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Abstract In lattice field theory, the interactions of elementary particles can be com-
puted via high-dimensional integrals. Markov-chain Monte Carlo (MCMC) methods
based on importance sampling are normally efficient to solve most of these integrals.
But these methods give large errors for oscillatory integrands, exhibiting the so-called
sign-problem. We developed new quadrature rules using the symmetry of the con-
sidered systems to avoid the sign-problem in physical one-dimensional models for
the resulting high-dimensional integrals. This article gives a short introduction to
integrals used in lattice QCD where the interactions of gluon and quark elementary
particles are investigated, explains the alternative integration methods we developed
and shows results of applying them to models with one physical dimension. The
new quadrature rules avoid the sign-problem and can therefore be used to perform
simulations at until now not reachable regions in parameter space, where the MCMC
errors are too big for affordable sample sizes. However, it is still a challenge to
develop these techniques further for applications with physical higher-dimensional
systems.
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1 Introduction

Monte Carlo (MC) methods are in general very efficient to solve high-dimensional
integrals. They use the law of large numbers to approximate an integral with quadra-
ture rules that use random sampling points. But MC methods are highly inefficient
for oscillatory integrand functions, e.g. the function shown in Figure 1a. An exact
integration of oscillatory functions would, of course, result in the cancellation of
large negative and positive contributions to the integral - in the example in Figure 1a
this would give an integral of zero. However, the random choice of sampling points
in MC methods, shown as black points in Figure 1a, does lead only to approximate
cancellation when the number of points is relatively big and hence, it is very difficult
to obtain accurate results with affordable sample sizes. This non-perfect cancellation
of negative and positive parts in the integration method, usually resulting in large
quadrature rule errors, is called the sign-problem. The sign-problem is for example
the reason why important physical interactions in the early universe cannot be simu-
lated which could explain why there is more matter than anti-matter in our universe
today. To acquaint better knowledge of these fundamental phenomena, it is essential
to develop alternative quadrature rules to MC that avoid the sign-problem.

In physical applications, the function to-be-integrated describes some characteris-
tic in a given physical model. We investigated methods that use some symmetry of
the physical model to result in the exact cancellation of positive and negative parts in
the quadrature rule. If the model behind the function in Figure 1b has a reflection
symmetry, few MC sampling points - in black - can be chosen and together with their
reflected - white - points they form a set of sampling points that results in an exact
quadrature rule. In this specific example even one MC point with its reflection point
would give an exact result, for more complicated functions more sampling points are
needed.

This article first gives a short introduction to the high-dimensional integrals that
have to be solved in particle physics, more precisely in lattice QCD. Readers that are
mostly interested in the integration methods can easily skip this part. The main part of
this article presents the methods we developed and tested to avoid the sign-problem
for high-dimensional integration in physical one-dimensional systems.

We found that symmetrically chosen quadrature rules can avoid the sign-problem
and can efficiently be applied also to high-dimensional integrals. These rules can help
to perform simulations in important, not-yet reachable regions in parameter space, at
least in physical one-dimensional systems so far. To apply them to higher physical
dimensions, in particular to physical four-dimensional systems in high energy physics
as lattice QCD, they clearly need to be developed further.

2 Integration in lattice QCD

In theoretical physics the interaction between elemetary particles such as the elec-
tron, is described by quantum field theories (QFT), see e.g. [12]. The mathematical
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Fig. 1: MC integration of an oscillatory function results in large errors, known as the
sign-problem. This problem is due to the non-cancellation of positive and negative
contributions to the quadrature rule (a). Choosing sampling points by using the
symmetry of the underlying model results in an exact quadrature rule (b).

formalism in QFT defines particles as classical fields that are functions in three space
dimensions and one time dimension, P(x,y,z, t). Operators, O[P], are functionals of
these fields and describe the interactions between them. An expectation value A of
this interaction or operator O[P], also called amplitude, is computed via the path
integral,

A =

∫
O[P]B[P]dP∫

B[P]dP
. (1)

∫
dP is the infinite-dimensional integration over all possible states of the field P in

time and space. The path integral becomes a well defined expression, if a Euclidean
metric is used and the fields are defined on a finite dimensional, discrete lattice1. In
(1), B[P] is called the Boltzmann-weight and provides a probability which weights the
particle (field) interactions. The denominator in (1) insures the proper normalization
of A. The expectation value A is interesting because physical observables can be
derived from it and their numerical values can be compared with experimental results
or can give new results that are not yet possible to reach with experiments.

In lattice field theory, space-time and the involved functionals O[P] and B[P] are
discretized in Euclidean space, such that (1) can be computed numerically. Often, the
Boltzmann-weight is a highly peaked function suggesting that this computation can be
done using importance sampling techniques. In most computations, this importance
sampling is done by a Markov chain MC (MCMC) algorithm using a Markov chain
that leaves the distribution density B[P]∫

B[P]dP invariant. To compute A numerically, four-
dimensional space-time is discretized on a four-dimensional lattice with four direc-
tions µ ∈ {1,2,3,4} , lattice sites nnn∈Λ = {(n1,n2,n3,n4)|n1,n2,n3,n4 ∈ {1, ...,d}}

1 For an alternative definition using the ζ -regularization see [24, 25].
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and discretized fields P. This results in an 4d-dimensional integration over the Haar
measure of the compact group S U (3). For real applications, d can be very large,
reaching orders of magnitude of several thousands nowadays. Thus, we are left with
an extremely high dimensional integration problem. Moreover, for some physically
very important questions MCMC methods cannot be applied succesfully. This con-
cerns, for example, the very early universe or the matter anti-matter asymmetry
which leads to our sheer existence. Thus, a number of interesting questions remain
completely unanswered and it is exactly here where new high dimensional integration
methods could be extremely helpful

Still, the MCM methods have led to very successful computations already. By
performing numerical computations on massively parallel super computers a very
impressive result of such a lattice MCMC can be obtained: namely, the mass spec-
trum of the lightest composite particles made out of quarks and gluons that agrees
completely with the experimental values, see Figure 2. To get similar precise results
for other, more error-prone observables, research is going on to develop new methods
to make this high-dimensional integration faster and the results more precise.

Fig. 2: The via lattice QCD computed masses of different composite particles (dots
with vertical error bars) agree with the experimentally measured values (horizontal
lines with error boxes) [10]. The masses of π , K and ∑ (dots without error bars) were
input values to the computation.

A more detailed introduction to lattice QCD is for example given in the text-
books [13, 14, 15].
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3 Quadrature rules for one-dimensional lattices

In lattice QCD, the amplitude of interactions between quarks and gluons in physical
four-dimensional space-time can be computed via a high-dimensional integral using
the Haar-measure over the compact group S U (3), see section 2. This integral is
typically solved numerically using MCMC methods. If the integrand is an oscillatory
function, this method results in the sign-problem that gives large errors and avoids
physical insights in important processes. We developed alternative methods that avoid
the sign-problem and at the same time are efficient for high-dimensional integration
over compact groups. Due to various complications with physical four-dimensional
lattice QCD, we developed and tested the methods for physical one-dimensional
models that involve low-dimensional and high-dimensional integration over compact
groups. As suggested in section 1, we developed quadrature rules using the symmetry
of the models.

This section is structured from low-dimensional to high-dimensional integration:
First, it introduces symmetric quadrature rules for one-dimensional integration over
compact groups to avoid the sign-problem here. Then, it presents the recursive
numerical integration (RNI), a method to reduce high-dimensional integrals to nested
one-dimensional integrals. Finally, it shows how to combine both methods to avoid
the sign-problem for high-dimensional integration over compact groups. For all three
presented methods, the section shows results of applying them to simple physical,
one-dimensional models. More detailed explanations of the methods and applications
can be found in [22].

3.1 Avoiding the sign-problem in physical one-dimensional systems

The sign-problem can already arise in a one-dimensional integration, solving

I( f ) =
∫

G
f (U)dU (2)

with MC methods over the Haar-measure of G ∈ {U (N),S U (N)}. Finding an
alternative suitable quadrature rule Q( f ) ad-hoc to approximate this integral is not
straightforward. The articles [8, 9] suggest that using symmetrically distributed
sampling points can be beneficial for avoiding the sign-problem, possibly resulting in
an exact cancellation of positive and negative contributions to the integral, as stated in
section 1. The article of Genz [16] gives efficient quadrature rules for integrations over
spheres, choosing the sampling points symmetrically on the spheres. We searched
for measure preserving homeomorphisms to apply the symmetric quadrature rules
on spheres to the integration over compact groups. This section describes the two
steps to create the symmetric quadrature rules Q( f ) for (2):

Sym 1. Rewrite the integral I( f ) over the compact group G into an integral over spheres.
We restricted ourselves to G ∈ {U (1),U (2),U (3),S U (2),S U (3)}.
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Sym 2. Approximate each integral over one spheres by a symmetric quadrature rule as
proposed in Genz [16], and combine them to a product rule Q( f ).

Finally, this section shows results of applying Q( f ) to the one-dimensional QCD
model with a sign-problem. A more detailed explanation of the method can be found
in [5, 3].

By finding measure preserving homeomorphisms between the compact groups
and products of spheres we created polynomially exact quadrature rules for compact
groups. The application of these rules to the one-dimensional QCD model gave
results on machine precision where the standard MC method shows a sign-problem.
Therefore the symmetric quadrature rules avoid the sign-problem and give rise to
solve integrals in beforehand non-reachable parameter regions.

3.1.1 Sym 1. Rewriting the integral

The symmetric quadrature rules of Genz [16] are designed for the integration over
k-dimensional spheres Sk. To use them for the integration over the compact groups
U (N) and S U (N) with N ∈ {2,3} in (2), the compact groups have to be associated
with spheres. The facts that U (N) is isomorphic to the semidirect product of S U (N)
acting on U (1)

(
U(N)∼= SU(N)oU(1)

)
, that U (1) is isomorphic to S1

(
U (1)∼=

S1
)

and that S U (N) is a principal S U (N−1) bundle over S2N−1 result in

S U (N)' S3×S5× ...×S2N−1, (3)

U (N)' S1×S3× ...×S2N−1. (4)

Then, the integral over the Haar-measure of G in (2) can be rewritten as the integral
over products of spheres,

∫
G

dU f (U) =
∫

S2N−1

(∫
S2N−3

(
· · ·
∫

Sn+2

(∫
Sn

f
(
Φ(xxxS2N−1 ,xxxS2N−3 , . . . ,xxxSn+2 ,xxxSn)

)
(5)

dxxxSn

)
dxxxSn+2 · · ·

)
dxxxS2N−3

)
dxxxS2N−1 ,

with n = 1 for U (N) and n = 3 for S U (N) [4]. Here, xxxSk is an element on the k-
sphere and Φ :×j S2 j−1→ G with G ∈ {U (N),S U (N)} is a measure preserving
homeomorphism. We found the homeomorphisms ΦG ≡Φ for the compact groups
G ∈ {U (1),U (2),U (3),S U (2),S U (3)}:

• For S U (2), Φ is an isomorphism, given by

ΦS U (2) : S3→S U (2),

xxx 7→
(

x1 + ix2 −(x3 + ix4)
∗

x3 + ix4 (x1 + ix2)
∗

)
. (6)
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• For S U (3), spherical coordinates of S5 are needed,

Ψ : [0,2π)3× [0,
π

2
)→ S5,

(α1,α2,α3,φ1,φ2) 7→


cosα1 sinφ1
sinα1 sinφ1

sinα2 cosφ2 sinφ2
cosα2 cosφ2 sinφ2
sinα3 cosφ1 cosφ2
cosα3 cosφ1 cosφ2

 . (7)

Then, Φ is given by

ΦS U (3) : S5
1×S3→S U (3),

(xxx,yyy) 7→ A(Ψ−1(xxx)) ·B(yyy), (8)

with the matrices

A(Ψ−1(xxx)) =
 eiα1 cosφ1 0 eiα1 sinφ1

−eiα2 sinφ1 sinφ2 e−i(α1+α3) cosφ2 eiα2 cosφ1 sinφ2

−eiα3 sinφ1 cosφ2 −e−i(α1+α2) sinφ2 eiα3 cosφ1 cosφ2

, (9)

B(yyy) =

x1 + ix2 −(x3 + ix4)
∗ 0

x3 + ix4 (x1 + ix2)
∗ 0

0 0 1

 . (10)

Ψ−1(xxx) is the inverse transformation of (7) from Euclidean to spherical coordi-
nates. S5

1 denotes S5 without its poles, φ1 = 0 or φ2 = 0, because at these points
the inverse transformation is not unique. The therefore excluded set is a null set,
thus ΦS U (3) can still be used in (6).

• For U (1), Φ is an isomorphism,

ΦU (1) : S1→U (1),

α 7→ eiα , (11)

with α ∈ [0,2π).
• For U (2), Φ is an isormophism,

ΦU (2) : S3×S1→U (2),

(xxx,α) 7→ΦS U (2)(xxx) ·diag(eiα ,1). (12)

• For U (3), Φ is given by

ΦS U (3) : S5
1×S3×S1→U (3),

(xxx,yyy,α) 7→ΦS U (3)(xxx,yyy) ·diag(eiα ,1,1). (13)
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3.1.2 Sym 2. Quadrature rule for spheres

With the measure preserving homeomorphism Φ in section 3.1.1, the integral (2) can
be written as an integral over a product of spheres as in (6). To approximate the full
integral numerically, one can use a product quadrature rule with quadratures QSk(g)
that are specifically designed for integrations over spheres. The full integral can be
computed efficiently if the number of involved spheres is small. As pointed out in
the last subsection, in practice we are interested to build product rules for at most
S5

1×S3×S1. The quadratures over each sphere can be built in many ways. Since we
are aiming for resulting quadratures that exhibit some symmetry characteristics to
hopefully overcome the sign-problem, it seems that quadrature rules given in [16]
exhibit all requiered properties, i.e. high accuracy due to polynomial exactness over
spheres, numerical stability of the resulting weights, and beeing fully symmetric.
The quadratures over each sphere take the form

QSk(g) =
Nsym

∑
γ=1

wγ g(tttγ). (14)

The sampling points ttt ∈ Sk are chosen symmetrically on the k-sphere and are weighted
via w ∈ R. The specific definitions of ttt, w and Nsym for different k are given in [16].
(Note that in this reference, the notation Uk is equivalent to the here used Sk−1.) It
is possible to randomize these quadrature rules, such that an error estimate for each
quadrature rule can be computed via independent replication [16].

The final quadrature rule Q( f ) of the full integral in (6) is a combination of
different single-sphere quadrature rules given in (14). Due to the symmetric choice of
the sampling points on spheres, the rule Q( f ) is in the following called symmetrized
quadrature rule. A more detailed description of QSk(g) and Q( f ) is given in [22],
section 6.1.

3.1.3 Application to one-dimensional QCD

We applied these constructed quadrature rules to physical one-dimensional QCD
problems [7], which is a simplified model of strong interactions in elementary particle
physics. This model is a good test model because it can be solved analytically,
giving a well defined measure for the uncertainties computed by different numerical
integration methods. This model has one integration variable U ∈ G and three real
input parameters: a mass m, a chemical potential µ and a length scale d. A small
mass (m� dµ) introduces a sign-problem which makes it very hard for standard
methods as MC to compute amplitudes as in (1) numerically.

We computed the chiral condensate in this model, given by

χ =

∫
G ∂mB[U ]dU∫

G B[U ]dU
, (15)
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with the Boltzmann-weight

B[U ] = det
(
c1(m)+ c2(d,µ)U† + c3(d,µ)U

)
, (16)

expressed via the parameters

c1(m) =
L

∏
j=1

m̃ j, m̃1 = m,

m̃ j = m+
1

4m̃ j−1
∀ j ∈ {2,3, ...,d−1},

m̃d = m+
1

4m̃d−1
+

d−1

∑
j=1

(−1) j+12−2 j

m̃ j ∏
j−1
k=1 m̃2

k

, (17)

c2(d,µ) = 2−d e−dµ , (18)

c3(d,µ) = (−1)d2−d edµ . (19)

For brevity, the dependencies of these parameters are in the following only written
when needed.

In all numerical calculations, we first computed both numerator and denominator
of (15) separately and then divided them. We computed the numerator by symboli-
cally differentiating B[U ] and computing the integral over the result numerically.

We compared the results for χ using the symmetrized quadrature rules that are
described in 3.1.2, with a standard integration method, ordinary MC sampling. The
latter quadrature rule is given by

Q( f ) =
1

NMC

NMC

∑
γ=1

f (Vγ), (20)

where the V are matrices that are chosen randomly from a uniform distribution. We
chose NMC to be as large as the number of used symmetric sampling points.

Because the analytic results of χ can be calculated straightforwardly, we computed
the error estimates of the numerical solutions - MC and symmetrized quadrature
rules - directly via the relative deviation from the analytic value,

∆ χ =
|χnumerical−χanalytic|

|χanalytic|
(21)

and derived the standard deviation of this error by repeatedly using on the one hand
the MC quadrature rules with different random matrices V ’s and on the other hand
the randomized symmetrized quadrature rules as indicated in section 3.1.2.

The results for ∆ χ of both MC and symmetrized quadrature rule can be roughly
split into a small m (m < 10−1), a large m (m > 100.5) and a transition region, shown
in Figure 3 for constant µ = 1 and d = 8, extended 1024-bit machine precision and
different compact groups. For both quadrature rules we used the sampling sizes
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10-4

100

104 SU(2)

10-310 precision numbers
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symmetrized rule 10-310
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m

Fig. 3: The sign-problem arises for MC results with small m constants, giving errors
of the order of one. On the contrast, the symmetrized quadrature rules avoid the
sign-problem in this region completely, giving errors approximately at machine
precision for all shown groups.

N ≡ Nsym = NMC = 8 for S U (2), N = 96 for S U (3), N = 4 for U (1), N = 32
for U (2) and N = 384 for U (3).

First, we describe the MC results: In the small m region, ∆ χ for all groups are
large - equal or larger than one. It can be shown that in this region the numerator of
χ is such small that the MC evaluation cannot resolve these values for affordable
sample sizes, resulting in large errors [22]. This is the manifestation of the sign-
problem, making it almost impossible to compute reasonable values of χ with MC
in the small m region. On the other side, for large m all groups have a smaller MC
error estimate than in the small m region. Here the numerator of χ tends to be larger
and especially the denominator becomes very large, both resulting in a slightly better
error estimate for the MC results.

Opposed to MC results, the symmetrized quadrature rules give error estimates
approximately at machine precision up to very small m values, see Figure 3. These
numerical results show that the symmetrized quadrature rules give significant results
in the sign-problem region in practice, where MC simulations have error estimates of
order one.
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3.2 Reducing high-dimensional integrals to nested
one-dimensional integrals

The previous section shows efficient quadrature rules for physical one-dimensional
integration to avoid the sign-problem. Most physical models have more than one
integration variable. In general, it is not straightforward to find an efficient quadrature
rule, and usually restricted Monte Carlo methods are applied to high-dimensional in-
tegrals. As a first alternative, we investigated the recursive numerical integration(RNI)
method. This method reduces the d-dimensional integral

I( f ) =
∫

Dd
f [ϕ]dϕ (22)

with dϕ = ∏
d
i=1 dϕi and D = [0,2π) into many recursive one-dimensional integrals,

and can be applied for several physical models of interest.
This is done by utilizing the typical structure of the integrand f [ϕ]. This section

focuses on the RNI method and how to find an efficient quadrature rule for a high-
dimensional integral. It does not discuss the sign-problem which is investigated
further in section 3.3. More specifically, this section describes the two steps to create
an efficient quadrature rules Q( f ) for the integral I( f ) in (22):

RNI 1. Use the structure of the integrand of the high-dimensional integral to rewrite it
into recursive one-dimensional integrals.

RNI 2. Choose an efficient quadrature rule to compute each one-dimensional integral
numerically. Recursively doing this results in the full quadrature rule Q( f ).

Finally, this section shows results of applying the method to a physical model called
the topological osciallator. A more detailed explanation of the method and the results
can be found in [2, 1].

3.2.1 RNI 1. Using the structure of the integrand

Many models in one physical dimensional have integrands with the structure

f [ϕ] =
d

∏
i=1

fi(ϕi+1,ϕi), (23)

with periodic boundary conditions ϕd+1 = ϕ1. These models have only next-neighbor
couplings.

The integral of (23) can be rewritten using recursive integration as described in
[17, 19]: Because of next-neighbor couplings, each variable ϕi appears only twice in
f [ϕ], in fi and fi−1, and therefore the integral can be written as d nested one-variable
integrals Ii,
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12 Tobias Hartung, Karl Jansen, Hernan Leövey, and Julia Volmer

I( f ) =
∫

D
...
∫

D

d

∏
i=1

fi(ϕi,ϕi+1)dϕd · · ·dϕ1 (24)

=
∫

D

(
...

(∫
D

fd−2(ϕd−2,ϕd−1) ·
(∫

D
fd−1(ϕd−1,ϕd) · fd(ϕd ,ϕd+1)dϕd

)
︸ ︷︷ ︸

Id

dϕd−1

)
︸ ︷︷ ︸

Id−1

· · ·

)
dϕ1

︸ ︷︷ ︸
I1

.

This full integral can be computed recursively: Id integrates out ϕd first, then Id−1
integrates out ϕd−1 and so on until finally I1 = I( f ) integrates out ϕ1.

To avoid under- and overflow of the single quadrature rule results, we actually used
quadrature rules to approximate I∗i = 1

ci
Ii with ci > 0 chosen adaptively. Then, the

final integral is computed via I =
(
∏

d
i=1 ci

)
I∗. For brevity, the method is described

in the following without this trick.
Each integral is approximated by using an Nquad-point quadrature rule. The first

integrand in (24) (last from the right) depends on three variables ϕd−1, ϕd and ϕd+1.
The variable ϕd is integrated out, therefore the quadrature rule Qd( fd−1 · fd)≡Qd of
Id depends on two variables,

Qd(ϕd−1,ϕd+1) =

Nquad

∑
γ=1

wγ fd−1(ϕd−1, tγ) fd(tγ ,ϕd+1), (25)

with sampling points t and weights w. The next integral Id−1 is approximated by the
quadrature rule

Qd−1(ϕd−2,ϕd+1) =

Nquad

∑
γ=1

wγ fd−2(ϕd−2, tγ) Qd(tγ ,ϕd+1), (26)

and includes the quadrature rule Qd given in (25). The quadrature rules Qd−2, ..., Q1
are created analogically to (26). Using the same sampling points wγ and weights tγ ,
γ ∈ {1, ...,Nquad} in all quadrature rules Qi results in the full quadrature rule for (24),

Q = Q1 =

Nquad

∑
γ=1

wγ Q2(tγ , tγ) = tr

[
d

∏
i=1

(
Mi ·diag(w1, . . . ,wNquad)

)]
, (27)

with Mi beeing an Nquad×Nquad matrix with entries (Mi)αβ = fi(tα , tβ ).

3.2.2 RNI 2. Choosing an efficient quadrature rule

We used the Gaussian-Legendre Nquad-point quadrature rule, see [21] to define the
sampling points t and weights w. For this rule, the error scales asymptotically (for
large Nquad) as σ ∼ O

(
1

(2Nquad)!

)
(For Legendre polynomials the correct asymptotic
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Avoiding the sign-problem in lattice field theory 13

error scaling is (Nquad!)4

((2Nquad)!)3 [20] which is slightly improved over 1
(2Nquad)!

.). The Stirling

formula (Nquad!≈
√

2πNquad

(
Nquad

e

)Nquad
asymptotically) approximates the factorial

to give

σ ∼ O

(
exp(−2Nquad lnNquad)

1√
Nquad

)
(28)

asymptotically. This is a huge improvement over the MC error scaling 1/
√

NMC.

3.2.3 Application to the topological oscillator

We applied the RNI method to the topological oscillator [6], also called quantum
rotor, which is a simple, physically one-dimensional model that has non-trivial
characteristics which are also present in more complex models. It has d variables φi ∈
[0,2π), a length scale T and a coupling constant c. We investigated the topological
charge susceptibility of this model,

χtop =

∫
O[ϕ]B[ϕ]dϕ∫

B[ϕ]dϕ
, (29)

with Boltzmann-weight

B[ϕ] = exp

(
−c

d

∑
i=1

(1− cos(ϕi+1−ϕi))

)
, (30)

and a squared topological charge

O[ϕ] =
1
T

(
1

2π

d

∑
i=1

(ϕi+1−ϕi) mod 2π

)2

. (31)

With RNI, we computed both numerator and denominator of χtop separately, both
differing in the factorization (23) of their integrands. Straightforwardly, the denom-
inator integrand consists out of local exponential factors. The numerator consists
out of summands with varying factorization schemes, each of these summands is
computed separately with RNI and they are presented in more detail in [22], section
5.2. We estimated the error of χtop by choosing a large number of samples Ng

quad in
(25), (26) and similar ones for which we assumed that χtop(N

g
quad) has converged to

the actual value and computed the difference of χtop(Nquad) for Nquad < Ng
quad to this

value,

∆ χtop(Nquad) = |χtop(Nquad)−χtop(N
g
quad)|. (32)
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14 Tobias Hartung, Karl Jansen, Hernan Leövey, and Julia Volmer

We tested beforehand that this truncation error behaves exponentially for large Nquad
in practice, as expected from (28), [2].

We compared the results of the RNI method with results using the Cluster algo-
rithm [23], which we found is an optimal MCMC method for the application to the
topological oscillator [2]. Due to the exponential error scaling of the Gauss-Legendre
rule, the new method advances MCMC for large enough Nquad. We found that the
RNI method is also advantageous for lower Nquad-values: our simulations showed
that the RNI method needs orders of magnitude less runtime than the Cluster algo-
rithm to result in a specified error estimate on an observable, compare Figure 4 for
c = 2.5, T = 20, d = 200. The Cluster algorithm measurements resulted in an error

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0.01  0.1  1  10  100

∆ 
χ(t

op
)

runtime in s

Cluster algorithm
Gaussian quadrature

Fig. 4: The runtime to arrive at a given error estimate is orders of magnitudes smaller
when using the RNI method with Gauss-Legendre points than using the Cluster
MCMC algorithm.

estimate that decreases proportional to t−1/2 for runtime t, consistent with the typical
MC error scaling [11]. We used between 102 and 106 sampling points here. The
RNI method, using between 10 and 300 sampling points with Ng

quad = 400, resulted
in orders of magnitude smaller errors. The exponential error scaling in (28) is not
visible here, the asymptotic regime of the method is not yet reached with the used
numbers of sampling points.

All in all, the RNI method results in orders of magnitude smaller errors than
the Cluster algorithm for a fixed runtime or equivalently, the RNI method needs
orders of magnitude less runtime than the Cluster algorithm to arrive at a fixed error

Page:14 job:author macro:svmult.cls date/time:18-Feb-2020/1:41



Avoiding the sign-problem in lattice field theory 15

estimate, even for a number of sampling points where the RNI error does not yet
scale exponentially.

3.3 Avoiding the sign-problem in high-dimensional integrals

Section 3.1 shows that the sign-problem can be avoided for one-dimensional in-
tegrals using symmetric quadrature rules. But what about the sign-problem for
high-dimensional integrals? A quadrature rule for high-dimensional integrals over
compact groups,

I( f ) =
∫

Gd
f [U ]dU, (33)

with dU = ∏
d
i=1 dUi is needed that also avoids the sign-problem. We combined both

already presented methods, the symmetric quadrature rules in section 3.1 and the RNI
in section 3.2 to find an efficient quadrature rule Q( f ) for I( f ) in (33). An alternative
attempt to generalize the symmetrized quadrature rules to high-dimensional integrals
is discussed in [18].

3.3.1 Combining recursive numerical integration and symmetric quadrature
rules

RNI can be used to transform the high-dimensional integral I( f ) in (33) into one-
dimensional integrals. These one-dimensional integrals can be approximated re-
cursively, using the symmetric quadrature rules. In the following, these steps are
described in more detail:

RNI 1. Find the structure, i.e. all fi, of the integrand

f [U ] =
d

∏
i=1

fi(Ui+1,Ui), (34)

to be able to write the full integral as nested one-dimensional integrals, similar to
(24).

RNI 2. Apply symmetric quadrature rules to each one-dimensional integration over Ui.
Here is an example how to do this for the innermost integral Id , integrating over
Ud :

Sym 1. Rewrite the integral over Ud into an integral over the products of spheres as
done in (6).

Sym 2. Approximate each iterated integral Id(g) by a product rule of quadratures over
spheres parametrising the group Ud to be integrated. Note that the group Ud is
parametrised at most as the product of S1, S3 and S5.
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16 Tobias Hartung, Karl Jansen, Hernan Leövey, and Julia Volmer

3.3.2 Application to topological oscillator with sign-problem

We applied this combined method again to the topological oscillator discussed in
3.2.3. This time we transformed the variables ϕi to new variables U j = eiϕ j ∈U (1).
Additionally, we added a sign-problem to the model by using an additional factor
∏

d
j=1 U−θ

j in the Boltzmann-weight,

B[U ] = exp

(
−c

d

∑
i=1

ℜ(1−Ui+1U∗i )

)
·

d

∏
j=1

U−θ

j , (35)

with a new parameter θ ∈ R. If this parameter is larger than zero, the sign-problem
arises and is most severe for θ = π .

In this model we computed the plaquette,

plaquette =
∫

O[U ]B[U ]dU∫
B[U ]dU

, (36)

with

O[U ] =
1
d

ℜ

(
d

∑
i=1

Ui+1U∗i

)
. (37)

For the combined method, we computed both numerator and denominator of (36)
separately and divided the values. We used a truncation error, similar to the one given
in (32). We compared the method with a standard MC method as used in 3.1.3. The
MC error is computed via the standard deviation.

For θ = π we found that the combined method avoids the sign-problem that is
visible with the MC computation, compare Figure 5. It gives orders of magnitude
smaller errors that shrink the more symmetrization points are used. Therefore the
combination of RNI and symmetric quadrature rules is suitable to avoid the sign-
problem for high-dimensional integration.

4 Conclusion

In this contribution we have demonstrated that through symmetric quadrature rules
exact symmetrization and recursive numerical integration techniques problems in
high energy physics can be solved which constitute a major, if not unsurmountable
obstacle for standard Markov chain Monte Carlo methods. The examples we have
considered here invole only a time lattice and are hence 0+1-dimensional in space-
time, where as real physical problem include spatials dimensions of up to 3. We
are presently investigating whether the methods we have presented here can be
extended to higher, i.e. including also spacial, dimensions. While for the recursive
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Fig. 5: The combined method avoids the sign-problem that exists when using the
MC method.

numerical integration technique we have first results which are promising, for the
full symmetrization method we were so far not successful.

Also combining the symmetrized quadrature rules with MC methods did not lead
to a practically feasible method in higher dimensions. However, we are following
a path to combine Quasi Monte Carlo, recursive numerical integration and a full
symmetrization to overcome this problem and hope to report about these attempts in
the future.
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