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The design of parametric quantum circuits (PQCs) for efficient use in variational quantum

simulations (VQS) is subject to two competing factors. On one hand, the set of states that can

be generated by the PQC has to be large enough to contain the solution state. Otherwise, one

may at best find the best approximation of the solution restricted to the states generated by the

chosen PQC. On the other hand, the PQC should contain as few parametric quantum gates as

possible to minimize noise from the quantum device. Thus, when designing a PQC one needs to

ensure that there are no redundant parameters. The dimensional expressivity analysis discussed

in these proceedings is a means of addressing these counteracting effects. Its main objective is to

identify independent and redundant parameters in the PQC. Using this information, superfluous

parameters can be removed and the dimension of the space of states that are generated by the

PQC can be computed. Knowing the dimension of the physical state space then allows us to

deduce whether or not the PQC can reach all physical states. Furthermore, the dimensional

expressivity analysis can be implemented efficiently using a hybrid quantum-classical algorithm.

This implementation has relatively small overhead costs both for the classical and quantum part

of the algorithm and could therefore be used in the future for on-the-fly circuit construction. This

would allow for optimized circuits to be used in every loop of a VQS rather than the same PQC

for the entire VQS. These proceedings review and extend work in [1, 2].
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1. Introduction

The fast development of noisy intermediate-scale quantum (NISQ) computers [3] builds the

foundation for a large class of computational problems that cannot be solved efficiently with classical

computers to be addressed with quantum devices. Such applications of quantum computing include

machine learning [4], finance [5], various optimization problems [6, 7], as well as physics. A great

advantage of quantum computation in physics is that it can circumvent the sign problem which

prevents Monte Carlo simulations of many strongly correlated quantum-many body problems [8].

Although current quantum hardware is of limited size and suffers from a considerable level of

noise, NISQ devices have already successfully demonstrated their ability to outperform classical

computers [9, 10] and techniques for mitigating the effects of noise are rapidly developing [11–15].

An important class of algorithms designed for NISQ devices are variational quantum simu-

lations (VQSs) [16, 17]. These are hybrid quantum-classical algorithms for solving optimization

problems and make use of parametric quantum circuits (PQCs), i.e., quantum circuits composed of

parameter dependent gates. VQSs generally consist of a classical feedback loop optimizer that aims

to minimize a given cost function which can be evaluated efficiently using the quantum device as a

co-processor. In many cases, the cost function is related to the energy of the quantum state prepared

on the quantum device by the PQC at a given set of parameters. As such, VQSs are naturally attuned

to applications in quantum many-body systems in quantum chemistry [12, 16, 18, 19], as well as in

quantum mechanics and quantum field theory [20–24].

Since VQSs intrinsically depend on the design of PQCs, finding a good or optimal PQC is

paramount. This naturally leads to counteracting effects that need to be balanced. For example,

in order to be able to find the solution, a PQC needs to have many parameters. If there are too

few parameters, there will be physically relevant states which cannot be expressed with the given

PQC. However, many parameters means many gates and thus large noise. Being able to express

all physically relevant states is therefore one measure for being a “good” PQC. Taking this point

of view, an “optimal” PQC would not only be maximally expressive (the circuit can generate all

relevant states) but also minimal (there are no redundant parameters, i.e., removing any parameter

would reduce the set of states the PQC can generate). Analyzing PQCs from this point of view is

the main objective of the dimensional expressivity analysis (DEA) [1, 2].

In these proceedings, we will review the theoretical background of the DEA in section 2 and

the hardware implementation in section 3. In section 4 we will review physical state spaces, which

allows us to find a termination condition for PQC construction schemes that can have arbitrarily

many parameters, and which allows us to automate custom circuit designs. In particular, the here

presented automated circuit design explicitly extend the results of [1]. Finally, we will review

best-approximation error estimates in section 5 and provide some concluding remarks in section 6.

2. Theoretical Background

In this section, we will discuss the theoretical background of the dimensional expressivity

analysis. At the most fundamental level, the DEA aims to identify redundant parameters in a given

PQC. To this end, we consider a parametric quantum circuit to be a map � from some parameter

space P into the state space S. The state space S may be the entire state space of the quantum
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device or just contain the physically relevant states. As such, the PQC includes the quantum device

initialization, and for each set of parameters o ∈ P, � (o) is a state of the quantum device. For

example,

|0〉 '. (o1) '/ (o3) • '. (o5) '/ (o7)

|0〉 '. (o2) '/ (o4) '. (o6) '/ (o8)

is a PQC on a two-qubit device with initial state |0〉 ⊗ |0〉. The parametric gates in this circuit

are rotation gates '� (o) = exp
(
− 8

2
o�

)
, where � is a Pauli matrix . or / depending on the

gate. For the purpose of these proceedings, we will restrict our considerations to such rotation

gates '� with � = -,., / . We refer to [1, 2] for treatments of more general gates, such as

� = CNOT(2, C) or � =
∑&−1

@=0
-@-@+1 where -@ is a Pauli - gate acting on qubit @. In complete

generality, any parametric dependence on the unitary operation performed on the quantum device

can be considered.

2.1 Identification of redundant parameters

A parameter o: is considered to be redundant if a small change of o: keeping all other o 9 fixed

produces a state that can also be obtained by keeping o: fixed and adjusting all other o 9 accordingly.

Geometrically speaking, this means that the partial derivative m:� (o) of � with respect to o: is a

linear combination of the remaining partial derivatives m 9� (o). This can be checked inductively

by considering the real partial Jacobians �: of �,

�: (o) =

(
ℜm1� (o) · · · ℜm:� (o)

ℑm1� (o) · · · ℑm:� (o)

)
. (1)

As long as o1 is non-trivial, �1 will always have rank 1. Adding the column for m2�, we can check

whether �2 has rank 2. If that is the case, then we move on to the next parameter. If adding a

column for m:� does not increase the rank of �: , then o: is redundant and can be set constant.

This effectively removes the parameter and thus the corresponding column in �: . Eventually,

either all parameters have been checked and classified as independent/redundant or the number of

independent parameters found equals the dimension of S. In the latter case, we can stop the analysis

as all further parameters must necessarily be dependent.

It should be noted that the choice of the real partial Jacobian is necessitated by the fact that

our parameter space P is commonly a real manifold. Thus, the linear dependence check has to be

performed with respect to linear combinations in R as opposed to C.

To check the rank of �: efficiently, we usually consider the matrix (: = �∗
:
�: instead. Since,

by induction, we can assume that �:−1 has full rank, �: has full rank if and only if all eigenvalues of

(: are strictly positive. Thus, computing the smallest eigenvalue of (: (or otherwise checking (:

for invertibility) only has a computational complexity in O(:3) and does not require working with

the �: directly which are of dimension 2&+1 × : where & is the number of qubits. Alternatively, if

the number of parameters # for a given PQC is fixed (i.e., the PQC is not given by a construction

that can use arbitrarily many parameters), computing the reduced row echelon form of (# can also

identify all independent parameters.
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2.2 Two Bloch sphere examples

To illustrate the analysis, let us consider two quantum circuits on a single qubit. The first circuit

will have two independent parameters. The second circuit will have one dependent parameter.

2.2.1 A minimal circuit

The first circuit we want to consider is � (o) = '/ (o2)'- (o1) |0〉. Using |0〉 and |1〉 as a basis

of the single-qubit Hilbert space, we can write

� (o) ='/ (o2)'- (o1) |0〉 =

(
cos

o1

2
cos

o2

2
− 8 cos

o1

2
sin

o2

2

−8 sin
o1

2
cos

o2

2
+ sin

o1

2
sin

o2

2

) (
|0〉

|1〉

)
, (2)

which yields

�1 =
1

2

©«

− sin
o1

2
cos

o2

2

cos
o1

2
sin

o2

2

sin
o1

2
sin

o2

2

− cos
o1

2
cos

o2

2

ª®®®®¬
and �2 =

1

2

©«

− sin
o1

2
cos

o2

2
− cos

o1

2
sin

o2

2

cos
o1

2
sin

o2

2
sin

o1

2
cos

o2

2

sin
o1

2
sin

o2

2
− cos

o1

2
cos

o2

2

− cos
o1

2
cos

o2

2
sin

o1

2
sin

o2

2

ª®®®®¬
(3)

and hence

(1 = �∗1�1 =
1

4
and (2 = �∗2�2 =

(
1
4

0

0 1
4

)
. (4)

Both (1 and (2 are invertible. This implies that both parameters are independent. Since neither

parameter can be removed without reducing the expressivity of the circuit, this circuit is minimal.

2.2.2 A reducible circuit

If instead we consider the circuit � (o) = '- (o2)'- (o1) |0〉, then the same analysis yields

(1 = �∗1�1 =
1

4
and (2 = �∗2�2 =

1

4

(
1 1

1 1

)
. (5)

Here, (1 is invertible, i.e., the first --rotation gate is independent. However, (2 is not invertible

and we have correctly identified that the second --rotation has no contribution to the circuit that

cannot already be achieved with the first --rotation. Thus, o2 is redundant and can be removed,

that is, it can be set to a constant value. Depending on the circumstances, this constant value could

be chosen to be 0, thus removing the gate from the circuit, or it may be advantageous to keep o2 at

a non-trivial value. The latter would be more common in experimental setups where the dependent

parameter may be a pulse duration and thus only certain values are experimentally viable, or this

choice may be employed in on-the-fly circuit construction with seamless switching [1].

2.3 Removal of unwanted symmetries

An important extension to the basic parameter identification is the ability to remove unwanted

symmetries from a PQC. This may occur if a PQC should be constructed to be invariant under some

symmetry that has no impact on the cost function, e.g., gauge invariance or more simply a global

4
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phase symmetry. As the symmetry has no impact on the cost function, removing any parameters

that only contribute this symmetry would further improve the efficiency of many classical feedback

loop optimizers used in the VQS. Moreover, this would likely reduce the amount of device noise

because fewer gates need to be employed in the PQC.

To remove the unwanted symmetry, we need to formally extend the PQC � (o) to a larger

circuit �̃ (i, o) in such a way that (a) keeping o fixed and varying i only changes �̃ (i, o) by the

action of the unwanted symmetry and (b) there exists a i0 such that �̃ (i0, o) = � (o).

For example, let us consider the circuit � (o) = '. (o3)'/ (o2)'- (o1) |0〉. This circuit is

minimal and can generate every single-qubit state. Thus, for every o ∈ (R/2cZ)3 and U ∈ * (1),

there exists a o′ such that � (o′) = U� (o). In this sense, � has a global phase symmetry. To

remove this symmetry, we extend � to the circuit �̃ (i, o) = '. (o3)'/ (o2)'- (o1)'/ (i) |0〉.

Thus, keeping o fixed and changing i → i′ only produces a phase change 4−8
i′−i

2 (property (a))

and �̃ (0, o) = � (o) (property (b)).

To finally remove the unwanted symmetry, we perform the DEA checking the parameters i

before o. This ensures that the unwanted symmetry is generated using i, and any parameter o:

that only contributes the unwanted symmetry will now be dependent on i and all o 9 with 9 < : .

Setting i to i0 in the reduced circuit successfully removes the unwanted symmetry from the PQC.

In the case of �̃ (i, o) = '. (o3)'/ (o2)'- (o1)'/ (i) |0〉, DEA shows that o3 is dependent,

i.e., we can reduce the circuit to �̃A (i, o) = '/ (o2)'- (o1)'/ (i) |0〉 which is still maximally ex-

pressive on a single qubit. Setting i = 0 thus yields the reduced circuit�A (o) = '/ (o2)'- (o1) |0〉

which can generate arbitrary single-qubit states up to a global phase.

3. Hardware Implementation

If the DEA is to be used for quantum circuits on many qubits and even in on-the-fly circuit con-

struction/optimization, then an efficient automation of the process is paramount. In subsection 2.1

we have noted that the : × : matrices (: = �∗
:
�: need to be checked for invertibility. For PQCs with

# parameters, this invertibility check can be performed for all : with O(#2) memory requirements

and O(#4) CPU calls. However, a classical computation of the (: requires O(# 2&+1) compu-

tational resources where & is the number of qubits. This is prohibitively expensive in the scaling

limit. Thus, the computation of (: should make use of the quantum device.

Considering (: = �∗
:
�: , we note that the (<, =)-element of (: is given byℜ〈m<� (o), m=� (o)〉.

Furthermore, if each parametric gate in� is a rotation gate '�<
, then m<� (o) = − 8

2
W< |init〉, where

W< |init〉 is the circuit � (o) with an additional gate �< inserted after '�<
(o<), and |init〉 is the

initial state of the quantum device. Thus, the (<, =)-element of (: is given by 1
4
ℜ 〈init| W∗<W= |init〉

and the computational objective becomes measuring ℜ 〈init| W∗<W= |init〉 on the quantum device.

To measure ℜ 〈init| W∗<W= |init〉 on the quantum device, we can construct the state [25]

��k<,=

〉
=

|0〉 ⊗ (W< |init〉 + W= |init〉) + |1〉 ⊗ (W< |init〉 − W= |init〉)

2
(6)

since measuring the ancilla of
��k<,=

〉
yields

prob(ancilla = |0〉) =
1 + ℜ 〈init| W∗<W= |init〉

2
. (7)

5
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4. Physical state spaces

Since the quantum device state space grows exponentially with the number of qubits, having

maximally expressive PQCs on the entire quantum device state space requires exponentially many

parameters as well. This quickly leads to situations in which maximally expressive circuits are not

computationally viable. However, in many physically relevant models, it is not necessary to have

maximally expressive PQCs on the entire quantum device state space, since physical symmetries

restrict the physically relevant state space to a dimension that grows only polynomially in the number

of qubits. Thus, if we can construct a PQC that satisfies many of the physically relevant symmetries,

then we only need polynomially many parameters and might be able to further reduce the number

of parameters by removing any unwanted symmetries (cf., subsection 2.3).

For example, if we consider translational symmetry, then any physical state has to be invari-

ant under the translation operator g& which maps the computational basis state
��1&−1 . . . 10

〉
to��1&−2 . . . 101&−1

〉
, i.e., g3( |101〉) = |011〉. In general, we may consider a symmetry operator g on

& qubits. Then, the physical sectors are intersections of the eigenspaces of g with the quantum

device state space, i.e., the unit spheres in the eigenspaces of g.

To analyze such physical sectors [1], we consider the action of g on the computational basis

and construct equivalence classes of states under the action of g. Hence, |k〉 ∼g |i〉 if |k〉 = g 9 |i〉

for some 9 . In case of translational symmetry, |011〉 ∼g3
|101〉 but |011〉 ≁g3

|001〉. As such, we

obtain equivalence classes [|1〉] and the order of an equivalence class is the number of elements in

the equivalence class, i.e., [|011〉] = {|011〉 , |110〉 , |101〉} has order 3. Similarly, the eigenvalues

of g have an order. For the translational invariance case, the eigenvalues are roots of unity l and

their order is the smallest 9 ≥ 1 with l 9
= 1. This implies that an equivalence class [|1〉] can be

mapped into the physical sector of an eigenvalue l if the order of l divides the order of [|1〉].

Explicitly, for translational invariance, the basis vectors of this mapping can be chosen to be

4(l, [|1〉]) =
1√

order( [|1〉])

order( [ |1〉])−1∑
9=0

l 9g
9

&
|1〉 . (10)

This allows us to compute the dimension of the physical sector corresponding to the eigenvalue l

with order 3 on & qubits as [1]

dimR(Physical Sector of l) = −1 + 2
∑
3 |: |&

#(:)

:
(11)

where #(1) = 2 and #(:) = 2: −
∑

:′ |:,:′<: #(: ′).

Equation 11 is also the number of independent parameters that a maximally expressive PQC

mapping into this sector has. Hence, once this number of independent parameters is reached, all

other parameters that a PQC may have must necessarily be redundant.

4.1 Automatic custom circuit construction

In this section, we will extend the results of [1] to explicitly address the question of automating

the custom circuit construction described in [1]. More precisely, the equivalence class construction

can be exploited for automatic custom circuit design. We will first discuss how to construct the

7
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gates from the equivalence relations. As a second step, we will order the constructed gates based

on how complicated they are to obtain an inductive automation process.

As an example, let us consider the case of the l = 1 sector of translational invariance on

& qubits. Based on Eq. (10), we can write the states in this sector of the form 4 [ |�〉] = 4(1, [|�〉]) =

{order( [|�〉])}−1/2 ∑
|1〉∈[ |�〉] |1〉. If we consider the point |0〉, then we need to construct parametric

gates whose derivatives at |0〉 point into the directions 4 [ |�〉] both with a real and an imaginary

coefficient.

Starting with |�〉 ≠ |0〉, we first aim to construct a gate that generates a component in direction

4 [ |�〉] with an imaginary coefficient. For this, we can consider the gate

'-� (o) = exp
©«
−8

o

2

order( [ |�〉])−1∑
9=0

-
g
9

&
|�〉ª®¬

, (12)

where -1
= -

1&−1

&−1
⊗ · · · ⊗ -

10

0
. Then, '′

-� (0) |0〉 = − 8
2
(order( [|�〉]))1/2 4 [ |�〉] , i.e., this gate

generates a component in direction 84 [ |�〉] at |0〉.

As a next step, we aim to construct a gate that generates a component in direction 4 [ |�〉] with

a real coefficient. Since � = �&−1 . . . �0 ≠ 0, at least one of the � 9 is not 0, and we can choose

one qubit 9 and replace -
� 9

9
with .

� 9

9
. For example, for � = 101, �0 ≠ 0 and -�

= -2 ⊗ -0 is

changed to -2 ⊗ .0. For the translational symmetry in Equation 12, -2 ⊗ .0 is shifted in the qubit

index through the action of g
9

&
, which creates operators - 9+2 ⊗ . 9 . Summing all these operators to

replace the sum in Equation 12 results in a gate '(- |. )� (o), e.g.,

'(- |. )101 (o) = exp

(
−8

o

2
(-2 ⊗ .0 + -0 ⊗ .1 + -1 ⊗ .2)

)
. (13)

By replacing exactly one - with . , '(- |. )� generates a component in direction 4 [ |�〉] at |0〉.

All these gates '-� and '(- |. )� for � ≠ 0 have independent parameters, as can be verified

using DEA. The number of parameters is exactly one fewer than the dimension of the physical state

space, and the missing gate at |0〉 should generate a component in the 8 |0〉 direction. This can be

achieved with a translationally invariant /-rotation gate

'/,& (o) = exp
©«
−8

o

2

&−1∑
@=0

/@
ª®¬
. (14)

Considering the set of gates '/,&, '-� and '(- |. )� , we can “order” them with respect to the

number of - or . gates acting simultaneously in each summand of the exponent in Equation 12.

As such, '/,& is an order-0 gate and a gate of order : corresponds to '-� or '(- |. )� , where �

has exactly : values � 9 = 1. This allows for the process to be automated by inductively generating

more complicated gates. Using translational invariance and the fact that we are always summing

over all elements of an equivalence class [|�〉], we can choose a “canonical” representative � of

[|�〉] by assuming �0 = 1 and �&−1 = 0. This reduces the automation procedure to a combinatorial

problem with complexity that is comparable to the dimensional scaling of the physical state space

dimension. In other words, if the physical state space grows polynomially in the number of qubits,

then this approach generates minimal and maximally expressive custom circuits with polynomially

many parameters.

8
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5. Best-approximation error

In some cases, having maximally expressive circuits may still be computationally too costly,

even with targeted custom circuits that only generate physically relevant states. Thus, it is necessary

to settle for non-maximally expressive PQCs. This means that some physically relevant states

cannot be reached by the PQC� and thus cannot be expressed as a state� (o). In this case, we wish

to compute the worst-case distance between a physically relevant |k〉 and the closest state � (o).

This worst-case distance is the (worst-case) best-approximation error U� of the circuit �.

In order to approximateU� , we generate a discrete sample setD of # points� (o1), . . . , � (o# ).

If every point � (o) is Y-close to at least one point in D, then we can compute the worst-case best-

approximation error UD
�

with respect to points in D, rather than the entire image of �, and obtain

UD
�
− Y ≤ U� ≤ UD

�
[2]. Thus, if D becomes dense for # → ∞, we obtain UD

�
→ U� , and for each

n , we find a lower and upper bound on U� . Since D is a finite discrete set, we can compute UD
�

using

Voronoi diagrams [27, 28] in the physical state space. In particular, choosing D using a scrambled

Sobol’ sequence in parameter space shows a convergence of UD
�

→ U� that is comparable to the

theoretically optimal rate of convergence [2]. However, since the Voronoi diagram computation is

classical, we need an efficient mapping of the quantum states� (o 9) in D into classical memory. We

proposed [2] to do this by constructing a basis transformation from the linear space spanned by D

to RdimR S+1, where S is the relevant state space. To this end, we need to compute ℜ〈� (o 9), � (o:〉,

which we can perform efficiently using the circuit (8). Thus, if the physically relevant state space

has polynomial scaling in the number of qubits, then this hybrid quantum-classical algorithm of

computing UD
�

is as efficient as the Voronoi diagram computation.

Since computing Voronoi diagrams for large D still requires significant computational re-

sources, it may be useful to have a more computationally efficient lower-bound estimate of U� . If �

is known to be non-maximally expressive, then we can show U� & 4c
dimM

2 +1
Γ

(
dim M

2

)−1

vol(M)−1,

where M is the image manifold of � [2]. Assuming � is minimal (as can be ensured using DEA),

dimM is the number of parameters in � and vol(M) =
∫
P

√
det 6(o)3volP (o) can be computed

using a suitable quadrature rule in the parameter space P. Most importantly, 6 is the same matrix

as (# in subsection 2.1, i.e., we already know an efficient hybrid quantum-classical algorithm to

compute this lower-bound estimate on U� . Furthermore, we have observed that this lower-bound

estimate is tight for spiral circuits on a single qubit [2].

6. Conclusion

Given a parametric quantum circuit (PQC), DEA [1, 2] allows us to identify redundant pa-

rameters in the PQC, i.e., parameters that do not increase the set of states the PQC can generate.

This identification is based on an inductive procedure described in subsection 2.1, which can be

automated and efficiently implemented using the hybrid quantum-classical algorithm proposed in

section 3. The single-qubit experimental results of subsection 3.1 and [1] demonstrate that we can

reliably classify parameters. However, we have observed in [1] that current levels of hardware

noise notably affect DEA on multiple qubits. It is therefore prudent to employ low-overhead error

mitigation techniques if DEA is to be used for on-the-fly circuit construction/optimization.

9
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For efficient use of the DEA, it is beneficial to start with a PQC design that takes certain

physical symmetries into account (section 4) or is at least partially optimized [2]. Then, the

PQC can be further optimized by removing any unwanted symmetries (subsection 2.3. A partially

optimized starting point could be a minimal and maximally expressive circuit on the entire quantum

device state space as proposed in [2]. Alternatively, physical symmetries can be used for efficient

termination conditions for parameter checks and automatic custom circuit construction (section 4).

Despite our optimization procedure, there may be cases in which it is be too computationally

costly to have a maximally expressive PQC, e.g., due to hardware limitations. In these cases, a

suitable candidate PQC can be chosen as a starting point and DEA can still provide minimal PQCs

with the same expressivity the initial candidate PQC has. Furthermore, the DEA can be extended

to include a priori estimates of the best-approximation error through the ideas outlined in section 5.

In particular, lower bounds on the best-approximation error can be achieved with a computational

overhead comparable to the DEA overhead for the given circuit itself. This can be extended to

obtain asymptotically tight lower and upper bounds using a Voronoi diagram-based approach.

Of course, for current NISQ devices, the application range of DEA is still limited. To make

DEA an integral part of PQC design, construction, and optimization, there are two main obstacles

to overcome. On the one hand, hardware noise is still a limiting factor as we need to reliably

identify the redundant and independent parameters. Thus, we need less noisy quantum hardware

and low-overhead error mitigation techniques or even employ quantum error correction once the

hardware is sufficiently advanced. On the other hand, DEA only optimizes parametric gates and

thus needs to be combined with non-parametric gate optimization techniques. The latter usually

use different principles than DEA which makes it difficult to combine the methods. Thus, a unified

approach of DEA and non-parametric optimization techniques would be a major step forward.
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