
Citation: Duong-Tran, D.; Kaufmann,

R.; Chen, J.; Wang, X.; Garai, S.; Xu, F.;

Bao, J.; Amico, E.; Kaplan, A.; Petri, G.;

Goni, J.; Zhao, Y.; Shen, L.;

Homological landscape of human

brain functional sub-circuits. Journal

Not Specified 2023, 1, 0.

https://doi.org/

Received:

Revised:

Accepted:

Published:

Copyright: © 2023 by the authors.

Submitted to Journal Not Specified

for possible open access publication

under the terms and conditions

of the Creative Commons Attri-

bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Homological landscape of human brain functional sub-circuits
Duy Duong-Tran 1,2,†, Ralph Kaufmann 3,†, Jiong Chen 1,4,†*, Xuan Wang 5, Sumita Garai 1, Fredericks Xu 1, Jingxuan
Bao 1, Enrico Amico 6,7, Alan D. Kaplan 8, Giovanni Petri 9,10,11, Joaquin Goni 12,13,14, Yize Zhao 15, Li Shen 1*

1 Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of
Pennsylvania, PA, USA

2 Department of Mathematics, United States Naval Academy, Annapolis, MD, USA
3 Department of Mathematics, Purdue University, West Lafayette, IN, USA
4 Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, PA,

USA
5 Department of Electrical and Computer Engineering, George Mason University, Fairfax, VA, USA
6 Neuro-X Institute, EPFL, Geneva, Switzerland
7 Department of Radiology and Medical Informatics, University of Geneva, Switzerland
8 Computational Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
9 CENTAI Institute, 10138 Torino, Italy
10 NPLab, Network Science Institute, Northeastern University London, London, E1W 1LP, United Kingdom
11 Networks Unit, IMT Lucca Institute, 55100 Lucca, Italy
12 Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA 13 School

of Industrial Engineering, Purdue University, West Lafayette, Indiana, USA
14 Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, US
15 School of Public Health, Yale University, New Heaven, CT, USA
* Correspondence: li.shen@pennmedicine.upenn.edu;
† These authors contributed equally to this work.

Abstract: Human whole-brain functional connectivity networks have been shown to exhibit both 1

local/quasilocal (e.g., set of functional sub-circuits induced by node or edge attributes) and non- 2

local (e.g., higher-order functional coordination patterns) properties. Nonetheless, the non-local 3

properties of topological strata induced by local/quasilocal functional sub-circuits has yet to be 4

addressed. To that end, we proposed a homological formalism that enables the quantification of 5

higher-order characteristics of human brain functional sub-circuits. Our results indicated that each 6

homological order uniquely unravels diverse, complementary properties of human brain functional 7

sub-circuits. At the functional sub-circuit level, the rest-task functional dichotomy of default mode 8

network is found to be mostly prominent at the first and second homological scaffolds. Also at 9

such scale, we found that the limbic network plays a significant role in homological reconfiguration 10

across both task- and subject- domain which sheds light to subsequent investigations on the complex 11

neuro-physiological role of such network. Furthermore, at the whole-brain level, rest-task dichotomy 12

was found to be most prominent between rest and different tasks at different homological orders: 13

i) Working memory (H0), ii) Motor task (H1), and iii) Language task (H2). Noticeably, the H1 14

homological distance between rest and motor task were observed at both whole-brain and sub-circuit 15

consolidated level which suggested the self-similarity property of human brain functional connectivity 16

unravelled by homological kernel. From a wider perspective, our formalism can be applied, beyond 17

brain connectomics, to study non-localized coordination patterns of localized structures stretching 18

across complex network fibers. 19

Keywords: Functional sub-circuit; Functional Networks, Homological kernel; Topological data 20

analysis 21
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1. Introduction 22

Network science sheds light on complex phenomena - from fake news spreading 23

mechanism in a social network to natural equilibrium in large-scale ecosystems with 24

competing species interactions. Graphs (Networks), despite its convenience and power 25

to unravel many important phenomenon from social, financial to biological networks, 26

lack comprehensive ability to describe higher-order dynamics of complex systems [1]. 27

Indeed, many real-world system, although can be described using diatic relation (edges), 28

have indeed polyadic functionality [2,3]. Prior studies have strongly suggested the critical 29

role of higher-order interactions in terms of explaining complex intertwined dynamics 30

such as phase transitions of emergent phenomena in networked systems [1]. For instance, 31

higher-order effects emerged from neuronal population are shown to be significant in both 32

statistical and topological and domains [2,4,5]. Higher order interactions, as formalized 33

by hyperedges (in hypergraphs) or simplicial complexes (in homology), have shown to 34

unravel many complementary functions, compared to node-/edge-based investigations 35

[1]. 36

The human brain is a complex system exhibiting multi-scale property where inter- 37

actions among its finest elements (e.g., neurons) orchestrate emergent phenomenon (e.g., 38

cognition, consciousness [6]). Besides exerting hierarchical cytoarchitecture, human brain 39

functional organizations also display "modular" characteristic - also known as hierarchical 40

modularity [7]. Bullmore and Sporns [8] were among the first investigators noting that 41

whole-brain functional connectivity can be effectively characterized into (functional) mod- 42

ules whose elements (e.g., nodes/vertices in a functional connectome (FC)) are contributed 43

by different distributed areas across the cortex. Specifically, the human brain can be de- 44

composed into specialized, yet highly interactive functional modules [6,9] (or equivalently, 45

communities in complex networks, see [10–12] among others) . The modular setting of 46

human brain into distinctive functional sub-circuits allows its function to adapt flexibly 47

with diverse cognitive requirements [13,14]. Moreover, functional modularity can also 48

explain human brain complexity [6], cognitive reconfiguration [13], rest-task divergence 49

[15], among other functionalities. 50

In 2011, the concept of intrinsic functional connectivity Magnetic Resonance Imaging 51

(fcMRI) network (also known as functional sub-circuits, functional network (FN) or resting- 52

state networks (RSNs)) was put forth by Yeo and colleagues [16]. FNs are essentially parallel 53

interdigitated sub-circuits in which each cortical lobe might contain multiple regions 54

belonged to one or more FNs. An a priori set of FNs (or equivalently, functional sub-circuits) 55

elucidates different executive functions of human brain in healthy, neurodegenerative 56

disease or developmental conditions [17]. Mathematically, an a priori identification of 57

FNs is a partition of the whole-brain functional connectivity which results in a functional 58

atlas (e.g., a guidance to which brain region(s) belong to which functional sub-circuit(s)). 59

Such partition can be used as a baseline reference to investigate physiological, functional, 60

individual differences of i) the same FN across different cognitive conditions [13] or ii) 61

different FNs across the same task (e.g., fMRI). Specifically, the mapping of an a priori set 62

of FNs (to different individuals’ functional connectivity) allows the investigation of i) the 63

functional differences among individuals under different cognitive demands [13,18,19]; ii) 64

aging [18,20,21]; or iii) neurological dysfunctions [22–24]. Besides Yeo’s functional FN atlas, 65

other highly putative establishments of a priori set of FNs also featured Power et al. [25], 66

Glasser et al. [26], Gordon et al. [27], and most recently Schaefer et al. [28]. The most recent 67

review on the identification and applications of a priori set of FN mappings can be found in 68

the work of Bryce and colleagues [17]. 69

In the case of human brain complex networks, higher-order interactions among neuron 70

populations, at the whole-brain level, have been shown to unravel complementary insights 71

that otherwise, would not be fully appreciated by conventional node-based (zeroth-order) 72

or edge-based (first-order) investigations [2,4,5,29,30]. Nonetheless, higher-order character- 73

istics induced from an a priori set of FNs has yet been investigated. Understanding complex 74

behaviors arisen at a scale between the microscopic (brain regions) and macroscopic (whole- 75
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brain) level would set the stage to a deeper, comprehensive picture understanding of the 76

human brain large-scale functional sub-circuitry, which, in turns, provide foundational 77

support to investigate individualized or task-based parcellations [31,32]. To that end, we 78

formally explored and measured the topological invariant characteristics of an a priori set 79

of FNs (e.g., Yeo’s sub-circuitry [16]) through the first three homological dimensions: H0 80

(connected components), H1 (first-order (graph-theoretical) cycles), and H2 (second-order 81

cycles). These explorations on homological properties of FNs are computed on the 100 82

unrelated subjects from the Human Connectome Project (HCP) dataset in which fMRI data 83

were recorded, for each subject, in resting state and seven other fMRI tasks. The fMRI data 84

were processed and parcellated into 360 brain regions, according to [33]. To investigate 85

the higher-order mesoscopic properties of the constructed functional connectomes (FCs), 86

we used the seven a priori FNs, proposed by Yeo and colleagues [16], the 14 sub-cortical 87

regions are added for completeness. It is worthy to note that our proposed framework can 88

be applied to other combinations of parcellations and functional sub-circuitry partitions. 89

2. Formalism 90

The progression to glean topological information for a set of data, which by itself is discrete
is first turn it into a graph modeling the first order interactions and then to progress to
a topological space by realizing its simplicial clique complex ∆(Γ) which models simul-
taneous, and thereby higher order, interactions. The topological construction flow is as
follows:

X⇝ Γ⇝ |∆(Γ)|

We stress that the first order information yielding the graph is an additional datum, while 91

the clique complex completes this data to a space. The topological space, which is simplicial 92

in nature, has topological invariants associated to it, such as the homology Hi(∆(Γ)) and 93

Betti numbers bi. The 0th Betti number b0 counts the number of components and the first 94

Betti number b1 which counts the number of independent loops (i.e. graph-theoretical 95

cycles). If the graph is connected these satisfy b0 − b1 = # of vertices − # of edges. The next 96

higher interaction is b2 which counts the number of independent spheres, or more precisely 97

homology classes, in the realization. The realization is given by inserting a simplex for each 98

complete graph, see below. 99

Graphs in this setting are best understood as given by symmetric matrices, the entries 100

of which are given by the first order interaction as witnessed by Pearson correlation 101

functions. Defining a cut–off parameter r for the interactions then determines a graph Γ(r) 102

and the homology becomes a function of this r. Scanning r from 0 to 1 homology is born 103

and annihilated. The sequence of these events is mathematically captured by persistence 104

homology and can be encoded and visualized in terms of bar codes. 105

When comparing different bar codes, one usually uses the Wasserstein distance, which 106

is a natural norm on the space of such diagram. It is not the only norm though and in 107

special situations other measures are more appropriate. 108

2.1. Graph, induced subgraph, Clique complex 109

In the context of this study, the graph (network) quantifying whole-brain functional 110

connectivity profile is called the functional connectome (FC). Induced subgraphs are utilized 111

to model functional sub-circuits (e.g., Yeo’s Functional Networks or FNs) of the FC. By 112

construction, an FC (see Appendix for further details on the FC construction) is a complete 113

non-negative weighted graph. The mathematical and computational setup is as follows: 114

Mathematically, a graph/network Γ with vertex set V and edge set of edges E where 115

an edge in E is a two element set {u, v} of vertices. Enumerating the vertex set by 1, . . . n, 116

a graph is equivalently encoded by its symmetric adjacency matrix M(Γ) whose entries 117

are muv = 1 if the vertices u and v are connected by an edge and 0 if not. We make the 118

choice that the diagonal entries are 1. A graph is complete if there is an edge between 119

any two distinct nodes. The matrix M(Γ) is the the matrix all of whose entries 1. The 120

number of edges of a complete graph is |E| = (|V|
2 ) = 1

2 (|V||V − 1|) which is the same as 121
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the number of non–diagonal independent entries in a symmetric |V| × |V| matrix. The 122

two main topological invariants of a graph are the number of connected component b0 and 123

the number of loops b1 = |E| − |V|+ b0, which are also called the first and second Betti 124

numbers the combination χ = b0 − b1 = |V| − |E| is called the Euler-characteristic of the 125

graph. 126

A subgraph is specified by a subset of nodes and a subset of edges connecting these 127

nodes. Each graph is a subgraph of the complete graph on its vertices. This can be 128

thought of as deleting the missing edges from complete graph or equivalently setting the 129

corresponding matrix entries to 0. An induced subgraph is simply specified by a subset of 130

vertices. It contains all the edges connecting these vertices. If V′ is the vertex subset the 131

matrix of the induced subgraph is given by the submatrix M(Γ)V′V′ . An induced subgraph 132

is a clique if it is itself a complete graph, viz. all the entries of M(Γ)V′V′ are 1. 133

To use topological or simplicial methods such as homology, one promotes a graph 134

Γ to a simplicial space ∆(Γ). This is not simply the graph itself as glued together from 135

points and intervals, but is more involved. It is the realization of the clique complex. The 136

construction can be understood as an iteration of gluing in simplices. A n simplex is the 137

topological space of all vectors (t1, . . . tn+1) whose entries are non–negative ti ≥ 0 and 138

whose sum t1 + · · ·+ tn+1 = 1. The dimension, which is the number of free parameters, 139

is n. The gluing procedure starts with the 0 simplices. These are the vertices of Γ viewd 140

as point. In the next step one 1-simplex, which is an interval, is glued in for each edge by 141

identifying the endpoints of the interval with the vertices the edge connects. The higher 142

dimensional simplices are glued in according to complete induced subgraphs. For instance, 143

for any three vertices that are pairwise connected by edges, one glues in a 2–simplex, that 144

is a triangle whose sides are the edges. At the next level one glues in 3–simplices, that is 145

tetrahedra, for each complete graph on 4 verities, which has 6 edges identifying the 4 sides 146

of the tetrahedron with the triangles corresponding to the three edge subsets and so on. The 147

gluing procedure is tantamount to giving the (semi)–simplicial structure which specifies to 148

what the n dimension n − 1 boundary simplices of an n simplex are glued, in such a way 149

that the gluing is consistent with all sub–simplices, regardless of their dimension. 150

The complete graph on n vertices as space realizes to the full n simplex. Given an 151

arbitrary graph the realization of the clique complex has such a simplex for each complete 152

induced subgraph and these simplices are glued together by inclusion of subgraphs. This 153

identifies the simplex of a subgraph of a complete graph as a side of the simplex of the 154

graph and hence the space is glued together from maximal simplices corresponding to 155

maximal complete subgraphs along faces corresponding to common subgraphs. One can 156

iteratively construct this space by gluing in higher and higher simplices. This space is 157

higher dimensional and has more topologicial invariants, the higher Betti numbers bi 158

which are the dimensions or ranks of the respective homology groups Hi. The number of 159

connected components is the same for the graph and the associated space. The first Betti 160

number b1 may differ depending on whether one is looking at the graph or the space. The 161

first graph Betti number for the complete graph is 1
2 (|V|(|V| − 3) + 1 while the first Betti 162

number of the corresponding space, the simplex, is 0. 163

2.2. Filtration by weights and persistent homology 164

Preface. A non-negatively weighted graph is a graph together with a weight function w : E → 165

[0, 1] on its edges. Again, after enumerating the vertices this defines a symmetric matrix 166

W = W(Γ, w) with entries wuv = w({u, v}), i.e. the weight of the edge connecting u and v. 167

If there is no such edge the entry is 0, and the diagonal entries are fixed to be 1. Choosing 168

a cut–off r defines the symmetric matrix W(r) whose entry w(r)uv = 1 if wuv ≥ r and 0 169

if wuv < r. It has 1’s on the diagonal and defines the graph Γ(r). Note that Γ(0) is the 170

original graph and Γ(1) is the graph on the vertex set with no edges. Let W̄ be the order set 171
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containing unique weight values, in decreasing order, in matrix W, varying the threshold 172

parameter r from 0 to 1, defines a sequence of subgraphs as follows: 173

Γ(1) ⊂ Γ1 = Γ(r1) ⊂ Γ2 = Γ(r2) ⊂ · · · ⊂ ΓW̄ = Γ(r|W̄|) ⊂ Γ = Γ(0). (1)

with 1 > r1 · · · > r|W̄| > 0 and the Γj are the finitely many different graphs that appear. 174

At each stage j some edges are added from the lower stage j − 1. The graph Γ(1) is the 175

subgraph with full vertex set, whose edges are given by the non–diagonal entries 1. In 176

practice, if the weights are Pearson correlations functions, the only entries of 1 will be along 177

the diagonal and the graph Γ(1) is simply the discrete set of data. 178

Note that since set W describes diatic functional couplings (e.g., similarity) between two 179

nodes of a network (or brain regions of interest (ROIs) in this formalism), it implies that the 180

“distance" (e.g., dissimilarity) between two nodes is defined as follows: 181

duv = 1 − wuv

In other words, with this set up, we ensure that 182

• Γ1 is essential the 1-skeleton scaffold where all nodes are perfectly coupled (duv = 0), 183

which results in an empty graph. 184

• Γj1 is always an induced subgraph of Γj2 for all j1 < j2 ≤ |W̄|; 185

• The sequence {Γl | l ∈ [W̄]} starts with an empty graph (homeomorphic to Zn) and 186

ends with a complete graph (or a clique of n nodes) (homeomorphic to simplicial 187

complex of size n, i.e. Kn). 188

Given a filtered system, that is a sequence of inclusions of spaces as (1), one can utilize the 189

tool of persistence homology to track the changes of the fundamental topological invariants 190

of homology and Betti-numbers. This supplies a characteristic for the whole sequence. 191

We wish to stress that it is the sequence that is of importance here. The two endpoints 192

have rather trivial topological properties. If the start is just the data, then this is a discrete 193

set, and at the other end the space is just a full simplex corresponding to the complete 194

graph, which is contractible. The transition from one to the other and the appearance —and 195

disappearance— of higher homology is what is kept track of by persistent homology. 196

Bar codes and distances between them. The fingerprint is the variation which is quantified 197

by the bar codes. The variation parameter is the parameter r introduced above. A bar code 198

is a type of signature for the variation. For each persistent homology class it records the 199

value of the parameter rini when a representative appears (birth) and the value r f in when 200

it disappears (death). This is an interval (or bar) [b(c) = rint, d(c) = r f in]. At any given 201

r the homology is given by those classes c for which r ∈ [b(c), d(c)]. In the variation all 202

higher homology classes are born and eventually die. The 0-th homology starts with as 203

many classes as data points and then eventually decreases (classes die) until there is only 204

one class left, which says that space is connected. The bar code is equivalently encoded by 205

the persistence diagram which the set with multiplicity (multiset) of all the endpoints of 206

the bars {(b(c), d(c))}. This is actually a multi–set, since some of the classes may appear 207

and die at the same parameter values and these multiplicities are recorded, e.g. (.2, .8) with 208

multiplicity 2 means that there are two bars of this type. Its p–th part Dgmp, is given by 209

bar corresponding to classes of homological dimension p. 210

Topological distance formulation. The Wasserstein distance is the natural norm on the 211

diagram space, e.g. the birth-death diagram of topological features. The Wasserstein 212

distance is the right measure for processes taking one diagram to another in a varying 213

family —now of persistence diagrams. This is well suited for analyzing a basic underlying 214

setup with variations. This is commonly viewed and addressed as the stability theorem. In 215

the case under study these are that are induced by individuation or specific tasks. in the 216

case at hand. We use Wasserstein distance to compute the distance between two diagrams 217
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for the first and second order homology (e.g., p = 1, 2) in various scenarios (e.g., comparing 218

topological behaviors between the same functional networks at resting condition). 219

Specifically, for a fixed homological order p (in this paper, p = 1, 2), the q−Wasserstein 220

distance DW,q (∀q > 1) for two persistent diagrams Dgmp(X) and Dgmp(Y) for two data 221

sets X, Y can be defined as follows [34]. For a single interval I = [x, y] set dd(I) = 1
2 (y − x) 222

which is the distance to the diagonal of the point (x, y) in R2. For two intervals I = 223

[x1, y1], J = [y1, y2] define their distance as d(I, J) = max(|x2 − x1|, |y2 − y1|). This is the 224

max norm distance for the two points (x1, y1), (x2, y2) in R2. A partial pairings between two 225

sets S and T is a choice of subsets S0 ⊂ S, T0 ⊂ T and a 1-1 correspondence between the two 226

subsets π : S0 ⇐⇒ T0. This extends to sets with multiplicity by choosing multiplicities of 227

elements and matching them with multiplicity. Given diagrams Dgmp(X), Dgmp(Y) let Π 228

be the set of all partial pairings then. The Wasserstein distance minimizes the sum of three 229

contributions: the distances between intervals that are paired and two contributions of the 230

distance to the diagonal for intervals that are not paired. It minimizes over two possible 231

scenarios, points moving and points moving in and out of the diagonal. The first means 232

that the classes shift in their rates and the second means that the classes vanish from the 233

diagram and new classes are introduced. Given π let Dgmp(X)1 = Dgmp(X) \ Dgmp(X)0 234

and Dgmp(Y)=Dgmp(Y) \ Dgmp(Y)0)
q be the complements. 235

DW,q(Dgmp(X), Dgmp(Y))) = min
π∈Π

[ ∑
I∈Dgmp(X)0

d(I, π(I))q + ∑
I∈Dgmp(X)1

d(I)q + ∑
J∈Dgmp(Y)1

d(J)]q]
1
q

In the zeroth order homology the Wasserstein distance becomes an unnatural choice. 236

This is due to the fact that the data points are the 0–classes and they are all born at r = 0. 237

Thus a contribution as disappearing or appearing from the diagonal which signifies being 238

born at different times is not a possible scenario. 239

It is better to consider Dgm0(X) just as the multiset of endpoints of the bars [0, d(x)] 240

where x ∈ X and use the classical Hausdorff distance to measure the (dis-)similarity 241

between two point clouds living in R. This specialized to: 242

DH(Dgm0(X), Dgm0(Y)) = maxmax
x∈X

min
y∈Y

|d(x)− d(y)|, max
y∈Y

min
x∈X

|d(x)− d(y)|

2.3. Functional connectomes and mesoscopic structures 243

Mesoscopic structures are typically referred to structures whose elements are proper 244

subsets of system’s elements. In brain connectomics domain, there are two types of 245

mesoscopic structures: localized/quasilocalized and non-localized (topological strata). 246

In this section, we provide a overview and definition of each type in the context of brain 247

connectivity. 248

2.3.1. Localized mesoscopic structures 249

Localized mesoscopic structures are sub-systems that learned from local network 250

properties such as nodes or edges, or correlations among neighboring nodes. In brain 251

connectomics, these sub-structures are induced from a wide arrays of techniques, including 252

but not limited to clustering [16,25], low dimensional approximation of high-dimensional 253

dynamics [35–39]. The most commonly known localized mesoscopic structures in brain 254

networks are often referred to as functional sub-circuits or functional networks [9]. 255

Definition 1. (Definition adapted from [40]) An a priori set of Functional networks (FNs) are 256

sub-circuits (or equivalently, sub-networks) that are highly-reproducible across individuals at resting 257

condition (absence of task-induced cognitive demand). Hence, FNs are also known as Resting-State 258

networks (RSNs). 259
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Figure 1. Topological landscape of human brain functional networks: Panel A is the schematic rep-
resentation of a graph (e.g., functional connectome) modeling first-order interactions (e.g., functional
couplings) with weight values wuv = d1, d2, e, b2, b1. Panel B is a sequence of induced subgraph
scaffolds (also referred to as filtration) by scanning across wuv (Note that the filtration is built on
duv = 1 − wuv); hence, the starting point Γ(wmax = 1) = Γ1 is an empty graph. Panel C represents
the super-graph construction by merging all ROIs belong to the same FN to one super-node through
equivalence relation Γ̄ = Γ/γ which is defined as follows: γ1 = 1 (e.g., FN1); γ2 = 2, 3, 4, 5, 6 (e.g.,
FN2) and γ3 = 7, 8, 9, 10 (e.g., FN3). Notice that the super-graph itself is a graph; hence, homological
computations that were applied in the original graph can also be applied to the super-graph itself. In
this example, the super-/consolidated graph has 3 super-nodes. Additionally, the weight matrix is
re-scaled according to w̄i,j. Panel D is the corresponding persistent diagram for the first homology
which accounts for two first-order cycles in a network: (2,3,4,5,6) and (7,8,10,9); here, we see that
cycle (2,3,4,5,6) lasts longer (more persistent) compared to cycle (7,8,10,9). Finally, when scanning
across five distinct r parameters, we obtain the zeroth and first Betti numbers: b0 = 10, 6, 3, 3, 3, 1 and
b1 = 0, 1, 2, 1, 0, 0, respectively.

Special collections of induced subgraphs are used to group brain regions of interest (ROIs) 260

into localized/quasilocalized mesoscopic structures of brain functions denoted as func- 261

tional sub-circuits or equivalently, functional networks (FNs). A collection of k subgraphs 262

(of graph Γ) is denoted as {γi ⊂ Γ | i ∈ [k]}. A collection of induced subgraphs is a vertex 263

covering if the graphs each vertex of Γ is a vertex of one of the γi. Such a vertex covering is 264

disjoint if the γi have disjoint vertices. After enumerating all nodes by 1, . . . , n = |V| the 265

collection of induced subgraphs is fixed by the membership assignment. This is specified 266

by a partition vector denoted as σ ∈ [k]n where σ = [σu] = i ∈ [k] indicating that u belongs 267

to γi | i = {1, 2, ..., k}. Note that in network science, FNs are equivalent to the term "com- 268

munities" [10–12,41]. The problem of identifying the set of communities {γi ⊂ Γ | i ∈ [k]} 269

for a given complex network is called the community detection problem [10–12,41,42]. 270
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2.3.2. Non-localized mesoscopic structures 271

While studies of network properties and dynamics using locally featured properties 272

(nodes, edges attributes) provided a well-grounded approach, these methods were proven 273

to be cumbersome in describing and quantifying heterogeneity existing across network 274

dynamical fabrics. These structures usually encompass many-body interactions or en- 275

capsulate topological sub-structures that can not be mathematically described using local 276

attributes. To that end, homology [43] offers a unique capability to capture the so-called 277

non-localized mesoscopic structures that otherwise, cannot be reduced to local or quasilocal 278

network properties. In the context of weighted complex networks, persistent homology is 279

used to identify how long (the persistence of) a hole (at any given dimension) lasts from its 280

birth (the weight scale w∗
B ∈ [0, 1] that the hole is observed) to its death (the weight scale 281

w∗
D ∈ [0, 1] that the hole is filled). 282

In the context of functional brain connectivity, non-localized mesoscopic structures 283

in a FC represent the encapsulated area where there is less functional connectivity collec- 284

tively formed among brain regions encapsulating these structures [44]. Such structure 285

characterizes the notion of hole; the boundary that wraps around these structures are the 286

non-localized mesoscopic fabrics characterized by the so-called cycles. These cycles exist in 287

different homological dimensions for a given networked system which can be described 288

in the language of a manifold. The hollow structures (holes) could be seen as overarching 289

wraps-around special hollow structures in a manifold with different characteristics and 290

properties, compared to functional networks [16,45–47] or communities [10,11,41,48] in 291

complex networks. 292

2.4. Consolidated/Super graph 293

The system under consideration is naturally regarded as a two–level system given by 294

the ROIs and their connections. The first level is made up of the individual ROIs and the 295

second level is given by the connections between the ROIs. In graph theoretical language, 296

the full graph Γ(r) containing all the nodes naturally has a subgraph γi(r) ⊂ Γ(r). These 297

subgraphs form a supergraph, which has the subgraph as new vertices and has the edges 298

between two vertices if there are edges between the subgraphs. There are two versions, 299

the first is the multi–edged graph that is described graph theoretically by contracting 300

all the edges of the subgraphs γi that is if γ = ∪iγi is the union of subgraphs, then 301

Γ̄ = Γ/γ. Reducing possible multiple edges to just one edge on has the reduced graph 302

Γ̄red which is again an ordinary graph described by a matrix. For a weighted graph, 303

assuming the subgraphs are not connected, the graphs γi correspond to block matrices 304

along the diagonal and the edges of the quotient graph are the off block entries. To 305

obtain a matrix one can consolidate the weights into one weight by choosing a function 306

Wi,j = f (wuk ,vl ), wu1,v2 , . . . , wu1,vk , wu2,v1 . . . , wul ,vk where u1, . . . ul are the vertices of γi and 307

v1, . . . , vl ar the vertices of γi. One such choice is Wi,j = ∑u∈γi ,v∈γj
wu,v and then normalize 308

to 309

w̄i,j = Wi,j/max(Wi,j)

In the case under consideration the graph Γ̄ has eight (super-)vertices corresponding to 310

each FNs. The basic topological invariant of the loop number is of great interest as it is a 311

measure of the inter-connectivity of these "super-regions". The persistent homology for 312

the normalized super graph, that is the consolidated graph, will then complement this 313

information to show clusters of correlations between FNs. 314

3. Results 315

3.1. Data 316

Human Connectome Project (HCP) Dataset. We used the master data release extracted 317

from the HCP Young Adult (HCP-YA) subject release [49]. Specifically, the fMRI dataset is 318

obtained from HCP depository (http://www.humanconnectome.org/), with Released Q3. 319

In general, all MRI neuroimaging modalities were acquired in two different days, with two 320

http://www.humanconnectome.org/
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different scanning patterns (e.g., phase acquisitions: left to right or LR and right-to-left or 321

RL). Detailed description is in the next section and Figure 2. 322

0

0.8

0

0.8

Consolidation
Group Average
Netwrok Crop

Global/Group Average

Functional Network/
Group Average

0

0.8

Global/Individual

. . .

Functional Network/
Individual

0

0.8

. . .

0

0.25
Global/Consolidated

Figure 2. fMRI whole-brain connectome multi-level analysis workflow. For each task, we started
with individual level functional connectome. On the global (macroscopic) level, we have individual
analysis as well as group-averaged analysis, and the functional network (mesoscopic) level extracts
functional networks from either the individual or group-averaged macroscopic graph. The consol-
idated graph is constructed by aggregating the nodes from the group-averaged macroscopic level
connectome.

HCP Functional Data. The fMRI data from the 100 unrelated subjects in the HCP Q3 323

release were employed in this study [49,50]. Following the HCP protocol, all subjects had 324

provided written consent to the HCP consortium. The two resting-state functional MRI 325

acquisitions with HCP filenames: r f MRI_REST1 and r f MRI_REST2 were collected in two 326

separate sessions (on two different days), with two distinct scanning acquisitions (LR and 327

RL) for each day, see [33], [49], and [50] for further details. Besides resting state, the dataset 328

also includes fMRI data from seven (07) fMRI tasks: gambling (t f MRI_GAMBLING), rela- 329

tional or reasoning (t f MRI_RELATIONAL), social (t f MRI_SOCIAL), working memory 330

(t f MRI_WM), motor (t f MRI_MOTOR), language (t f MRI_LANGUAGE), and emotion 331

(t f MRI_EMOTION). Per [33], [51], three following fMRI tasks were obtained on the first 332

day: working memory, motor, and gambling; the rest were obtained on the second day. 333

The local Institutional Review Board at Washington University in St. Louis (scan site) 334

approves all the scanning protocol used during the HCP dataset acquisition process used 335

in this paper. Please refer to [33,51,52] for further detailed description on the HCP-YA 336

dataset. Note that all tasks and resting functional MRIs are treated with equal importance. 337

In this work, we denote seven fMRI tasks as gambling (GAM), relational (REL), social 338

(SOC), working memory (WM), language processing (LANG), emotion (EMOT), and motor 339

(MOT). 340

Table 1 depicts basic information about fMRI conditions’ run time and the number of 341

time points for each task. Subsequently, along with table 1, brief description of each fMRI 342

condition is provided below. An extended description is provided in HCP manual1. 343

1 https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_
Reference_Manual.pdf.

https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Reference_Manual.pdf
https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Reference_Manual.pdf
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fMRI Conditions Run time (min:sec) # of time points
REST1 (& REST2) 14:33 1200

EMOTION (EMOT) 2:16 176
GAMBLING (GAM) 3:12 253

MOTOR (MOT) 3:34 284
LANGUAGE (LANG) 3:57 316
RELATIONAL (REL) 2:56 232

SOCIAL (SOC) 3:27 274
WORKING MEMORY (WM) 5:01 405

Table 1. fMRI task scanning length and number of frames description. All fMRI task run times
were reported in order of minutes and seconds. Except for resting state (for which, each subject were
scanned twice per day for a total of 2 × 2 = 4 sessions), all other tasks have two scans (RL and LR).
TR is time between two consecutive readings.

1. REST: Eye open with relaxed fixation on a bright cross-hair with dark background. 344

1200 time points were obtained with 720 ms TR. 345

2. EMOTION: Subject was instructed to match two faces (or shapes) are shown at the 346

bottom to the top of the screen. Faces are shown with angry/fearful expression. Each 347

scan involves 3 face blocks and 3 shape blocks with 8 seconds of fixation. 348

3. GAMBLING: card playing game where subject needed to guess a number of a card 349

in order to win or lose money. At each trial, subject was instructed to guess whether a 350

card has value larger or smaller than 5, given the numerical range of the cards was 351

between 1 and 9. Subjects had 1.5 second to respond and 1 second of feedback. 352

4. LANGUAGE: At each scan, four blocks of story tasks and four blocks of math task 353

were presented to the subject. Stories contained brief auditory information followed by 354

choice of questions about the story topics. Math tasks contained arithmetic questions 355

with a similar level of difficulty compared to the story task. 356

5. MOTOR: subjects were shown various cues and instructed to either tap (left and 357

right) fingers, squeeze (left or right) toes, or move tongue in response to different 358

areas of human brain motor cortex. The task contains a total of 10 movements (12 359

seconds per movement), preceded by a 3 second cue. 360

6. RELATIONAL: subject were presented 6 shapes along with 6 different textures. Given 361

two pairs of objects (one on the top and the other one at the bottom of the screen), the 362

subject had to decide whether the shape (or texture) differed across the pair on the 363

top screen. In addition, they had to decide whether the same difference got carried 364

over the bottom pair. 365

7. SOCIAL: subjects are shown a 20 second video clip containing randomly move objects 366

of various geometrical shapes (squares, circles, triangle etc.). After that, the subject 367

was instruct to response whether these objects has any mental interactions (shapes 368

took into account feelings, thoughts), Undecided, or No Interactions. 369

8. WORKING MEMORY: subject was presented with trials of tools, faces,body parts. 370

Four different stimulus types were presented in each run. In addition, at each run, 371

two types of memory tasks were presented: two-back and zero-back memory task. 372

Brain atlas. The brain atlas used in this work based on the cortical parcellation of 360 brain 373

regions proposed by Glasser and colleagues [26]. Similarly to description in [13,53,54], 14 374

sub-cortical regions were added for completeness, as provided by the HCP release (filename 375

Atlas_ROI2.nii.gz). We accomplish this by converting this file from NIFTI to CIFTI format, 376

using the HCP workbench software2 through the command -cifti- create-label. We then 377

obtained a brain atlas of 374 brain regions (360 cortical + 14 sub-cortical nodes) registered 378

2 http://www.humanconnectome.org/software/connectomeworkbench.html

http://www.humanconnectome.org/software/connectome workbench.html
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to a common space which allowed us to parcellate fMRI voxel-level BOLD time series into 379

brain region of interest level time series (command: -cifti-parcellate). Time series were 380

z-scored by using command -cifti-math. 381

Estimation of functional connectomes. Parcellated time-series were then used to construct 382

the whole-brain functional connectivity by computing the Pearson’s correlation coefficients 383

for each pair of brain regions. This operation can be completed using Matlab command 384

-corr which results in a symmetric matrix. All entries in the whole-brain FCs were applied 385

the absolute values so that the threshold parameter r = [0, 1]. 386

The mapping of functional networks onto FCs. After each subject is registered to the 387

appropriate common space and properly parcellated according to Glasser’s parcellation, 388

we explore the topological features of human brain functional connectivity (FC) by further 389

subdividing whole-brain FC into Resting State Networks (equivalently referred to as 390

functional networks/communities), see [16]. This particular partition includes seven 391

functional networks (FNs): Visual (VIS), SomatoMotor (SM), Dorsal Attention (DA), Ventral 392

Attention (VA), Limbic (LIM), Frontoparietal (FP), Default Mode Network (DMN); Sub- 393

cortical (SUBC) region is, as mentioned above, added into this atlas for completeness. 394

Consequently, the parcellation comprised of eight (8) FNs for each subject/task. 395

3.2. Group analysis: Macroscopic whole-brain Level 396

Topological differences between rest and fMRI tasks. We first explore the topological 397

distances at the group-average whole-brain connectivity level between resting state and 398

fMRI task activation states (see Figure 3, see Figure ?? for the persistent diagram at the 399

macroscopic level). Each homological group consists of three figures, the first one is the 400

bottom left heatmap, representing the pair-wise Wasserstein distance. The bottom right 401

bar plots show the average distance between one task to all other tasks, thus the task 402

with the highest average distance will indicate its high differentiation with other tasks. 403

Finally, the top right plot shows the variance of each task looking at their distance from 404

the other tasks. Specifically, the zeroth homology suggests that the relational task is the 405

most different to the emotion task. Indeed, other studies, such as [13] through network 406

morphospace mechanism, have also suggested that relational and emotion tasks activate 407

minimally-to-none overlapping functional circuits of the human brain. In terms of H0 (i.e. 408

connected components), relational task is also the most distinctive task, compared with 409

others (highest average); relational task is followed by resting state on average difference 410

with other tasks. Moreover (see Figure 3B), the first homology exhibits the highest degree 411

of differentiation between resting state and task-positive state, as measured by average 412

first homological Wasserstein distance between rest and task bar codes. The first homology 413

also suggests that the motor task is the most topologically different task, compared to the 414

resting state. This finding was consistent with current literature (e.g., Amico and colleague 415

[15]) which stated that motor task exhibited the most distant “within-functional network" 416

edges, relative to other fMRI tasks in the HCP dataset. This result also suggests that at a 417

global scale, the motor cortex whose brain regions are largely employed by motor task, 418

modulates increasing functional activities through forming global transduction pathways 419

with “loop-like" feedbacks (e.g., first-order cycles). 420

3.3. Group analysis: Consolidated graph Γ̄ = Γ/γ 421

With the construction of consolidated graphs, we generated a smaller-scale representa- 422

tion of the brain connectome to 8 super nodes, which includes 7 Yeo functional networks 423

and one node for subcortical regions. Here, the super-graph is constructed using the equiva- 424

lence relation at the node level. As such: Γ̄ = Γ/γ such that γ = u ∼ v | σu = σv, ∀u, v ∈ V. 425

In other words, all brain ROIs belong to the same functional network are contractible. 426

Since the graph is much smaller, no birth was detected for a 2D simplicial complex in 427

the filtration process, thus only zeroth and first homology were included in the analysis 428

(see Figure 4, see Figure ?? for the persistent diagram at the consolidated level). In the 429
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Figure 3. Group-Average Macroscopic Homological distances between fMRI tasks and rest.
Specifically, three panels (e.g., left, middle, and right) represent the zeroth (Panel A), first (Panel B),
and second (Panel C), respectively homological distance between fMRI tasks and resting condition.
Group-average FCs are computed by taking the average of all subjects in the 100 unrelated subjects
dataset sampled from the HCP project. The zeroth homological distance is computed using the
Hausdorff formula (measured between persistent diagrams of two FNs extracted from group average
FC) while the first and second homology distances are computed using the Wasserstein formula. In
each panel, the left triangular heatmap represents the distance; the bar plots represent the average
distance; and the circular plots represent the variance among fMRI tasks.

consolidated setting, we found that the social-resting task pair has the highest distance with 430

the zeroth homology, indicating that in the Yeo functional network level, the connectivity 431

representation captured more differences in social task and resting states (see Figure 4A). 432

By the nature of zeroth homology, where we are looking at connected components, the 433

different most-distinct task pair between the global level and consolidated level indicates 434

the choice of representation could impact the topological configuration in brain connectivity. 435

However, the Wasserstein distance between different tasks in the first homology revealed 436

topological invariant among both the global scale as well as node-aggregation scale as 437

the resting state and motor task pair also have the highest distance measure (see Figure 438

4B). This consistency validated the robustness of the first persistent homology class in 439

disentangling the brain’s functional circuits. In addition to the consistency in the most 440

distinct task pair, the resting state task also consistently appear as the most differentiated 441

task compared to other tasks based on the average distance for each task [55,56]. This 442

indicates that there is a significant reorganization in brain connectivity when people engage 443

in activities from a resting state. Especially for motor tasks, it engages more different brain 444

regions than other tasks, and thus it is also the second distinct task as it is the task that 445

requires responses involving movement. 446

3.4. Group analysis: Functional network (mesoscopic) Level 447

In previous sections, we calculated the Wasserstein distance between different tasks, 448

where all of the nodes in the brain connectome were included. In order to assess for a 449

given task, how the brain connectivity shifts from one functional network to another, we 450

also conducted mesoscopic level analysis by extracting the 8 functional networks from the 451

group-averaged global graph. Since previous discoveries showed that the resting state 452

task involves brain regions that are most distinct from other tasks, and the Yeo functional 453

network was also optimized on the resting state fMRI, we focused our analysis on the 454

distance between functional networks in the resting state task and the mesoscopic level 455

topological configuration (see Figure ?? - ?? for the analysis of remaining 7 tasks). 456
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Figure 4. Consolidated homological distances between fMRI tasks and rest. The left and right panel
represents the distance between tasks in zeroth (Panel A) and first (Panel B) homology, calculated by
Hausdorff distance and Wasserstein distance respectively. Each panel also contains three components,
including the task-wise distance, the average distance, and the variance plot. Due to the small size of
the consolidated graph, there was no second homology detected in the corresponding topological
space.

3.4.1. Resting state analysis 457

Fixing the task and extracting functional networks enabled the characterization of 458

within-brain connectivity and the identification of unique topological patterns in functional 459

networks. Particularly, the default mode is present in the pair with the largest Wasserstein 460

distance in H0, H1, and H2 homology, and it also has the largest average Wasserstein 461

distance in H1 and H2 analysis (see Figure 5), suggesting a significant level of functional 462

specialization within the default mode during resting state. Extensive studies and literature 463

have validated that the default mode is more active and involved in introspective processes 464

and is typically deactivated in the engagement of goal-oriented tasks, which is referred 465

to as the “resting state dichotomy” of default mode network [57–59]. This finding further 466

reassured the robustness of the capability of the topological system to detect unique features 467

in certain activities. 468

In addition, we also discovered that the limbic system has the highest average Wasser- 469

stein distance in the zeroth homology, indicating that it is the most distinct functional 470

network when we compare the pattern of connected components between functional net- 471

works [15,60] (see Figure 5A). The limbic system is known for its role in memory- and 472

emotion-related activities [61–63], and the distinct connectivity pattern discovered reveals 473

that there might still be some memory or emotional processing even during the resting state. 474

Furthermore, the results can also serve as an indication of the individual heterogeneity 475

in their resting state behavior which may involve slight mind activities. The high level of 476

differentiation in H0 task pair with the limbic system is also reconfirmed in the mesoscopic 477

level analysis in emotional task and working memory task (see Figure ??A and ??A) 478
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Figure 5. Group-Average homological distances between brain circuits (FNs) at rest (e.g. Resting
State Networks). Three panels are positioned similarly to previous figures where they represent
the distance of zeroth homology (Panel A), first homology (Panel B), and second homology (Panel
C) between pairs of FNs. Group-average FNs are extracted based on Yeo’s parcellation. The zeroth
homological distance is computed using the Hausdorff formula while the first and second homology
distance are computed using the Wasserstein formula. Each panel contains the triangular distance
heatmap, the average distance bar plot, and the variance circular plots among functional networks.

3.5. Individual subject analysis 479

While the group-average level connectomes (global level, consolidated level, and 480

mesoscopic level) provide topological insights in a collective pattern, transitioning to the 481

individual level could further offer a more personalized perspective with after-persistent- 482

homology group insights. Moving beyond the aggregation of group data, individual-level 483

analysis would also allow the consideration of inter-individual variability and consistency 484

across different scales to bring even more robustness to the experimental design. Similar to 485

the previous setting, we investigated the individual global level with consensus voting as 486

well as the individual mesoscopic level with Kullback–Leibler divergence (KL divergence) 487

respectively [64]. 488

3.5.1. Macroscopic whole-brain level 489

With 100 unrelated subjects from the HCP database, the individual macroscopic level 490

analysis contains 100 independent persistent homology with pair-wise task distance. At 491

the individual macroscopic analysis, we still used the Hausdorff distance for the zeroth 492

homology and the Wasserstein distance for the first and second homology. We evaluated 493

the most distinct pair of tasks in each individual and Figure 6 shows the number of times 494

each pair of tasks appeared as the most differentiated task pair. 495

Particularly, the zeroth homology displayed the largest variability with the max count 496

of the task pair being the smallest among the three homology groups, thus resulting in 497

a more diffused pattern in the consensus voting heatmap (see Figure 6A). This serves as 498

another explanation for the impact of the choice of graph representation on the zeroth 499

homology analysis that it is relatively more varied. However, we also see the resting-motor 500

task pair as one of the task pairs that have a high frequency at the individual level H0 501

results. Furthermore, the first homology still demonstrates the consistency with the group- 502

averaged macroscopic level as well as consolidated level analysis, where it not only has 503

the motor task-resting state as the most frequent task pair, but the max count is also the 504

highest, indicating the robustness of the first homology in identifying brain connectivity 505

pattern with different activities (see Figure 6B). The second homology also shows the motor 506

task-resting state pair as the most frequent task pair, which further validates our findings 507

shown above (see Figure 6C). The individual level analysis on the macroscopic level adds 508
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Figure 6. Individual consensus heatmap between tasks at macroscopic level. Distance matrices
between functional networks in 100 unrelated subjects were collected, and for each pair of functional
networks, the frequency of it appearing as the most distinct pair among 100 subjects was counted,
resulting in a majority voting heatmap for 3 homology groups (Panel A is the zeroth homology, Panel
B is the second homology, and Panel C is the third homology). The number in the voting matrix
represents the number of times the corresponding pair revealed the highest distance in one subject,
and all numbers in one heatmap triangle should sum up to 100 for 100 subjects.

another layer to the group-averaged level analysis, where either the variability in the zeroth 509

homology or the consistency in the first and second homology both further agree with the 510

interpretation from previous sections. 511

3.5.2. All-to-REST, mesoscopic analysis 512

At the individual mesoscopic level, the amount of analysis increased dramatically, 513

with 100 individuals, 8 tasks, 8 functional networks, and 3 homological classes. In this 514

case, it is difficult to analyze the distance between homology groups as we did at the 515

group-averaged level. As validated in previous studies as well as our macroscopic level 516

analysis, the resting state analysis tends to be the most distinct task compared to other 517

tasks that include some activity engagement [15]. Therefore, we collected individual level 518

all-to-REST distance and compared them across the functional network dimension and task 519

dimension. 520

For the mesoscopic level in an all-to-REST setting, we picked three functional network 521

pairs that have the highest distance measure from the group-averaged results (section 522

3.4.1) for all three homology groups. For each pair of functional networks, we collected 14 523

vectors, with each FN having 7 vectors containing 100 individual level distance measures 524

between the 7 non-resting-state tasks and resting state task (see Figure ??), and then we 525

compared the KL divergence between the two functional networks with vectors from the 526

same non-resting-state task (Figure 7). In other words, the KL divergence measures the 527

difference between two distributions (two functional networks respectively for all subjects) 528

of the distance measure between the non-resting-state task and resting-state task. 529

For zeroth homology, we find that the social task is more differentiated from the resting 530

state compared to others when we consider functional network pairs of dorsal attention and 531

subcortical, as well as visual network with the limbic system (see Figure 7, panel B, C). These 532

results take the consideration of both task activities and interactions between functional 533

networks at the same time, indicating that the selected pair of functional networks have 534

very different brain connectivity configurations in social tasks compared to the resting state. 535

The default mode is still involved in the most selected pair of functional networks in the 536

resting state, and the relational task has a very high KL divergence compared with the 537

resting state in many functional pairs for the first and second homology, including default 538

mode with limbic, subcortical, visual, dorsal and ventral attention (see Figure 7, panel D-I). 539

3.5.3. All-to-REST, task analysis 540

The task analysis in an all-to-REST setting provided another perspective where the 541

observation of functional network reconfiguration from resting state to other tasks is 542

highlighted. In this case, we fixed the task that compared with the resting state and focused 543
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Figure 7. KL divergence plot for top three functional networks pair in all-to-RESTING setting.
Rows represent homological groups (Panel A-C is the zeroth homology, Panel D-F is the first
homology, and Panel G-I is the second homology) and each has three panels consisting of the
top three most distinct pairs of functional networks inferred from the group-averaged mesoscopic
analysis. The bar plot demonstrates the KL divergence between the selected pair of functional
networks, in terms of the 100 individual-level distance between the resting state with other tasks.

on the KL divergence between all pairs of functional networks in the first phonological 544

order (see Figure 8, see Figure ?? and Figure ?? for the zeroth and second homology). To 545

demonstrate the reconfiguration from resting to other tasks, we selected the top five largest 546

KL divergences for each task and ranked them by the line strength in the circular plot. 547

Some of the tasks displayed very unified patterns, such as the emotional task and 548

working memory task, where all the highest KL divergence included one functional network 549

(see Figure 8, emotional and working memory panel). The observation drawn from those 550

two tasks showed that the reconfiguration from resting state to emotional task actually 551

involves a lot of activities for somatomotor, and shifts to working memory task will require 552

the subcortical region to take the most response. The somatomotor network includes 553

most of the somatosensory area, which is closely related to emotional regulation, and 554

the subcortical region is known to be involved in complex activities such as memory- 555

related activities. In addition, we also observed that the somatomotor network also has 556

the strongest link in the motor task, and the subcortical region is present as the dense 557
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Emotional

Relational Social Working Memory

Gambling Language Motor

Figure 8. KL divergence circular plot for 7 fMRI tasks-to-RESTING with functional network
comparison in H1. Here we fixed the task which compared with the resting state and visualized the
top five KL divergence between functional networks. The KL divergence is normalized with regards
to the top five measures and demonstrated by the strength of circular connectivity.

connectivity hub in many task plots, which is an indication of the common underlying 558

mechanism of brain circuit shifts from resting states to any other activities (see Figure 8, 559

gambling, motor, relational, and social panel). 560

4. Discussion 561

At the heart of many complex systems resides a set of fine-tuned mesoscopic struc- 562

tures whose roles have been linked with complex orchestrations of emergent phenomena. 563

Understanding complex higher-order behaviors arisen at a scale between the microscopic 564

(brain regions) and macroscopic (whole-brain) level would set the stage to a more compre- 565

hensive understanding of the human brain large-scale functional circuitry. There are two 566

kinds of mesoscopic structures: i) local/quasilocal (e.g., ground-truth communities) and 567

ii) non-local such as topological strata of complex networks. In this work, we proposed 568

a TDA formalism to disentangle the higher-order properties of brain sub-circuits (FNs) 569

among different fMRI tasks. The major contributions of our framework on higher-order 570

brain systems over other existing ones [39,65,66] are that i) this framework allows the study 571

of non-localized properties of an a priori set of localized/quasilocalized sub-networks, ii) 572

through this innovative mesoscopic kernel proposal, we observed various results that 573

align well with the current knowledge in network neuroscience and also highlighted the 574

resting-state dichotomy of default mode network as well as the role of the limbic system 575

in the process of functional (re)configuration, iii) we included not only within-task and 576

within-FN scenarios, but also investigated the bi-level analysis that considered both task 577

and FN levels at the same time. The construction of fMRI brain connectivity and Yeo’s ROI- 578

to-FN mappings enabled multi-level homological group calculation and corresponding 579

graph-based analysis. With 7 different tasks in addition to resting state, previous studies 580

found that the brain functional reconfiguration in macroscopic (global-level) is hard to 581

observe, while different tasks will rather trigger more shifts in mesoscopic structure (brain 582

functional networks level) [13,67,68]. Hence, we organized our framework in 5 settings: 583

a) group-averaged global level, b) group-averaged consolidated level, c) group-averaged 584

mesoscopic level, d) individual global level, and e) individual all-to-REST level with func- 585
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tional network analysis and task analysis. At the first three levels, we conducted the 586

topological data analysis at the group-representative level, which gives a broader view 587

of the between-task, between rest-task and between-FN distance. When we look at the 588

individual level (each subject’s FCs), we took a different approach from other existing brain 589

connectivity fingerprint frameworks [13,69]. Specifically, in the first step, we computed the 590

distance measures on an individual basis by using the KL divergence to compare the distri- 591

bution of individual-level distance. In the second step, we used consensus analysis to infer 592

group-level behavior, as opposed to using simple average. Through this setting, we found 593

that three homological groups provided complementary insights in both task and subject 594

domain. More specifically, the zeroth homology measures the connected components; 595

the first homology measures the 2-dimensional hole encapsulated by one-dimensional 596

functional edges; the second homology measures the 3-dimensional cavities encapsulated 597

by 2-dimensional triangles. These homological groups and their algebraic structures are 598

hypothesized in our paper to characterize topological spaces parameterized by the brain 599

connectivity network. 600

Noticeably in work led by Fox and colleagues [70], the authors suggested that emotion 601

task might be regulated by reduced functional activity attenuated by self-referential aspects 602

of such task. In general, “harder" tasks (i.e., relational) require an increasing level of 603

global integration which should reflect through a relatively small number of connected 604

components (smaller Betti number 0). It is worthy to note that the motor cortex was 605

identified as the hubs of broadcasting transduction [15] which contains brain regions that 606

are critical to broadcasting information to other regions of the brain. Compared to the 607

resting state - the absence of cognitive requirement from fMRI tasks, motor task, which 608

employs motor cortex brain regions, modulates global integrative cooperation among 609

brain regions by forming first-order cycles across FNs. Combining both zeroth (connected 610

components) and first homological (graph-theoretical cycles) distance results, we see that 611

there exists a cognitive “switch" taking place at a global level to form connectivities that 612

results in i) less number of connected components and ii) more globally integrated FNs as 613

reflected by first-order cycles. 614

By consolidating the global view of the group-averaged connectome, we found that 615

the H1 homology displayed stable topological invariants with its consistency in the most 616

distinct pair of tasks as well as pertaining to a clear block diagonal structure on the distance 617

heatmap. Both global and consolidated views displayed significant signals that the resting 618

state and motor task are the most different task pairs [55,56], while they are also the first and 619

second distinct tasks in terms of the average distance (see Figure 4B,C). In this case, a simple 620

observation we can draw from the analysis is that the brain takes some reconfiguration from 621

resting state to other non-motor tasks, and then it requires further shifts in connectivity 622

to get to the motor task. In addition, we further studied the individual-level homological 623

scaffolds and performed group-level consensus voting on the most differentiated pair of 624

tasks over 100 unrelated subjects (see Figure 6B,C). The H1 and H2 majority voting results 625

again showed that the motor task is the most apart task from the resting state, and H1 626

also has the highest frequency count on the largest count among all three homological 627

groups, indicating that it has the most consistent and robust capability to understand the 628

homological scaffold in brain connectivity topological space. 629

Noticeably, the strong topological invariant of the H1 homology between the macro- 630

scopic (whole-brain) level with consolidated (super-graph) level demonstrated the existence 631

of self-similarity property unravelled by the higher-order properties of brain functional sub- 632

circuit [71–73]. Regarding the macroscopic level of the brain connectome as the “zoomed-in” 633

representation of the consolidated graph, the overall pattern of the Wasserstein distance 634

between tasks still holds. While both the macroscopic level and consolidated level have 635

the resting-state task and motor task pair as the most differentiated task pair, further ob- 636

servation was found by looking at the row in the distance heatmap that involves resting 637

state task and motor task all have high Wasserstein distance, together forming a block 638

pattern that separates resting state task as well as motor task from the other tasks. This 639
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phenomenon guarantees the “scale-free” property of the first homological group on the 640

complex brain system and provides a consistent potential for this topological framework 641

for other higher-order complex network systems [71,73]. 642

We partitioned the brain connectome with the 7 Yeo functional network as well as a 643

subcortical structure, resulting in 8 separate sub-networks. Since the resting state brain 644

connectivity structure is the closest to Yeo’s partition, the first assessment that we did at the 645

mesoscopic level was to fix the resting state task and compare the distance between two 646

functional networks. The mesoscopic level analysis captured the “functional dichotomy” 647

in the resting state by both the most differentiated task pairs as well as the highest average 648

distance (see Figure 5B,C), where default mode is the most dominant network [13,70,74]. 649

The brain network studies typically focus on either the within-task configuration or within- 650

network configuration [14,15,65,75,76], the individual-level functional network partition 651

further revealed patterns in the brain that are shifted between resting state to other tasks as 652

well as between two functional networks. The individual all-to-rest mesoscopic analysis 653

considered both task and functional network “switches”. Such bi-level perspective allows 654

the investigation of the most distinct functional network pairs in resting state on their 655

reconfiguration from resting state to other tasks (see Figure 7). While maintaining the 656

bi-level design of the experiments, we flipped the two-level in the all-to-rest task analysis 657

to investigate, from resting state to each task, how pairs of functional network are shifted 658

(see Figure 8). The unique patterns in the top 5 pairs of functional networks also enabled 659

hub identification in the process of the task switch, and closer tasks also displayed similar 660

patterns, indicating that they underwent similar reconfiguration from the resting state. 661

This study has certain limitations. In the consolidation process from the global-level 662

graph, we specifically opted for max normalization to construct the super graph. Since 663

altering the normalization method may potentially modify the inter-connectivity of func- 664

tional networks, future research could investigate different normalization techniques. For 665

instance, using average connectivity to define the consolidated graph might impact not only 666

the topological structure of the super graph but also its self-similarity properties from the 667

homological kernels. Moreover, not only does the choice of the homological group influence 668

the distance measure between tasks or functional networks, but the graph itself also plays 669

a crucial role. Our experiments were solely conducted on the Glasser parcellation with 374 670

nodes (360 cortical regions + 14 sub-cortical regions). Exploring alternative parcellations in 671

both brain cortical and subcortical regions ([28,77]) and incorporating multiple parcellation 672

scales could offer additional insights into mesoscopic cognitive reconfiguration and its 673

scaling-related properties. 674

In summary, we presented a novel framework that uses persistent homology to 675

characterize brain connectivity in the topological space. Based on the nature of each 676

homological group, we selected different distance measures correspondingly. The zeroth 677

persistent homology is all born at 0 so the Wasserstein distance is not a good fit, but 678

the Haursdorff distance is more appropriate for measuring the 1D distribution of the 679

point cloud. However, the first and second homology are closer to the diagonal in the 680

persistent homology diagram, and thus the Wasserstein distance with partial mapping 681

which serves as a simulation of moving one distribution to another in a geodesic setting 682

would become better in this case. We validated that the first homology gives very consistent 683

and topological invariant findings in different levels of analysis, which offers a scaling 684

invariant perspective, and we find that the framework is capable of capturing signals that 685

are well-studied in the literature, but also discovered some unique patterns in the brain 686

circuit triggering diverse processes among different fMRI tasks and resting conditions. 687

From a wider perspective, our formalism can be applied, beyond brain connectomics, to 688

study non-localized coordination patterns induced by localized, pre-defined structures 689

stretching across different complex network fibers. 690
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