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Readout errors are among the most dominant errors on current noisy intermediate-scale quantum
devices. Recently, an efficient and scaleable method for mitigating such errors has been developed,
based on classical bit-flip correction [1, 2]. In this talk, we compare the performance of this
method for IBM’s and Rigetti’s quantum devices, demonstrating how the method improves the
noisy measurements of observables obtained on the quantum hardware. Moreover, we examine
the variance amplification to the data after applying of our mitigation procedure, which is common
to all mitigation strategies. We derive a new expression for the variance of the mitigated Pauli
operators in terms of the corrected expectation values and the noisy variances. Our hardware
results show good agreement with the theoretical prediction, and we demonstrate that the increase
of the variance due to the mitigation procedure is only moderate.
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1. Introduction

State-of-the-art Markov chain Monte Carlo (MCMC) methods for lattice field theories cease to
work in certain parameter regimes due to the infamous sign problem [3]. Prominent examples are
QCD in the presence of a baryon chemical potential or a topological term [4], where the latter is
linked to the strong CP problem. In addition, the MCMC approach relies on a Wick rotation of the
original theory, resulting in a formulation inEuclidean space-time. Thus, real-time phenomena, such
as the out-of-equilibrium dynamics following heavy-ion collisions, are inaccessible with MCMC
approaches. As a result, many non-perturbative phenomena cannot be addressed with conventional
MCMC techniques. Quantum computing offers to bypass these problems, as it is free from
purely numerical limitations and allows for simulating real-time dynamics. First proof-of-principle
experiments have already successfully demonstrated these capabilities in lower dimensions (see,
e.g., Refs. [5–10]). In the long run, quantum computing is therefore one of the most promising new
methods for studying unexplored regimes of the Standard Model.

Current noisy intermediate-scale quantum (NISQ) [11] computers suffer from several sources
of noise, among them gate errors, depolarizing noise, and measurement errors. Measurement errors
occur if a measurement result 0 is misidentified as 1 or vice versa. They can be among the most
common errors on current NISQ computers with error rates reaching up to O(10%) [12]. While
such NISQ devices do not allow for full quantum error correction, the effect of errors can be partially
reduced using error mitigation techniques (see, e.g., Refs. [13–15]). These techniques typically
come at the expense of increasing the variance of the measurement results, thus requiring a larger
number of measurements to obtain the same accuracy [14].

In this work, we investigate this effect for a recently developed mitigation protocol for measure-
ment errors [1, 2] on IBM’s and Rigetti’s quantum devices. In particular, we compare the change
in variance from the hardware results with and without applying the mitigation procedure to the
theoretically predicted values and benchmark the performance of the protocol. We also derive a new
expression for the variance of the mitigated Pauli expectation values in terms of noisy variances and
corrected expectation values, which explicitly excludes the possibility that the variance increases
exponentially. This important result, together with the polynomial overhead costs for the mitigation
method derived in Ref. [1], proves the scalability of the method.

2. Readout Error Mitigation

In this section, we briefly review the readout mitigation method proposed in Refs. [1, 2]. We
first focus on the impact of this method on the expectation values and afterwards on the variances.

2.1 Impact of the Mitigation Procedure on the Expectation Values

Throughout this paper, we consider a quantum device with& qubits, which performs projective
measurements in the computational basis {|0〉 , |1〉}. We focus on measurement errors (also referred
to as bit-flips or readout errors), which result from misidentifying a measurement outcome 0 as a
1 and vice versa. For simplicity, we neglect any other error sources at this stage and discuss them
briefly in the results section. Thus, we assume that the quantum device transforms the initial state
into a pure state |k〉, such that we can measure the expectation value 〈k |$ |k〉 of an observable $.
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With appropriate post-rotations applied to |k〉, we can always consider $ to be diagonal in the
computational basis [16], i.e., we can write $ as a string of {1, /}&. Finally, we can treat bit
flips on different qubits as uncorrelated, which is a good approximation for the superconducting
hardware devices that we use here [17, 18].

For each qubit @, there is a probability ?@,0 of misidentifying the measurement outcome 0 as a
1 and vice versa with probability ?@,11. Thus, instead of directly measuring the expectation value
of an operator $, we rather measure the expectation values of “noisy” operators $̃ that are subject
to these bit flips. Now, we can write $ as a linear combination of these noisy operators, such that
the resulting expectation value with respect to the bit-flip probabilities gives the desired outcome.
To illustrate this, let us consider the case of the operator /@ acting on a single qubit @. We can
express this operator as a linear combination of noisy operators in the following way [1, 2]:

/@ =
1

W(/@)
E(/̃@) −

W(1)
W(/@)

� , (1)

where E(/̃@) is the expectation of the noisy operator /̃@ with respect to bit flips, and we defined

W($@) =
{

1 − ?@,0 − ?@,1 for $@ = /@
?@,0 − ?@,1 for $@ = 1@ .

Note that “expectation” means the expected value for the noisy operator $̃ subject to bit flips,
which is different from its quantum mechanical expectation value 〈k | $̃ |k〉. For example, for
?@,0 = ?@,1 = 0.1, the operator $̃ will only be correctly implemented (such that $̃ = $) with a
probability of (1 − ?@,0) (1 − ?@,1) = 0.81.

To calibrate the values of the bit-flip probability ?@,0 (?@,1), we repeatedly prepare the qubit @
in the state |0〉 (|1〉) and measure how often we record the incorrect outcome 1 (0), see Fig. 1.
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Figure 1: Left figure: measurement outcomes (left) and their correct or incorrect identification (right) for a
single qubit @, where ?@,1 is the probability of misidentifying the qubit in the state |1〉 as |¬1〉. Right figure:
indicative bit-flip calibration of the ibmq_16_melbourne device, where @ = @8 and 8 = 0, ..., 4.

The single-qubit example in Eq. (1) can be generalized to an arbitrary number of qubits, and
an expansion of the noise-free operator $ = $& ⊗ · · · ⊗ $1 can be obtained in terms of the noisy
operators of the space {1, /̃}&, which results in [1]

($)$∈{1,/ }⊗& = l($ |$̃)−1 (
E$̃

)
$̃∈{1,/ }⊗& , (2)

1Note that this misidentification can happen either before or after the projective measurement.
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where the bit-flip probabilities are encoded in the matrix

l($ |$̃) =
&∏
@=1

Γ($@ |$̃@) with Γ($@ |$̃@) =


W($@) for $̃@ = /̃@
1 for $@ = �@ and $̃@ = �̃@
0 for $@ = /@ and $̃@ = �̃@ .

(3)

Note that l($ |$̃) is a lower triagonal matrix with full rank, as long as ?@,0 + ?@,1 ≠ 1 for all
qubits @. For reasonable bit-flip probabilities, inverting Eq. (3) allows for obtaining the corrected
expectation values in terms of the noisy expectation measurements.

2.2 Impact of the Mitigation Procedure on the Variances

Themitigation procedure leads to a variance amplification for the error-mitigated results, which
is typical for error mitigation techniques [14]. In this section, we are interested in the resulting
number of additional samples that are necessary to correct for this variance amplification.

The expectation value 〈k | $̃ |k〉 of a noisy operator $̃ is obtained by running the quantum
circuit preparing |k〉 and performing a projective measurement multiple times. We refer to these
repetitions as the number of shots B. We then produce a histogram with the data of # experiments
using B shots. The variance of this histogram contains two components, the bit-flip variance Vbf

and the quantum mechanical variance VQM. For the example in Eq. (1), we get [1]

V 〈k | /̃@ |k〉 =
1
B
Vbf 〈k | /̃@ |k〉 +

1
B
VQM 〈k | /̃@ |k〉 . (4)

We can express these variances in terms of the expectation values (see Eq. (62) in Ref. [1])

Vbf 〈k | /̃@ |k〉 = 01 〈k | /@ |k〉2 − 202 〈k | /@ |k〉 + 03,

VQM 〈k | /̃@ |k〉 = 1 − 〈k | /̃@ |k〉2 ,
(5)

where the noise-free expectation values of /@ are given by the error-mitigated expectation values
in our computations, and we have defined

01 = (?@,1 + ?@,0) (1 − ?@,0 − ?@,1) + 2?@,0?@,1,
02 = (1 − ?@,0 − ?@,1) (?@,1 − ?@,0),
03 = (?@,0 + ?@,1 − ?2

@,0 − ?
2
@,1).

For the case of a two-qubit operator with /1 and /2 acting on uncorrelated qubits, we can construct
the bit-flip variance from the bit-flip variances of the single-qubit operators (see Eq. (64) in Ref. [1]),

Vbf 〈k | /̃2 ⊗ /̃1 |k〉 = Vbf /̃2 ⊗ Vbf /̃1 + E/̃2 ⊗ Vbf /̃1 + Vbf /̃2 ⊗ E/̃1. (6)

Using Eq. (6) and taking the variance of Eq. (24) in Ref. [1], we can express the variances of
multi-qubit operators in terms of the variances and expectation values of single-qubit operators,

V(/2 ⊗ /1) =
(

1
W(/2)W(/1)

)2 (
V/̃2 ⊗ V/̃1 + V/̃2 ⊗ (E/̃1)2 + (E/̃2)2 ⊗ V/̃1

)
+

(
W(�1)

W(/2)W(/1)

)2
V/̃2 +

(
W(�2)

W(/2)W(/1)

)2
V/̃1,

(7)
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where we omitted the bf-index for brevity. As discussed above, having access to this variance
enables us to predict the number of additional experiments that are necessary to achieve the same
accuracy of the computational results after the mitigation.

We note that the novelty of this derivation in Eq. (7) is the explicit prediction of the extent to
which the variance is increased after applying the readout error mitigation method. Crucially, we
observe that higher-order terms generally have a smaller contribution to the variance because of the
smaller prefactors. This guarantees that the variance does not increase exponentially.

We also note that a similar argument can substantially decrease the computational complexity
of the error mitigation method itself. In Eq. (2), each term corresponds to the case where a different
number of bits are flipped, and the coefficients of each of these terms are proportional to a product∏
8 W(�8), where 8 ∈ [0, &] are the qubits that are bit-flipped. Since each W(�8) factor is proportional

to the bit-flip probabilities, the terms in Eq. (2) that correct for an increasing number of bit flips
become decreasingly relevant. This observation is particularly important for the case of a large
number of qubits, since we can choose to stop themitigationmethod at a lower order, thus decreasing
the computational complexity without any notable loss in accuracy.

3. Numerical Results from Quantum Hardware

In this section, we measure the expectation values of the two-qubit and three-qubit operators
〈k | /2⊗/1 |k〉 and 〈k | /3⊗/2⊗/1 |k〉 on quantum devices from IBM and Rigetti. We examine the
impact of the mitigation procedure on both the mean value and the variance of these observables.

3.1 Results for the Expectation Values

To benchmark the method described in Sec. 2, we perform 1000 and 1144 experiments with
the IBM and Rigetti quantum devices, respectively. For each experiment, we compute the absolute
error ��〈k | $̃ |k〉measured − 〈k |$ |k〉exact

�� , (8)

where the first term refers to the measured expectation value of the operator (either the unmitigated
results obtained on the quantum hardware or the mitigated results after applying our method), and
the second term is the exact expectation value that we compute analytically.

In our experiments, we choose parametric quantum circuits that are inspired by typical Ansätze
used for the variational quantum eigensolver algorithm [16], as shown in Fig. 2. Each parameter
of the rotation gates is drawn uniformly from [0, 2c) at the beginning and kept constant over all
experiments. In the end, we compute the average of Eq. (8). The expectation value 〈k | $̃ |k〉measured
is obtained by preparing |k〉 with the corresponding quantum circuit multiple times and collecting
statistics of the measurement outcomes. As before, the number of repetitions is referred to as the
number of shots B. In case of an ideal, noise-free quantum computer, the average of Eq. (8) should
decay as 1/

√
B [1, 2]. Other errors on the quantum hardware will lead to a saturation of the average

absolute error at a certain value, indicating the level of accuracy that can be reached on the device
without additional mitigation for these other errors.

As described in Sec. 2, we calibrate the quantum device by preparing a qubit @ in a compu-
tational basis state |1〉 and then performing projective measurements. Our estimate of the bit-flip

5
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Figure 2: The quantum circuit used for our experiments with & = 3 qubits. For our experiments with & = 2
qubits, we used the sub-circuit indicated by the dashed box. The purple '- and '/ boxes denote parametric
rotation gates, the blue two-qubit connections are CNOT gates, the black boxes are the final measurements,
and the vertical dashed lines separate different layers of the quantum circuit.

probability ?@,1 is given by the empirical probability of obtaining the incorrect measurement out-
come ¬1. Since the initial state of the chosen quantum hardware is the state |0〉, the states |1〉 are
easily prepared by either applying no gates at all (|0〉) or applying the corresponding --gates for
each qubit (|1〉). For the case of the IBM hardware, we collect calibration data every time we run a
new batch of measurements that uses a different number of shots, in order to have a more accurate
description of the noise model. For the case of the Rigetti hardware, we only perform the calibration
once because we had exclusive access to the device and thus did not suffer from waiting times.

Figure 3 shows our results for the average absolute error (see Eq. (8)) as a function of the number
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Figure 3: Left: average absolute error (see Eq. (8)) of the expectation value 〈k | /2 ⊗ /1 |k〉 as a function
of the number of shots B, obtained on Rigetti’s Aspen-9 device. We plot the noisy hardware data with
(orange filled squares) and without (orange open circles) error mitigation, as well as a noise-free simulation
(green filled circles) and a noisy simulation with (blue open diamonds) and without (blue open squares) error
mitigation. Right: same results for 〈k | /3 ⊗ /2 ⊗ /1 |k〉 obtained on the ibmq_16_melbourne device. In both
figures, we fit the function �BU to the ideal (green line) and mitigated (blue line) simulation results, yielding
U ≈ −0.5. The abbreviations mit and sim refer to the mitigated results and the simulations, respectively.
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of shots B. We measure the two-qubit expectation value 〈k | /2 ⊗ /1 |k〉 on Rigetti’s Aspen-9 device
(left) and the three-qubit expectation value 〈k | /3 ⊗ /2 ⊗ /1 |k〉 on the ibmq_16_melbourne device
(right). We plot the noisy data from the actual quantum devices without error mitigation (orange
open circles), as well as the data after applying the measurement error mitigation (orange filled
squares). We also plot a noise-free simulation (green filled circles) and a noisy simulation with
(blue open diamonds) and without (blue open squares) error mitigation. The noise model in the
simulation consists only of readout errors.

In Fig. 3, we fit the function �BU to the ideal, noise-free simulation results (green line) and
the mitigated simulation results (blue line). We obtain U ≈ −0.5 in both cases and thus see that
the errors decay indeed ∝ 1/

√
B with the number of shots B, as expected. Without error mitigation,

the error of the noisy simulated data initially improves with increasing the number of shots, but
eventually saturates at the ∼ 10% level. After applying the mitigation scheme, one again recovers
the expected decay ∝ 1/

√
B with the number of shots.

For the data obtained on the quantum hardware, we observe a device-dependent improvement
after applying the mitigation method. On the Aspen-9 device from Rigetti, the mitigation scheme
substantially improves the noisy data by reducing the error by half an order of magnitude. At
large B, we observe a deviation from the expected decay ∝ 1/

√
B, because our method can only

mitigate the readout error of the noisy data up to a certain accuracy, before the contributions of
other underlying noise sources become dominant (see Refs. [1, 2] for more details). For the case
of the ibmq_16_melbourne device, our method reduces the error by almost an order of magnitude.
Here, the mitigated noisy results obtained from the quantum device look almost identical to the
simulated results, including the expected decay ∝ 1/

√
B. Thus, we can attribute the noise almost

exclusively to readout errors, which our method successfully corrects for.

3.2 Results for the Variances

In this section, we compare our variance predictions from Sec. 2 to the actual variances of
the measured distributions for the expectation values 〈k | /2 ⊗ /1 |k〉 and 〈k | /3 ⊗ /2 ⊗ /1 |k〉.
Figure 4 shows the results for the two-qubit experiments performed on the Aspen-9 device of Rigetti.
Figure 5 shows the results of our three-qubit experiments performed on the ibmq_16_melbourne
device. In the left panels of Fig. 4 and Fig. 5, we plot the histograms of the noisy and error-
mitigated expectation values for different numbers of shots. In these plots, we show Gaussian fits
to the histograms (continuous lines) as well as Gaussian distributions using the predicted variances
(dashed lines). In each histogram plot, we also show the true expectation values of the noise-free
operators (green vertical lines). In the right panels, we plot the predicted (blue filled points) and
measured (blue open diamonds) variances before the mitigation, as well as the predicted (orange
filled squares) and measured (orange open circles) variances after the mitigation, as a function of
the number of shots B. We also add exponential fits of the form �8B

U8 = 4V8 BU8 to our data and
extract the fit coefficients U8 and V8 , whose indices refer to the noisy (8 = 0) and mitigated (8 = 1)
variances, respectively. We will use these extracted coefficients later in Eq. (9).

As we can see in Fig. 4, the measured variances for the two-qubit Aspen-9 data become larger
than the predicted ones as the number of shots increases, both for the noisy and error-mitigated
distributions. As discussed in Sec. 3.1, this deviation is expected due to other types errors beyond
the readout error that our mitigation method corrects for. In Fig. 5, we see that for the three-
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Figure 4: Left: Measured distributions of the two-qubit expectation value 〈k |/2 ⊗ /1 |k〉 from the Aspen-9
device of Rigetti, before (blue) and after (orange) the mitigation. Note that the variances are slightly larger in
the latter case. We plot the distribution for 64 (upper panel) and 8192 shots (lower panel) to demonstrate the
decrease in variance when taking more shots. For a larger number of shots, the measured variances slightly
deviate from our prediction, due to other error sources beyond readout errors that we do not mitigate for (see
Refs. [1, 2]). Right: Variances measured on the Aspen-9 quantum device, as a function of the number of
shots B. We plot the predicted (blue filled points) and measured (blue open diamonds) variances before the
mitigation, as well as the predicted (orange filled squares) and measured (orange open circles) variances after
the mitigation. We fit the function �8BU8 = 4V8 BU8 to the noisy (8 = 0) and mitigated (8 = 1) measurement
results, and use the fit coefficients U8 and V8 later in Eq. (9).
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Figure 5: Same description as for Fig. 4, with the only difference that we now consider the three-qubit
expectation value 〈k |/3 ⊗ /2 ⊗ /1 |k〉 measured on the ibmq_16_melbourne device. The measured and
predicted variances now agree well for both the small (top left) and the large (bottom left) number of shots.

qubit results of the ibmq_16_melbourne device, the predictions for the variance agree well for
both smaller and larger number of shots, both for the case of noisy and mitigated results. Here,
the mitigation procedure shifts the histogram means to the true expecation value of the noise-free
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operator. These results agree with the ones obtained in Sec. 3.1, where we concluded that noise on
the ibmq_16_melbourne device can be almost exclusively attributes to readout errors.

In both Fig. 4 and Fig. 5, one can see that the application of the mitigation scheme slightly
increases the variance of the data. As we have already discussed in Sec. 2.2, this is characteristic
for all error mitigation procedures, and a larger number of samples is needed to achieve the same
accuracy [14]. We can use our variance predictions to estimate this additional number of samples.
If B0 is the number of samples without error mitigation and B1 is the number of samples when
applying error mitigation, then the two variances are the same if�0B

U0
0 = �1B

U1
1 . Using this equality

and our previous definition of �8 ≡ 4V8 , we derive that we need

B1
B0
=

(
�0
�1

) 1
U1
B

U0
U1
−1

0 = 4
V0−V1
U1 B

U0
U1
−1

0 (9)

times more samples to compensate for the variance amplification of our mitigation procedure. In
the case of large statistics, we can use the approximation U0 ≈ U1, so the above formula becomes a
constant, B1

B0
≈ exp

(
V0−V1
U1

)
. For the two-qubit implementation on the Aspen-9 device (see Fig. 4),

the fit coefficients indicate that we need 2.4B−0.0004
0 times more samples to retain the same accuracy

after the mitigation. For the three-qubit implementation on the ibmq_melbourne device (see Fig. 5),
we need 5.7B−0.053

0 times more samples. Thus, these overhead costs are moderate in both cases.

4. Conclusion

In this work, we benchmarked a recently proposed mitigation scheme for readout errors [1, 2]
on quantum devices from IBM and Rigetti. For both devices, we found a substantial improvement
of the computed expectation values. The two-qubit experiments on Rigetti’s Aspen-9 machine show
an improvement of the average absolute error by half an order of magnitude. The average error
for the three-qubit experiments on IBM’s ibmq_16_melbourne machine was improved by almost
an order of magnitude. We also derived and experimentally tested the theoretical predictions for
the variance amplification that is caused by applying the mitigation scheme. For a small number of
shots, the predictions agree well with the variances of the distributions measured on the quantum
hardware. For a large number of shots, the variance for the data obtained on the Rigetti machine
slightly deviates from the prediction, while the IBM experiments again show good agreement. In
the former case, the deviations are likely caused by other types of errors beyond the readout error
that our mitigation method corrects for. In all experiments, only a moderate number of additional
samples is required to compensate for the variance amplification and thus to achieve the same
accuracy after mitigation. From a theoretical perspective, our key new result is the sub-exponential
increase of the variance, which, together with the polynomial scaling of the error mitigation method
derived in Ref. [1], demonstrates the scalability of the mitigation method.

Acknowledgments

Research at Perimeter Institute is supported in part by the Government of Canada through the
Department of Innovation, Science and Industry Canada and by the Province of Ontario through
the Ministry of Colleges and Universities. L.F. is partially supported by the U.S. Department of

9



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
2
4
3

Investigating the variance increase of readout error mitigation Georgios Polykratis

Energy, Office of Science, National Quantum Information Science Research Centers, Co-design
Center for QuantumAdvantage (C2QA) under contract number DE-SC0012704, by the DOEQuan-
tiSED Consortium under subcontract number 675352, by the National Science Foundation under
Cooperative Agreement PHY-2019786 (The NSF AI Institute for Artificial Intelligence and Fun-
damental Interactions, http://iaifi.org/), and by the U.S. Department of Energy, Office of Science,
Office of Nuclear Physics under grant contract numbers DE-SC0011090 and DE-SC0021006. S.K.
acknowledges financial support from the Cyprus Research and Innovation Foundation under project
“Future-proofing Scientific Applications for the Supercomputers of Tomorrow (FAST)”, contract
no. COMPLEMENTARY/0916/0048. G. P. is financially supported by the Cyprus Research and
Innovation Foundation under contract number POST-DOC/0718/0100 and from project NextQCD,
co-funded by the European Regional Development Fund and the Republic of Cyprus through the
Research and Innovation Foundation with contract id EXCELLENCE/0918/0129. T.W. acknowl-
edges the support by DASHH (Data Science in Hamburg - HELMHOLTZ Graduate School for the
Structure of Matter) with the Grant-No. HIDSS-0002. We would like to thank Rigetti Computing
for providing exclusive access to their Aspen-9 quantum device and acknowledge the use of IBM
Quantum services for this work. The views expressed are those of the authors, and do not reflect
the official policy or position of Rigetti Computing, IBM, or the IBM Quantum team.

References

[1] L. Funcke, T. Hartung, K. Jansen, S. Kühn, P. Stornati and X. Wang,Measurement Error
Mitigation in Quantum Computers Through Classical Bit-Flip Correction, 2007.03663.

[2] L. Funcke, T. Hartung, K. Jansen, S. Kühn, M. Schneider, P. Stornati et al., Towards
Quantum Simulations in Particle Physics and Beyond on Noisy Intermediate-Scale Quantum
Devices, 2110.03809.

[3] M. Troyer and U.-J. Wiese, Computational complexity and fundamental limitations to
fermionic quantum monte carlo simulations, Phys. Rev. Lett. 94 (2005) 170201.

[4] K. Fukushima and T. Hatsuda, The phase diagram of dense QCD, Rept. Prog. Phys. 74
(2011) 014001.

[5] E.A. Martinez, C.A. Muschik, P. Schindler, D. Nigg, A. Erhard, M. Heyl et al., Real-time
dynamics of lattice gauge theories with a few-qubit quantum computer, Nature 534 (2016)
516.

[6] C. Kokail, C. Maier, R. van Bijnen, T. Brydges, M.K. Joshi, P. Jurcevic et al., Self-Verifying
Variational Quantum Simulation of the Lattice Schwinger Model, Nature 569 (2019) 355.

[7] N. Klco, E.F. Dumitrescu, A.J. McCaskey, T.D. Morris, R.C. Pooser, M. Sanz et al.,
Quantum-classical computation of Schwinger model dynamics using quantum computers,
Phys. Rev. A 98 (2018) .

[8] N. Klco, J.R. Stryker and M.J. Savage, SU(2) non-Abelian gauge field theory in one
dimension on digital quantum computers, Phys. Rev. D 101 (2020) 074512.

10

https://arxiv.org/abs/2007.03663
https://arxiv.org/abs/2110.03809
https://doi.org/10.1103/PhysRevLett.94.170201
https://doi.org/10.1088/0034-4885/74/1/014001
https://doi.org/10.1088/0034-4885/74/1/014001
https://doi.org/10.1038/nature18318
https://doi.org/10.1038/nature18318
https://doi.org/10.1038/s41586-019-1177-4
https://doi.org/10.1103/physreva.98.032331
https://doi.org/10.1103/PhysRevD.101.074512


P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
2
4
3

Investigating the variance increase of readout error mitigation Georgios Polykratis

[9] A. Ciavarella, N. Klco and M.J. Savage, Trailhead for quantum simulation of SU(3)
Yang-Mills lattice gauge theory in the local multiplet basis, Phys. Rev. D 103 (2021) 094501.

[10] Z.-Y. Zhou, G.-X. Su, J.C. Halimeh, R. Ott, H. Sun, P. Hauke et al., Thermalization dynamics
of a gauge theory on a quantum simulator, 2107.13563.

[11] J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum 2 (2018) 79.

[12] S.S. Tannu and M.K. Qureshi, Mitigating measurement errors in quantum computers by
exploiting state-dependent bias, in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO ’52, (New York, NY, USA), p. 279–290,
Association for Computing Machinery, 2019, DOI.

[13] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J.M. Chow et al.,
Hardware-efficient variational quantum eigensolver for small molecules and quantum
magnets, Nature 549 (2017) 242.

[14] S. Endo, S.C. Benjamin and Y. Li, Practical quantum error mitigation for near-future
applications, Phys. Rev. X 8 (2018) 031027.

[15] M.R. Geller, Conditionally Rigorous Mitigation of Multiqubit Measurement Errors, Phys.
Rev. Lett. 127 (2021) 090502.

[16] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P.J. Love et al., A variational
eigenvalue solver on a photonic quantum processor, Nat. Commun. 5 (2014) 1.

[17] Qiskit Aer API documentation and source code.

[18] C. Alexandrou, L. Funcke, T. Hartung, S. Kühn, K. Jansen, G. Polykratis et al., Using
classical bit-flip correction for error mitigation in quantum computations including 2-qubit
correlations, 2111.08551.

11

https://doi.org/10.1103/PhysRevD.103.094501
https://arxiv.org/abs/2107.13563
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1145/3352460.3358265
https://doi.org/10.1038/nature23879
https://doi.org/10.1103/PhysRevX.8.031027
https://doi.org/10.1103/PhysRevLett.127.090502
https://doi.org/10.1103/PhysRevLett.127.090502
https://doi.org/10.1038/ncomms5213
https://arxiv.org/abs/2111.08551

	Introduction
	Readout Error Mitigation
	Impact of the Mitigation Procedure on the Expectation Values
	Impact of the Mitigation Procedure on the Variances

	Numerical Results from Quantum Hardware
	Results for the Expectation Values
	Results for the Variances

	Conclusion

