-10510U 1.80GHz, 16 GB memory RAM, and Ubuntu 22.04
(LTS) 64-bit. We used 30 simple reactive agents and the max-
imum function evaluation as the stop criterion (MFE=3000).
In GWO, we linearly decreased the components of a from 2
to 0 as described in [12]. In mGWO and VGWO, we used

TABLE I
UNIMODAL FUNCTIONS

Functions Equation
Sphere

∑D
i=1 x

2
i

RHE
∑D

i=1

∑i
j=1 x

2
j

Rosenbrock
∑d−1

i=1 [100(xi+1 − x2
i)

2 + (xi − 1)2]

Dixon-Price (x1 − 1)2 +
∑D

i=2 i(2x
2
i − xi−1)

2

Quartic-Noise
∑d

i=1 i · x4
i + rand[0; 1]

TABLE II
MULTIMODAL FUNCTIONS

Functions Equation
Schwefel 418.9829 ·D −∑D

i=1 xisin(
√

|xi|)
Ackley −20exp

(
− 0.2

√
1
d

∑d
i=1 x

2
i

)
−

exp
(

1
d

∑d
i=1 cos(2πxi)

)
+ 20 + exp(1)

Levy sin2(πω1) +
∑D−1

i=1 (ωi − 1)2 · [1 + 10sin2(πwi + 1)]+

(ωd − 1)2[1 + sin2(2πωd)],

where ωi = 1 + xi−1
4

, ∀i = 1, ..., D

Rastrigin
∑D

i=1(xi
2 − 10cos(2πxi) + 10 ·D

Griewank 1
4000

∑D
i=1 x

2 −∏D
i=0 cos(

xi√
i
) + 1

the same limits but with an exponential decay (Equation 15)
to calculate it over iteration. In FSS and VGWO, the volitive
step linearly decreased from 0.1 to 0.01 over iterations, and
we set 1 as the minimum weight. In FSS, the individual step
was decreased from 0.1 to 0.0001 over iteration. As we have
not tuned the metaheuristics’ hyperparameters, we used the
same values as described in FSS and GWO proposal.

For the PSO implementation, the adaptive w, c1 and c2
hyperparameters [19] are calculated through Equation 16, 17
and 18.

w(t) =
0.4(t−max iteration)2

max iteration2
+ 0.4 (16)

c1(t) =
−2 · t

max iteration
+ 2.5 (17)

c2(t) =
2 · t

max iteration
+ 0.5 (18)

where max iteration in PSO is calculated as 1000
(max function evaluation

num agents).

V. RESULTS AND DISCUSSION

This section shows the results of 30 simulations for each
algorithm and function. We start by plotting the boxplot of the
fitness values. Subsequently, we show the fitness convergence
for each benchmark function. Finally, we evaluated the results
using a statistical test.

Figure 3 shows the results found for each function. The
boxplots indicate that our proposal found competitive re-
sults, overcoming the other metaheuristics in different bench-
mark functions. Compared with GWO and mGWO, VGWO
found better results in Rastrigin, Schwefel, Sphere, RHE, and

XVI Brazilian Conference on Computational Intelligence (CBIC 2023), Salvador, October 8th to 11th

4

Fig. 3. Boxplot of the best fitness found on 30 simulations of each algorithm on all benchmark functions.

Quartic-Noise. GPSO was better in Levy, while GWO and
mGWO were better in Dixon-Price. LPSO found the worst
results in the majority of scenarios. We argue that LPSO would
need more iterations to converge.

Figure 4 shows the fitness improvement as a function of
the number of fitness evaluations. VGWO (blue dots) reaches
lower fitness in different functions. However, in the Dixon-
Price function, a valley-shaped function, we observe that
VGWO presented the worst convergence.

We applied the Wilcoxon test to compare the efficiency
across metaheuristics using a confidence level of 99%. The
results are shown in Table III, in which ‘–’ indicates no statisti-
cal difference between the solutions, ‘▲’ indicates the VGWO
achieved better fitness results than the other metaheuristic
compared, and ‘▽’ represents that our proposal reached worse
results than the algorithm compared. The statistical tests show
that adding the volitive movement was relevant for improving
the GWO capabilities.

VI. CONCLUSIONS

One of the FSS contributions was the proposal of an
operator called Collective Volitive movement. Based on the
overall success of the entire swarm, the movement contracts
or expands the agents towards its barycenter, creating a self-
regulated approach to guide the balance between exploration
and exploitation.

Our paper improved Grey Wolf Optimizer exploration capa-
bility by adding the Volitive movement. Therefore, we propose
the Volitive Grey Wolf Optimizer (VGWO). In addition,
we also used an exponential decay function to increase the
exploration over exploitation.

We compared the proposal with five other metaheuristics:
GWO, mGWO, FSS, GPSO and LPSO, using ten different
benchmark functions. Based on a statistical test, we can state

Fig. 4. Best fitness found per function evaluation on all benchmark functions.

XVI Brazilian Conference on Computational Intelligence (CBIC 2023), Salvador, October 8th to 11th

5

TABLE III
RESULTS OF FITNESS VALUES AND WILCOXON TEST WITH A CONFIDENCE LEVEL OF 99% COMPARING THE VGWO WITH THE OTHER METAHEURISTICS

WITH 30 DIMENSIONS.

Function VGWO GWO mGWO FSS GPSO LPSO
Rastrigin Fitness 0.00E+00 3.07E+00 8.94E-01 1.67E-05 6.79E+01 3.28E+02

STD 0.00E+00 4.10E+00 2.39E+00 4.32E-05 2.11E+01 1.55E+01

Wilcoxon ▲ – ▲ ▲ ▲
Schwefel Fitness 2.16E+03 6.47E+03 6.92E+03 1.02E+04 3.22E+03 6.56E+03

STD 1.79E+03 1.02E+03 1.35E+03 4.55E+02 5.89E+02 2.52E+02

Wilcoxon ▲ ▲ ▲ – ▲
Ackley Fitness 2.40E-15 8.26E-15 6.31E-15 5.03E-04 3.18E-02 1.87E+01

STD 1.77E-15 2.13E-15 1.69E-15 5.69E-04 6.33E-02 5.18E-01

Wilcoxon ▲ ▲ ▲ ▲ ▲
Levy Fitness 6.82E-02 3.19E-02 3.18E-02 1.06E+00 5.77E-02 9.48E+00

STD 6.49E-02 1.40E-02 1.40E-02 1.43E-01 1.35E-01 1.24E+00

Wilcoxon – ▽ ▲ – ▲
Griewank Fitness 0.00E+00 3.50E-03 0.00E+00 3.17E-04 1.28E-02 2.44E+02

STD 0.00E+00 6.18E-03 0.00E+00 6.37E-04 1.52E-02 2.06E+01

Wilcoxon – – ▲ ▲ ▲
Sphere Fitness 5.39E-126 5.51E-65 3.93E-85 4.40E-04 1.97E-04 2.60E+04

STD 2.19E-125 2.24E-64 7.50E-85 1.11E-03 2.58E-04 2.29E+03

Wilcoxon ▲ ▲ ▲ ▲ ▲
RHE Fitness 2.25E-126 6.70E-66 5.12E-86 1.32E-03 4.29E+02 1.47E+05

STD 6.19E-126 1.44E-65 1.49E-85 5.07E-03 1.29E+03 1.84E+04

Wilcoxon ▲ ▲ ▲ ▲ ▲
Rosenbrock Fitness 2.87E+01 2.66E+01 2.64E+01 2.88E+01 5.96E+01 4.69E+04

STD 1.01E-01 5.66E-01 5.01E-01 2.29E-07 1.06E+02 1.45E+04

Wilcoxon ▽ ▽ ▲ – ▲
Dixon-Price Fitness 4.14E-01 2.33E-02 1.67E-02 3.75E-01 6.36E+01 1.04E+06

STD 1.25E-01 3.68E-02 3.16E-02 1.39E-06 5.02E+01 3.65E+05

Wilcoxon ▽ ▽ – ▲ ▲
Quartic-Noise Fitness 2.39E-04 1.17E-03 7.44E-04 3.13E-04 1.87E-01 8.15E+01

STD 2.67E-04 6.48E-04 4.89E-04 2.86E-04 5.80E-01 1.72E+01

Wilcoxon ▲ ▲ – ▲ ▲

that adding Volitive movement improved the metaheuristic.
VGWO outperforms the other metaheuristics when compared
using the majority of the functions.

Despite our limited simulation scenario, we demonstrate that
it is possible to be more efficient in solving a set of problems
by only using the proper operators. Creating different meta-
heuristics based on similar mechanisms makes choosing the
right metaheuristics for a problem more difficult. In the future,
we aim to demonstrate the addition of Collective Volitive in
different metaheuristics, and we also plan to investigate in-
depth the impact of hyperparameters in different scenarios.

ACKNOWLEDGMENT

The authors thank the Foundation for the Support of Science
and Technology of the State of Pernambuco (FACEPE), Uni-

versity of Pernambuco (UPE), Federal Institute of Pernambuco
(IFPE), Brazilian National Council for Scientific and Techno-
logical Development (CNPq), processes number 40558/2018-
5, 315298/2020-0, and Araucaria Foundation, process num-
ber 51497, for their financial support. Mariana Macedo was
supported by the Artificial and Natural Intelligence Toulouse
Institute (ANITI) - Institut 3iA: ANR-19-PI3A-0004.

REFERENCES

[1] X.-S. Yang, “Swarm intelligence based algorithms: a critical analysis,”
Evolutionary Intelligence, vol. 7, no. 1, pp. 17–28, Apr. 2014. [Online].
Available: https://doi.org/10.1007/s12065-013-0102-2

[2] W. Song, W. Ma, and Y. Qiao, “Particle swarm optimization
algorithm with environmental factors for clustering analysis,” Soft
Computing, vol. 21, no. 2, pp. 283–293, Jan. 2017. [Online]. Available:
http://link.springer.com/10.1007/s00500-014-1458-7

XVI Brazilian Conference on Computational Intelligence (CBIC 2023), Salvador, October 8th to 11th

6

[3] A. A. A. Esmin, R. A. Coelho, and S. Matwin, “A review
on particle swarm optimization algorithm and its variants to
clustering high-dimensional data,” Artificial Intelligence Review,
vol. 44, no. 1, pp. 23–45, Jun. 2015. [Online]. Available:
http://link.springer.com/10.1007/s10462-013-9400-4

[4] D. Karaboga, B. Gorkemli, C. Ozturk, and N. Karaboga, “A
comprehensive survey: artificial bee colony (ABC) algorithm and
applications,” Artificial Intelligence Review, vol. 42, no. 1, pp. 21–57,
Jun. 2014. [Online]. Available: https://doi.org/10.1007/s10462-012-
9328-0

[5] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm intelligence: from
natural to artificial isystems. New York: Oxford University Press, 1999.

[6] F. Campelo and C. de Castro Aranha, “Sharks, zombies and volleyball:
Lessons from the evolutionary computation bestiary,” in Lifelike Com-
puting Systems Workshop, 2021, pp. 1–6.

[7] H. Siqueira, C. Santana, M. Macedo, E. Figueiredo, A. Gokhale, and
C. Bastos-Filho, “Simplified binary cat swarm optimization,” Integrated
Computer-Aided Engineering, vol. 28, no. 1, pp. 35–50, 2021.

[8] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceed-
ings of ICNN’95-international conference on neural networks, vol. 4.
IEEE, 1995, pp. 1942–1948.

[9] D. Karaboga, B. Gorkemli, C. Ozturk, and N. Karaboga, “A compre-
hensive survey: artificial bee colony (abc) algorithm and applications,”
Artificial Intelligence Review, vol. 42, pp. 21–57, 2014.

[10] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE
computational intelligence magazine, vol. 1, no. 4, pp. 28–39, 2006.

[11] C. J. A. Bastos Filho, F. B. de Lima Neto, A. J. C. C. Lins, A. I. S.
Nascimento, and M. P. Lima, “A novel search algorithm based on fish
school behavior,” in 2008 IEEE International Conference on Systems,
Man and Cybernetics, 2008, pp. 2646–2651.

[12] S. Mirjalili, S. M. Mirjalili, and A. Lewis,
“Grey wolf optimizer,” Advances in Engineering Soft-
ware, vol. 69, pp. 46–61, 2014. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0965997813001853

[13] N. M. Hatta, A. M. Zain, R. Sallehuddin, Z. Shayfull, and
Y. Yusoff, “Recent studies on optimisation method of Grey Wolf
Optimiser (GWO): a review (2014–2017),” Artificial Intelligence
Review, vol. 52, no. 4, pp. 2651–2683, Dec. 2019. [Online]. Available:
https://doi.org/10.1007/s10462-018-9634-2

[14] V. Yadav, G. Parmar, and R. Bhatt, “Application of gwo with different
performance indices for bh system,” in 2019 4th International Confer-
ence on Information Systems and Computer Networks (ISCON), 2019,
pp. 742–745.

[15] K. Parkh, G. Paliwal, and M. Singh, “Automatic generation control
of multi-area multi-source realistic system using gwo algorithm,” in
2019 3rd International Conference on Recent Developments in Control,
Automation Power Engineering (RDCAPE), 2019, pp. 425–430.

[16] P. Niu, S. Niu, N. liu, and L. Chang, “The defect of the grey
wolf optimization algorithm and its verification method,” Knowledge-
Based Systems, vol. 171, pp. 37–43, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950705119300188

[17] C. L. Camacho Villalón, T. Stützle, and M. Dorigo, “Grey wolf, firefly
and bat algorithms: Three widespread algorithms that do not contain
any novelty,” in Swarm Intelligence, M. Dorigo, T. Stützle, M. J. Blesa,
C. Blum, H. Hamann, M. K. Heinrich, and V. Strobel, Eds. Cham:
Springer International Publishing, 2020, pp. 121–133.

[18] N. Mittal, U. Singh, and B. S. Sohi, “Modified Grey Wolf Optimizer for
Global Engineering Optimization,” Applied Computational Intelligence
and Soft Computing, vol. 2016, p. e7950348, May 2016. [Online].
Available: https://www.hindawi.com/journals/acisc/2016/7950348/

[19] G. Sermpinis, K. Theofilatos, A. Karathanasopoulos, E. F.
Georgopoulos, and C. Dunis, “Forecasting foreign exchange rates
with adaptive neural networks using radial-basis functions and
particle swarm optimization,” European Journal of Operational
Research, vol. 225, no. 3, pp. 528–540, 2013. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0377221712007667

XVI Brazilian Conference on Computational Intelligence (CBIC 2023), Salvador, October 8th to 11th

7

