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1. Introduction

Lattice Field Theory (LFT) serves as a non-perturbative tool to regulate Feynman’s path
integral, by removing infinities in the infra-red and ultra-volet. In LFT continuum models in
physics are formulated on a finite Euclidean space-time lattice with lattice spacing ℎ. In this way,
an ultra-violet cut-off, 1/ℎ, is provided through a non-vanishing value of the lattice spacing. At the
same time, the finite volume equips LFTs with an infra-red cut-off providing thus to a well-defined
path integral, see e.g., [14] for an introduction to lattice field theories. (See [16, 22] for an alternative
approach using the Z-regularization.)

Another important aspect of Euclidean LFT is that the path integral and physical observables can
be computed numerically within this framework. One very prominent example of a LFT is Lattice
Quantum Chromodynamics (LQCD) which is the lattice version of Quantum Chromodynamics
(QCD), the theory of the interaction between quarks and gluons. LQCD has been extremely
successful in computing e.g., the low lying hadron spectrum, non-perturbative matrix elements
and form factors, fundamental parameters of QCD and non-zero temperature physics, see e.g., the
Flavour Lattice Averaging Group (FLAG) review [5].

The main tool for simulating LQCD are Markov Chain Monte Carlo (MCMC) methods such
as Hybrid Monte Carlo, see [25] for an overview. The employed methods and algorithms have
been immensely improved over the last years, leading to large factors of speedup in the numerical
calculations. In addition, the structure of LQCD and of many other LFTs is of local nature, coupling
essentially only nearest neighbours on the lattice. This allows for massively parallel simulations on
state of the art supercomputers with (hundred) thousands of processors, which led to computations
on lattices of size close to physical relevance, meaning that the first two quark generations, i.e., the
up, down, strange and charm quarks, assume their physical values as determined from experiments.

Despite this enormous success, the MCMC approach is unable to address problems which lead
to a complex integrand in the path integral, a situation which is referred to as sign problem [30].
These problems are of fundamental nature in the context of high energy physics. In particular, they
are related to the questions: Why is there more matter than anti-matter in the universe? Why is
there more experimentally detected CP violation than the standard model predicts? What are the
physics of topological systems?

In addition, MCMC methods suffer from the problem of auto-correlations which is an inherent
property of MCMC algorithms. This problem becomes severe when the continuum limit in LQCD
is taken, i.e., when the lattice spacing is shrunk towards zero, see [2] and the references therein. In
particular, it has been noticed [28] that the topological charge in LQCD starts to freeze in Monte
Carlo simulations, making it thus very hard to take the continuum limit.

The above sketched shortcomings of MCMC methods has motivated researchers working in
LFTs to constantly look for alternative approaches. The very large numerical demand of lattice
simulations has triggered new approaches to accelerate LFT calculations even more and to achieve a
very high accuracy in evaluating the path integral. The sign problem has led to new developments in
using numerical techniques such as tensor networks [6] or tensor renormalization group methods [1].

In this proceedings article we report on a particular attempt to address the above mentioned
problems by using efficient recursive integration techniques, combined with a Fourier analysis,
following our original work in [17]. The idea is illustrated and applied to an abelian U(1) compact
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(a) Coupling of first order in 1D (𝑟 = 1)

𝑥0 𝑥𝑖 𝑥𝑖+1 𝑥𝐿 ≡ 𝑥0

(b) Coupling of third order in 1D (𝑟 = 3)

𝑥0 𝑥𝑖

𝑥𝑖+1
𝑥𝑖+2

𝑥𝑖+3
𝑥𝐿 ≡ 𝑥0

Figure 1: Different couplings in LQCD (Figure taken from [17, Fig. 1])

lattice gauge theory in two dimensions. By applying lattice cubature rules (see e.g., [12, 29]),
the underlying group structure of this cubature allows for efficient computation when plugged into
integrands exhibiting special structure as in the physics problems considered here. Although we
will demonstrate the method here in two dimensions only, we see the prospect to generalize our
method to higher dimensions and also to non-abelian groups in our future work.

To be more concrete, we will initially consider 𝐿-dimensional integrals (the “dimensionality”
here refers to the number of integration variables rather than the space/time dimensions) of the form∫

𝐷𝐿

𝐿−1∏
𝑖=0

𝑓𝑖
(
𝑥𝑖 , 𝑥𝑖+1

)
d𝒙, with 𝒙 = (𝑥0, . . . , 𝑥𝐿−1) and 𝑥𝐿 ≡ 𝑥0, (1)

where each variable 𝑥𝑖 belongs to a bounded domain 𝐷 ⊂ R and each function 𝑓𝑖 depends only on
two consecutive variables 𝑥𝑖 and 𝑥𝑖+1 – which is called a first order coupling – and we implicitly
assume periodic boundary conditions. Figure 1 sketches first order as well as third order coupling.

As already said above, we propose to solve lattice systems with such a coupling structure by
approximating the involved integrals employing recursive numerical integration methods, where
the lattice cubature rules used belong to a special family among Quasi-Monte Carlo rules (see e.g.,
[12, 13, 21, 24, 26, 27, 29]). The work we describe here is part of an ongoing effort by some of
us to apply alternative to MCMC mathematical methods to tackle lattice models; previous works
employ the Quasi-Monte Carlo approach [23], polynomially exact integration rules [4, 18], and a
first applications of the recursive numerical integration technique to address quantum mechanical
models [3, 17]. Quasi-Monte Carlo methods have also been considered in [9, 11] for multiloop
calculations in perturbation theory.

In the next section we will provide the physical models considered. In the subsequent sections
we will outline the efficient methods and the corresponding computational complexities. Executable
Julia codes and numerical results can be found in the original work [17].

2. Description of physical models

In this section we will introduce the quantum mechanical rotor [3, 7, 8] and a 2-dimensional
compact U(1) lattice gauge theory, see e.g., [14] for an introduction into lattice field theories.

2.1 Quantum rotor

The quantum rotor is a quantum mechanical model which describes a particle with mass 𝑚0
moving on a circle with radius 𝑟0, see e.g., [3, 7, 8]. We can supply the particle with a moment
of inertia 𝐼 = 𝑚0𝑟

2
0 . The quantum rotor can be formulated on a time lattice with lattice spacing

ℎ = 𝑇/𝐿 between neighbouring lattice points, where 𝑇 is the final time and 𝐿 is the number of
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lattice points. The variables of the system are taken to be angles 𝜙𝑖 ∈ 𝐷 = [−𝜋, 𝜋) defined at each
time lattice point. In the continuum, the action of the system is given by

𝑆(𝜙) =
∫ 𝑇

0

𝐼

2

(d𝜙
d𝑡

)2
d𝑡. (2)

The discretized version of the action of the quantum rotor, using 1
2 (

d𝜙
d𝑡 )

2 ≈ 1
2 (

𝜙𝑖+1−𝜙𝑖

ℎ
)2 ≈

1−cos(𝜙𝑖+1−𝜙𝑖 )
ℎ2 , is then given by

𝑆[𝝓] =
𝐼

ℎ2

𝐿−1∑︁
𝑖=0

(
1 − cos(𝜙𝑖+1 − 𝜙𝑖)

)
and we impose periodic boundary conditions. The choice of the action will allow us to employ
a combination of techniques as detailed below to make use of the Fast Fourier transform (FFT),
reducing significantly the computational cost of the problem. As an observable we will take

𝑂 [𝝓] = cos(𝜙𝑘+1 − 𝜙𝑘) for any 𝑘,

which is evaluated through the path integral as

〈𝑂 [𝝓]〉 =

∫
𝐷𝐿 cos

(
𝜙𝑘+1 − 𝜙𝑘) exp(𝛽∑𝐿−1

𝑖=0 cos(𝜙𝑖+1 − 𝜙𝑖)
)
d𝝓∫

𝐷𝐿 exp
(
𝛽
∑𝐿−1

𝑖=0 cos(𝜙𝑖+1 − 𝜙𝑖)
)
d𝝓

, (3)

where 𝛽 = 𝐼

ℎ2 = 𝐼𝐿2

𝑇2 . In order to evaluate the above integrals we will in the following convert their
domain into the unit cube [0, 1)𝐿 since the integration domain [0, 1)𝐿 is the classical domain where
Quasi-Monte Carlo rules are defined.

2.2 Quantum compact abelian gauge theory

Gauge theories are at the heart of the standard model of high energy physics. They are
constructed such that they exhibit local gauge invariance, i.e., physical observables and the action
of gauge models are invariant under local changes of the field variables defining a gauge theory.
Using gauge invariant theories in constructing the standard model has been extremely successful.
In particular, with the discovery of the Higgs boson, all particles predicted by the standard model
have been identified experimentally. Thus, we now have a complete microscopic description of the
interaction of the fundamental particles building all matter.

There are a number of non-perturbative aspects of gauge theories, such as confinement, topo-
logical effects and the existence of glueballs. The main tool, as formulated by Wilson [31] to
understand these non-perturbative phenomena is Lattice Gauge Theory (LGT). On the lattice, the
fundamental gauge fields are group valued and mainly taken from the abelian group U(1), or the
non-abelian ones, U(𝑁) or SU(𝑁) with 𝑁 ≥ 2.

Ideally, a study of gauge theories in three space and one time dimension (3 + 1 dimensions)
would be preferable. However, this is presently not affordable within our approach and we therefore
resort to a lower (1 + 1)-dimensional model, the (1 + 1)-dimensional compact U(1) lattice gauge
theory. The path integral of this model reads∫

𝐷2𝐿2
exp

(
𝛽

𝐿−1∑︁
𝑖=0

𝐿−1∑︁
𝑗=0

cos
(
𝜙𝑎
𝑖, 𝑗 + 𝜙𝑏

𝑖+1, 𝑗 − 𝜙𝑎
𝑖, 𝑗+1 − 𝜙𝑏

𝑖, 𝑗

))
d𝝓. (4)
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(a) 2D plaquette 𝑃
𝑎,𝑏
𝑖, 𝑗

𝜙𝑎
𝑖, 𝑗

−𝜙𝑎
𝑖, 𝑗+1

−𝜙𝑏
𝑖, 𝑗

𝜙𝑏
𝑖+1, 𝑗

(𝑖, 𝑗)

(𝑖 + 1, 𝑗 + 1)

(b) 3D plaquettes 𝑃𝑎,𝑏

𝑖, 𝑗 ,𝑘
, 𝑃𝑎,𝑐

𝑖, 𝑗 ,𝑘
, and 𝑃

𝑏,𝑐

𝑖, 𝑗 ,𝑘
,

(𝑖, 𝑗 , 𝑘)

(𝑖 + 1, 𝑗 + 1, 𝑘 + 1)

Figure 2: How to construct a plaquette in two and three dimensions (Figure taken from [17, Fig. 2])
In the two dimensional case, we construct the plaquette 𝑃

𝑎,𝑏
𝑖, 𝑗

at lattice point (𝑖, 𝑗) by carrying the field along
the path (𝑖, 𝑗) → (𝑖 + 1, 𝑗) → (𝑖 + 1, 𝑗 + 1) → (𝑖, 𝑗 + 1) → (𝑖, 𝑗). The contribution of the angles 𝜙 is
of positive sign if moving right or up, and the contribution is of negative sign if moving left or down. We
index left/right movements with a superscript 𝑎 and up/down movements with superscript 𝑏. For the three
dimensional case, we add an extra forward/backward movement, which is denoted by the superscript 𝑐. This
forms three independent smallest loops that can be taken: the (𝑎, 𝑏)-plane (black solid line), the (𝑎, 𝑐)-plane
(red dotted line), and the (𝑏, 𝑐)-plane (blue dashed line). One can see that each of these planes contribute
equally with a “2-dimensional” plaquette. All visualized links are straight lines, they are only bent for better
visualization.

Here 𝐷 = [−𝜋, 𝜋], and we have parametric periodicity where all indices should be taken modulo
𝐿. A typical observable to be considered is the plaquette expectation value, see Figure 2(a),

cos
(
𝜙𝑎

0,0 + 𝜙𝑏
1,0 − 𝜙𝑎

0,1 − 𝜙𝑏
0,0

)
,

which we also study here.
The model above uses the plaquette – the smallest Wilson loop – to define the action. Alternative

forms of the action, employing larger Wilson loops can be considered and are actually used in lattice
simulations as they can improve the extrapolation behavior to the continuum limit, i.e., the limit
where the lattice spacing is sent to zero. The only requirement is that these Wilson loops are gauge
invariant and that the corresponding lattice action converges to the continuum action when the
lattice spacing is sent to zero. Our method generalizes straightforwardly to such extended Wilson
loops and in our original work [17] there is a detailed discussion of such a situation.

The construction of aU(1) compact lattice gauge theory can be generalized to three dimensions
as illustrated in Figure 2(b). The path integral then reads∫

𝐷3𝐿3
exp

(
𝛽

𝐿−1∑︁
𝑖=0

𝐿−1∑︁
𝑗=0

𝐿−1∑︁
𝑘=0

[
cos

(
𝜙𝑎
𝑖, 𝑗,𝑘 − 𝜙𝑎

𝑖, 𝑗+1,𝑘 − 𝜙𝑏
𝑖, 𝑗,𝑘 + 𝜙𝑏

𝑖+1, 𝑗 ,𝑘

)
+ cos

(
𝜙𝑐
𝑖, 𝑗 ,𝑘 − 𝜙𝑐

𝑖+1, 𝑗 ,𝑘 − 𝜙𝑎
𝑖, 𝑗,𝑘 + 𝜙𝑎

𝑖, 𝑗,𝑘+1

)
+ cos

(
𝜙𝑏
𝑖, 𝑗,𝑘 − 𝜙𝑏

𝑖, 𝑗,𝑘+1 − 𝜙𝑐
𝑖, 𝑗 ,𝑘 + 𝜙𝑐

𝑖, 𝑗+1,𝑘

)] )
d𝝓,

5
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while for the observable we again take the plaquette expectation value

𝑂 [𝝓] = cos
(
𝜙𝑎

0,0,0 − 𝜙𝑎
0,1,0 − 𝜙𝑏

0,0,0 + 𝜙𝑏
1,0,0

)
.

In a more general way, the plaquette variable at a point (𝑖, 𝑗) can be written as

𝑃
𝑎,𝑏
𝑖, 𝑗

= Φ𝑎
𝑖, 𝑗Φ

𝑏
𝑖+1, 𝑗 (Φ

𝑎
𝑖, 𝑗+1)

−1(Φ𝑏
𝑖, 𝑗)−1 ≡ 𝑒

i
(
𝜙𝑎
𝑖, 𝑗

+𝜙𝑏
𝑖+1, 𝑗−𝜙𝑎

𝑖, 𝑗+1−𝜙𝑏
𝑖, 𝑗

)
. (5)

This generalized form allows us to formulate the path integral and the gauge invariant observables
by taking Φ𝛼

𝑖, 𝑗,...
from U(𝑁) or SU(𝑁) and taking the trace as well as real parts of (5). For the

physically relevant cases of the standard model, namely the weak interaction, or QCD (quantum
chromodynamics or strong nuclear force), the relevant groups are SU(2) and SU(3), respectively.

3. Recursive numerical integration and complexity results

We present in this section a strategy to approximate the integral (1) using iterated integration
and then replacing each of the iterated integrals by a numerical quadrature/cubature. We refer to
this method as recursive numerical integration. The method first uses the fact that the integral (1)
can be rewritten as

I =

∫
𝐷

· · ·
∫
𝐷

𝑓0
(
𝑥0, 𝑥1

)
𝑓1
(
𝑥1, 𝑥2

)
𝑓2
(
𝑥2, 𝑥3

)
· · · 𝑓𝐿−1

(
𝑥𝐿−1, 𝑥0

)
d𝑥0 · · · d𝑥𝐿−1

=

∫
𝐷

[ ∫
𝐷

· · ·
(∫

𝐷

(∫
𝐷

𝑓0
(
𝑥0, 𝑥1

)
𝑓1
(
𝑥1, 𝑥2

)
d𝑥1

)
𝑓2
(
𝑥2, 𝑥3

)
d𝑥2

)
· · · 𝑓𝐿−1

(
𝑥𝐿−1, 𝑥0

)
d𝑥𝐿−1

]
d𝑥0,

(6)

with 𝒙 = (𝑥0, . . . , 𝑥𝐿−1) and 𝑥𝐿 ≡ 𝑥0. Due to the periodicity assumption of the indices of the
variables, i.e, 𝑥𝐿 ≡ 𝑥0, we can start the iterated integration by choosing any variable of preference.
The integrand presented here exhibits what is called a first order coupling, which means that each
variable 𝑥𝑖 is coupled via the physical model to its nearest neighboring variables 𝑥𝑖−1 and 𝑥𝑖+1 in a
way that only these three variables are present in the iterated integration of the variable 𝑥𝑖 .

Recursive integration has been considered in e.g., [10, 15, 19, 20], but not for integrands with
parametric periodicity 𝑥𝐿 ≡ 𝑥0.

If we have an observable function that (i) depends only on one variable, or (ii) depends on two
consecutive variables as in the factors 𝑓𝑖 , or (iii) depends on many variables but takes the form of
a product of first order couplings as for the integrand in (1), we will also arrive at an integral that
can be expressed iteratively in the same manner as in (6). For all physical models considered in
this proceedings article, we have observable functions that affect at most two consecutive variables
(or can be decomposed into a direct sum of such functions) and therefore we can condense the
effect of the observable function into a new integrand factor which, without loss of generality, can
be included with the index 0 and be written as 𝑓★0

(
𝑥0, 𝑥1

)
:= 𝑂 [𝑥0, 𝑥1] 𝑓0

(
𝑥0, 𝑥1

)
. In the coming

sections, when the observable function is included in the integration, we will skip the ★ notation
and just mention that the integrand 𝑓0 may be different from the other integrands 𝑓𝑖 involved.

6



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
0
1
0

Lattice field computations via recursive numerical integration Frances Y. Kuo

When the iterated integrals are replaced by the same approximating quadrature rule with points
𝑡0, . . . , 𝑡𝑛−1 ∈ 𝐷 and weights 𝑤0, . . . , 𝑤𝑛−1 ∈ R, the resulting approximation scheme takes the form

Q =

𝑛−1∑︁
𝑘0=0

𝑤𝑘0

[ 𝑛−1∑︁
𝑘𝐿−1=0

𝑤𝑘𝐿−1 · · ·
( 𝑛−1∑︁
𝑘2=0

𝑤𝑘2

( 𝑛−1∑︁
𝑘1=0

𝑤𝑘1 𝑓0
(
𝑡𝑘0 , 𝑡𝑘1

)
𝑓1
(
𝑡𝑘1 , 𝑡𝑘2

) )
𝑓2
(
𝑡𝑘2 , 𝑡𝑘3

) )
· · · 𝑓𝐿−1

(
𝑡𝑘𝐿−1 , 𝑡𝑘0

) ]
. (7)

The recursive approximation procedure is then carried out as follows. Define 𝑀𝑖 to be the 𝑛×𝑛

matrix with entries

(𝑀𝑖)𝑝,𝑞 = 𝑓𝑖 (𝑡𝑝, 𝑡𝑞) for 𝑝, 𝑞 = 0, . . . , 𝑛 − 1, (8)

and let 𝑊 denote the 𝑛 × 𝑛 diagonal matrix with the weights 𝑤0, . . . , 𝑤𝑛−1 on the diagonal. Now
we can express the innermost sum in (7) as

𝑛−1∑︁
𝑘1=0

𝑤𝑘1 𝑓0
(
𝑡𝑘0 , 𝑡𝑘1

)
𝑓1
(
𝑡𝑘1 , 𝑡𝑘2

)
=

𝑛−1∑︁
𝑘1=0

(𝑀0)𝑘0,𝑘1𝑤
1/2
𝑘1

𝑤
1/2
𝑘1

(𝑀1)𝑘1,𝑘2

=

𝑛−1∑︁
𝑘1=0

(𝑀0𝑊
1/2)𝑘0,𝑘1 (𝑊1/2𝑀1)𝑘1,𝑘2 = (𝑀0𝑊𝑀1)𝑘0,𝑘2 .

Further we have

𝑛−1∑︁
𝑘2=0

𝑤𝑘2

( 𝑛−1∑︁
𝑘1=0

𝑤𝑘1 𝑓0
(
𝑡𝑘0 , 𝑡𝑘1

)
𝑓1
(
𝑡𝑘1 , 𝑡𝑘2

) )
𝑓2
(
𝑡𝑘2 , 𝑡𝑘3

)
=

𝑛−1∑︁
𝑘2=0

𝑤𝑘2 (𝑀0𝑊𝑀1)𝑘0,𝑘2 (𝑀2)𝑘2,𝑘3

= (𝑀0𝑊𝑀1𝑊𝑀2)𝑘0,𝑘3 .

This leads to

Q =

𝑛−1∑︁
𝑘0=0

𝑤𝑘0 (𝑀0𝑊𝑀1𝑊𝑀2𝑊 · · ·𝑀𝐿−1)𝑘0,𝑘0

=

𝑛−1∑︁
𝑘0=0

(𝑊1/2𝑀0𝑊𝑀1𝑊𝑀2𝑊 · · ·𝑀𝐿−1𝑊
1/2)𝑘0,𝑘0

= trace(𝐵), with 𝐵 = 𝑊1/2𝑀0𝑊𝑀1𝑊𝑀2𝑊 · · ·𝑀𝐿−1𝑊
1/2. (9)

The equation (9) defines what we call the recursive numerical integration approach. It shows a
clear advantage over the naive approach that could be used for approximation in (7) since the naive
approach can be interpreted as a product rule over the 𝐿 dimensional domain. If the quadrature rules
has 𝑛 points, this implies that the naive approach would have a cost equal to 𝑛𝐿 , i.e., exponential in
the dimension 𝐿. On the contrary, applying the recursive numerical integration approach we have an
evaluation procedure for the approximation of the integral that reduces the complexity significantly
and takes advantage of the particular structure of the matrices 𝑀𝑖 . The matrix structure is of course
a consequence of the structure of the underlying integrand factors 𝑓𝑖 and the chosen quadrature rule.

7
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Table 1 reviews the cases considered in the work [17] for different possibilities of matrices 𝑀𝑖

one can find in LQCD applications.
There are particular conditions on the integrand and quadrature rule that lead to great improve-

ments in terms of computational cost. In particular, if

1. each function 𝑓𝑖 depends only on the difference of the two arguments, i.e., 𝑓𝑖 (𝑢, 𝑣) = ^𝑖 (𝑣−𝑢)
for some function ^𝑖 : 𝐷 → R, and

2. each function ^𝑖 is periodic, and

3. we have equally spaced points with equal weights 1/𝑛 (i.e., we have the rectangle rule),

then the matrix 𝑀𝑖 is circulant and therefore FFT can be used to obtain the eigenvalues, see
Scenarios (A5)–(A7) in Table 1.

If we replace the domain 𝐷 in (1) by an 𝑠-dimensional domain 𝐷𝑠,

I =

∫
𝐷𝑠

· · ·
∫
𝐷𝑠

𝐿−1∏
𝑖=0

𝑓𝑖
(
𝒙𝑖 , 𝒙𝑖+1

)
d𝒙0 · · · d𝒙𝐿−1, (10)

where 𝒙𝑖 = (𝑥𝑖,0, . . . , 𝑥𝑖,𝑠−1) ∈ 𝐷𝑠, with

𝑥𝑖, 𝑗 ≡ 𝑥𝑖 mod 𝐿, 𝑗 mod 𝑠 for all 𝑖, 𝑗 ∈ N,

then the one-dimensional quadrature rule in (7) becomes an 𝑠-dimensional cubature rule with points
𝒕0, . . . , 𝒕𝑛−1 ∈ 𝐷𝑠 and weights 𝑤0, . . . , 𝑤𝑛−1 ∈ R, and the matrices 𝑀𝑖 in (8) become

(𝑀𝑖)𝑝,𝑞 = 𝑓𝑖 ( 𝒕𝑝, 𝒕𝑞) for 𝑝, 𝑞 = 0, . . . , 𝑛 − 1.

Scenarios (A0)–(A4) from Table 1 apply again in this case. The following conditions are sufficient
to ensure circulant matrices for the more favorable Scenarios (A5)–(A7):

1. each function 𝑓𝑖 depends only on the difference of the two arguments, i.e., 𝑓𝑖 (𝒖, 𝒗) = ^𝑖 (𝒗−𝒖)
for some function ^𝑖 : 𝐷𝑠 → R, and

2. each function ^𝑖 is periodic with respect to each of the 𝑠 components, and

3. we have a lattice cubature rule with points

𝒕𝑘 =
𝑘 𝒛 mod 𝑛

𝑛
for 𝑘 = 0, . . . , 𝑛 − 1,

and equal weights 1/𝑛.

A lattice cubature rule has an additive group structure. This means that the difference of two
lattice points is another lattice point. Since the lattice cubature rule has equal weights 1/𝑛, we obtain
circulant matrices 𝑀𝑖 . This particular fact is the main motivation for favoring lattice cubature rules
above all other cubature rules. The cost in all scenarios is independent of 𝑠. Nevertheless, the error
is O(𝑛−𝛼), where 𝛼 is determined by the cubature rule and the implied constant may depend on 𝑠.

8
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Table 1: Recursive numerical integration for first order couplings (Table taken from [17, Table 1])

• 𝑀𝑖 is the 𝑛 × 𝑛 matrix of 𝑓𝑖 at quadrature points.

• 𝑊 is an 𝑛 × 𝑛 diagonal matrix with quadrature weights on the diagonal.

• eig returns a diagonal matrix of eigenvalues.

• fft takes the first column of a circulant matrix and returns a diagonal matrix of eigenvalues.

• The quadrature error for all cases is O(𝑛−𝛼), with 𝛼 given by the performance of the quadrature rule.

• The scenarios and strategies extend to an 𝐿-fold product of 𝑠-dimensional integrals with the quadrature
rule replaced by an 𝑠-dimensional cubature rule. The cost remains independent of 𝑠. The error is
again O(𝑛−𝛼), with 𝛼 given by the performance of the cubature rule, and with an implied constant
dependent on 𝑠.

Scenario Strategy Cost
(A0) naive implementation Q = direct product calculation 𝑛𝐿

(A1) recursive integration
𝐵 = 𝑊1/2𝑀0𝑊𝑀1𝑊 · · ·𝑀𝐿−1𝑊

1/2

Q =
∑𝑛−1

𝑘=0 𝐵𝑘,𝑘

𝐿 𝑛3

(A2) 𝑀𝑖 = 𝑀

𝐴 = 𝑊1/2𝑀𝑊1/2

𝐵 = 𝐴𝐿

Q =
∑𝑛−1

𝑘=0 𝐵𝑘,𝑘

log(𝐿) 𝑛3

(A3) 𝑀𝑖 = 𝑀 diagonalizable
𝐴 = 𝑊1/2𝑀𝑊1/2

Λ = eig(𝐴)
Q =

∑𝑛−1
𝑘=0 Λ

𝐿
𝑘,𝑘

𝑛3

(A4) 𝑀𝑖 = 𝑀 except 𝑀0

𝐴 = 𝑊1/2𝑀𝑊1/2

𝐵 = 𝑊1/2𝑀0𝑊
1/2𝐴𝐿−1

Q =
∑𝑛−1

𝑘=0 𝐵𝑘,𝑘

log(𝐿) 𝑛3

(A5) 𝑀𝑖 circulant
Λ𝑖 = fft(𝑀𝑖/𝑛) for each 𝑖

Q =
∑𝑛−1

𝑘=0
∏𝐿−1

𝑖=0 (Λ𝑖)𝑘,𝑘
𝐿 𝑛 log(𝑛)

(A6) 𝑀𝑖 = 𝑀 circulant
Λ = fft(𝑀/𝑛)
Q =

∑𝑛−1
𝑘=0 Λ

𝐿
𝑘,𝑘

𝑛 log(𝑛)

(A7) 𝑀𝑖 = 𝑀 except 𝑀0
all circulant

Λ0 = fft(𝑀0/𝑛)
Λ = fft(𝑀/𝑛)
Q =

∑𝑛−1
𝑘=0 (Λ0)𝑘,𝑘 Λ𝐿−1

𝑘,𝑘

𝑛 log(𝑛)

9
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These strategies have been extended in [17] to higher order couplings of order 𝑟 , of the form

I =

∫
𝐷𝐿

𝐿−1∏
𝑖=0

𝑓𝑖
(
𝑥𝑖 , 𝑥𝑖+1, . . . , 𝑥𝑖+𝑟

)
d𝒙

=

∫
𝐷

· · ·
∫
𝐷

𝑓0
(
𝑥0, 𝑥1, . . . , 𝑥𝑟

)
𝑓1
(
𝑥1, 𝑥2, . . . , 𝑥𝑟+1

)
· · · 𝑓𝑟

(
𝑥𝑟 , 𝑥𝑟+1, . . . , 𝑥2𝑟

)
· · · 𝑓𝐿−1

(
𝑥𝐿−1, 𝑥0, 𝑥1, . . . , 𝑥𝑟−1

)
d𝑥0 · · · d𝑥𝐿−1.

The trick is to group successive 𝑟 functions into a new factor to form a product of 𝐿/𝑟 factors
(assuming for simplicity here that 𝐿 is a multiple of 𝑟), and then apply the recursive strategies to
these new factors. This yields analogous results to Scenarios (A1)–(A7), which are denoted by
Scenarios (B1)–(B7) in [17, Table 2]. In all scenarios the error is again O(𝑛−𝛼), with 𝛼 determined
by the quadrature/cubature rule, and the implied constant now depends on 𝑟.

4. Applications

In this section we consider applications of recursive numerical integration to the quantum rotor
and the 2D compact U(1) LGT problem. The interested reader can find numerical experiments for
these two models in our recent work [17].

4.1 The Quantum rotor

For the quantum rotor, the integrals for the numerator and denominator of the normalized path
integral ratio (3) are of the form ∫

𝐷𝐿

𝐿−1∏
𝑖=0

𝑓𝑖 (𝑥𝑖+1 − 𝑥𝑖) d𝒙,

where we have, after a change of variables, 𝐷 = [0, 1] and

𝑓𝑖 (𝑥) = 𝑓 (𝑥) = exp(𝛽 cos(2𝜋𝑥)) for all 𝑖 = 0, . . . , 𝐿 − 1.

The only exception is that in the numerator integral we replace 𝑓0 by

𝑓0(𝑥) = cos(2𝜋𝑥) exp(𝛽 cos(2𝜋𝑥)).

With a slight abuse of notation comparing with (6), here we have the (special) case 𝑓𝑖 (𝑢, 𝑣) =
^𝑖 (𝑣 − 𝑢) ≡ 𝑓𝑖 (𝑣 − 𝑢), which means that each integrand factor 𝑓𝑖 (𝑢, 𝑣) can be considered in fact as
a function of one single variable by taking the difference of the two arguments 𝑢, 𝑣. The resulting
functions ^𝑖 ≡ 𝑓𝑖 are periodic and therefore we know that for the rectangle quadrature rule we have
Scenario (A7) in Table 1, and thus the numerical integration cost becomes O(𝑛 log(𝑛)).

The interesting case of higher order couplings for the quantum rotor arise when we consider
higher order finite difference approximations of the physical discretization of the action in con-
tinuum (2). For example, the central difference formula (−𝑥𝑖+2 + 8𝑥𝑖+1 − 8𝑥𝑖−1 + 𝑥𝑖−2)/(12ℎ) of
order ℎ4 leads to (now with 𝛽 = 𝐼𝐿2/(144𝑇2))∫

𝐷𝐿

𝐿−1∏
𝑖=0

𝑓
(
− 𝑥𝑖+2 + 8𝑥𝑖+1 − 8𝑥𝑖−1 + 𝑥𝑖−2

)
d𝒙,

10
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which has order 𝑟 = 4. This case can be solved using 4-dimensional lattice cubature rules combined
with recursive numerical integration, following [17, Scenario (B4) in Table 2].

4.2 The 2D compact U(1) lattice gauge theory model

Now we consider the model (4) which can be expressed in the generic form

I =

∫
𝐷𝐿2

∫
𝐷𝐿2

𝐿−1∏
𝑖=0

𝐿−1∏
𝑗=0

𝑓𝑖, 𝑗

(
𝑥𝑎𝑖, 𝑗 − 𝑥𝑎𝑖, 𝑗+1 − 𝑥𝑏𝑖, 𝑗 + 𝑥𝑏𝑖+1, 𝑗

)
d𝒙𝑎 d𝒙𝑏 .

After a change of variables, we have 𝐷 = [0, 1] and

𝑓𝑖, 𝑗 (𝑥) = 𝑓 (𝑥) = exp(𝛽 cos(2𝜋𝑥)) for all 𝑖, 𝑗 = 0, . . . , 𝐿 − 1.

To include the observable, in the numerator integral we will replace 𝑓0,0 by

𝑓0,0(𝑥) = cos(2𝜋𝑥) exp(𝛽 cos(2𝜋𝑥)).

All these functions are clearly periodic. Below we will outline three stages to simplify the problem.

STAGE ONE

By rearranging the variables in the 𝑎-direction and the 𝑏-direction, we can write

I =

∫
𝐷𝐿2

𝐿−1∏
𝑖=0

( ∫
𝐷𝐿

𝐿−1∏
𝑗=0

𝑓𝑖, 𝑗

(
𝑥𝑎𝑖, 𝑗 − 𝑥𝑎𝑖, 𝑗+1 − 𝑥𝑏𝑖, 𝑗 + 𝑥𝑏𝑖+1, 𝑗

)
d𝒙𝑎𝑖︸                                                       ︷︷                                                       ︸

=: 𝑔𝑖
(
𝒙𝑏
𝑖+1 − 𝒙𝑏

𝑖

)
)

d𝒙𝑏,

where we used the fact that each factor over the index 𝑖 depends only on 𝒙𝑎
𝑖
, and wrote the integral

over 𝒙𝑎 ∈ 𝐷𝐿2 as a product of integrals over 𝒙𝑎
𝑖
= (𝑥𝑎

𝑖,0, . . . , 𝑥
𝑎
𝑖,𝐿−1) ∈ 𝐷𝐿 . This leads to

I =

∫
𝐷𝐿

· · ·
∫
𝐷𝐿

𝐿−1∏
𝑖=0

𝑔𝑖
(
𝒚𝑖+1 − 𝒚𝑖

)
d𝒚0 · · · d𝒚𝐿−1, (11)

where

𝑔𝑖 (𝒚) :=
∫
𝐷𝐿

𝐿−1∏
𝑗=0

𝑓𝑖, 𝑗
(
𝑥 𝑗 − 𝑥 𝑗+1 + 𝑦 𝑗

)
d𝒙. (12)

Thus we have obtained a nested integration problem where for the outer integral (11) we have
an integrand with first order couplings of the form (10) (with 𝑠 replaced by 𝐿), and for the inner
integral (12) we have first order couplings given by (6) at each input 𝑖 and 𝒚. Then, the results in
Table 1 apply for both the inner and outer integrals. If we use an 𝑛-point rectangle rule for the
inner integral and an 𝑁-point lattice cubature rule for the outer integral, and if the functions 𝑓𝑖, 𝑗 are
periodic (thus so are the functions 𝑔𝑖), then we will fall under Scenarios (A5)–(A7) for the inner
and outer integrals. Furthermore, if all functions 𝑓𝑖, 𝑗 are the same, then the final cost is of order

𝑁 log(𝑁) + 𝑁 𝑛 log(𝑛) .

The cost is independent of 𝐿, while the error is of order 𝑁−𝛼 +𝑛−𝛼, with 𝛼 given by the smoothness
of the functions and the underlying lattice rule, with an implied error constant that may depend
exponentially on 𝐿.

11
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STAGE TWO

The next two lemmas show that the problem can be simplified further for this particular model
with periodic functions 𝑓𝑖, 𝑗 . The proofs can be found in [17].

Lemma 1 ([17]). Assume the functions 𝑓𝑖, 𝑗 are periodic. Then the inner integral (12) simplifies to

𝑔𝑖 (𝒚) = 𝑔𝑖

( ∑𝐿−1
𝑗=0 𝑦 𝑗 , 0, . . . , 0

)
= 𝑔𝑖

( ∑𝐿−1
𝑗=0 𝑦 𝑗 , 0

)
, (13)

that is, 𝑔𝑖 (𝒚) depends only on the sum of the components of 𝒚.

Lemma 2 ([17]). Assume the functions 𝑓𝑖, 𝑗 are periodic. Then the outer integral (11) simplifies to

I =

∫
𝐷𝐿

𝐿−1∏
𝑖=0

𝑔𝑖
(
𝑦𝑖+1 − 𝑦𝑖 , 0

)
d𝒚. (14)

The last transformation in Lemma 2 leaves the outer integral (14) in the form of (6) and so
there is no longer a need to use a lattice cubature rule. By taking now an 𝑛-point rectangle rule for
both the inner and outer integrals, Scenario (A7) applies in both cases and the cost becomes

𝑛2 log(𝑛) .

The cost is again independent of 𝐿. The approximation error is then O(𝑛−𝛼), where 𝛼 depends on
the smoothness of the functions, but importantly, the implied constant no longer depends on 𝐿.

STAGE THREE

An alternative approach based on Fourier series was used in [17] to simplify the expression
even further, as shown in the following theorem. The proof can be found in [17].

Theorem 1 ([17]). Suppose that the functions 𝑓𝑖, 𝑗 are periodic and have absolutely convergent
Fourier series. Define `𝑖+ 𝑗𝐿 := 𝑓𝑖, 𝑗 for 𝑖, 𝑗 = 0, . . . , 𝐿 − 1. Then the integral (11), with inner
integral (12), simplifies to

I =

∫
𝐷𝐿2

𝐿2−1∏
𝑘=0

`𝑘

(
𝑥𝑘+1 − 𝑥𝑘

)
d𝒙, (15)

where now the parametric periodicity is to be taken modulo 𝐿2, i.e., 𝑥𝑘 ≡ 𝑥𝑘 mod 𝐿2 .

Theorem 1 shows that, instead of nested integrals, we now have a single integral (15) with
dimensionality 𝐿2 of the form (6), with 𝐿 replaced by 𝐿2. We are again in Scenario (A7) with an
𝑛-point rectangle rule and the cost is only of order

𝑛 log(𝑛) ,

and the error is O(𝑛−𝛼). Both the cost and the error bound are independent of 𝐿.

12
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5. Summary

This proceedings article reviews our recent work published in [17]. We presented very high-
dimensional integrals exhibiting a special strucure, that arise from models such as the quantum
rotor and the 2D compact𝑈 (1) LGT. The numerical methods presented here and in [17] extend the
ones presented in [3, 18]. In particular, here and in [17] we investigated in detail the advantages of
applying FFT and gave sufficient conditions in order to meet the requirements of FFT application.
The latter conditions may apply to other LQCD models than the ones presented in this work.
Executable Julia codes were provided in [17] together with some numerical results.

The use of lattice cubature rules can be beneficial and even essential when we have an 𝐿-fold
product of 𝑠-dimensional integrals, in order to meet the sufficient conditions to apply FFT. These
improvements are not limited to systems with first order couplings. As shown in [17] they can be
extended to systems with higher order couplings. In the latter case, the problems can still be truly
high dimensional.

The application examples of the quantum rotor and 2D compact 𝑈 (1) LGT are encouraging
us to look more deeply and to further investigate potential advantages on truly difficult problems in
3D and 4D compact SU(𝑁) LGT. We are currently investigating the latter problems using recursive
numerical integration techniques.
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