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In this Letter, we demonstrate that applying deep generative machine learning models for lattice field
theory is a promising route for solving problems where Markov chain Monte Carlo (MCMC) methods are
problematic. More specifically, we show that generative models can be used to estimate the absolute value
of the free energy, which is in contrast to existing MCMC-based methods, which are limited to only
estimate free energy differences. We demonstrate the effectiveness of the proposed method for two-
dimensional ϕ4 theory and compare it to MCMC-based methods in detailed numerical experiments.
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Introduction.—The free energy of a physical system is of
great importance since it can be related to several thermo-
dynamical observables. In particular, at nonzero tempera-
ture, it allows one to compute the entropy, the pressure, or,
more generally, the equation of state of the considered
physical system. For example, QCD at high temperature—
as a generic strongly interacting field theory—plays an
essential role in the physics of the early Universe and is
now extensively probed in large-scale heavy ion experi-
ments [1]. Hence, knowing such thermodynamic quantities
from QCD alone is of very high relevance.
The main tool to study strongly coupled field theories,

such as QCD, is to discretize them on a spacetime lattice
and use Monte Carlo Markov chain (MCMC) methods to
numerically calculate the relevant physical quantities.
Unfortunately, these thermodynamical quantities are
challenging to compute using existing MCMC methods.
The fundamental difficulty is that the MCMC is not able to
directly estimate the partition function of the lattice field
theory. Therefore, the absolute value of the free energy
cannot be estimated straightforwardly.
Instead, there are a number of MCMC methods to

estimate differences of free energies. One typically chooses
a free energy difference ΔF ¼ Fb − Fa such that Fa is

known either exactly or approximately. One can then
deduce the value of the free energy Fb ¼ ΔF þ Fa at
the desired point in parameter space. If the free energy Fa is
not known exactly, this induces an unwanted approxima-
tion error. Most of the methods to estimate ΔF rely on
integrating a derivative of the partition function over a
trajectory in the parameter space of the lattice field theory
[2]. Alternatively, one can use a reweighting procedure to
calculate free energy differences between neighboring
points of the discretized trajectory and then sum them
up [2,3]. These approaches require simulations at each
parameter point of the discretized trajectory, which is
numerically costly and leads to accumulation of errors.
This effect is often the dominant contribution to the error—
especially if the trajectory passes a phase transition. Such
situations arise, for example, in the context of studying the
deconfined phase of SU(3) Yang-Mills theory [4,5]. We
stress that the accumulation of the statistical error along the
trajectory and the approximation error of its starting point
are not independent. The former could be reduced if a better
starting point was available. There are also nonequilibrium
methods based on Jarzynski’s identity to estimate free
energy differences without the need for integration [5–7].
However, also these methods require expensive repeated
simulations corresponding to an ensemble of nonequili-
brium trajectories through phase space. It is therefore
desirable to develop methods that allow the direct estima-
tion of the free energy at a given point in parameter space.
In the following, we will propose such a method based

on deep generative machine learning models. As we will
discuss, our method comes with rigorous error estimators
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and asymptotic guarantees. Over the last years, deep
generative models have been applied with great success
to generate, for example, high-resolution images, natural
speech, and text (see [8] for an overview). In [9], a
machine-learning-based regression algorithm for determin-
ing action parameters from an ensemble of field configu-
rations is proposed and [10] uses a neural network to
predict the structure of phase transitions from field
configurations. References [11–15] conjecture a relation
between restricted Boltzmann machines and quantum fields
in the context of the holographic duality. In recent works
[16–18], deep generative models have also been used in the
context of lattice quantum field theories (see also [19,20]).
The main objective of these works was to reduce the
integrated autocorrelation of the simulations. In contrast,
this Letter demonstrates that deep generative models can be
used to estimate quantities that are not (directly) obtainable
by MCMC approaches.
We also note that generative models have been used in

[21] to estimate free energy differences in the context of
statistical mechanics by combining these models with the
Zwanzig free energy perturbation method [22]. Contrary to
this approach, our method estimates the absolute value of
the free energy. We furthermore note that the free energy
can also be directly computed using the tensor renormal-
ization group method; see [23] for an application to ϕ4

theory. For other novel approaches to obtain thermo-
dynamic quantities and, in particular, the equation of state,
see [24,25].
In the following, we will give a brief overview of relevant

aspects of lattice field theories and generative models. We
will then discuss how generative models can be used to
estimate the free energy and compare this approach to
MCMC-based methods in numerical experiments.
Lattice field theory.—A lattice field theory can be

described by an action SðϕÞ. In the following, we will
consider (Euclidean) real scalar field theory for concrete-
ness, i.e., ϕðxÞ ∈ R for each lattice site x ∈ Λ of the
lattice Λ. The path integral then reduces to an ordinary
high-dimensional integral. Therefore, expectation values of
operators OðϕÞ can be calculated by

hOi ¼ 1

Z

Z
D½ϕ�OðϕÞ exp½−SðϕÞ�;

where we defined D½ϕ� ¼ Q
x∈Λ d½ϕðxÞ� and the partition

function Z is given by

Z ¼
Z

D½ϕ� exp½−SðϕÞ�:

If we impose periodic boundary conditions in time for a
lattice with temporal extend NT , the theory is at finite
temperature T ¼ ð1=βÞ ¼ ð1=NTaÞ, where a denotes the
lattice spacing. The free energy is then defined by

F ¼ −T lnðZÞ ð1Þ

and can be related to the pressure p ¼ −ðF=VÞ, where V
denotes the spatial volume of the lattice Λwhose number of
lattice sites we denote by jΛj. Similarly, the entropy H can
be obtained from the free energy by F ¼ U − TH, whereU
is the internal energy.
Deep generative models.—We focus on a particular

subclass of generative models called normalizing flows
(see [26] for a recent review). These flows are distributions
qθ with learnable parameters θ. They also have the
appealing property that they allow for efficient sampling
and calculation of the probability of the samples.
In more detail, these flows are constructed by defining an

invertible neural network gθ. For a brief overview of neural
networks, we refer the reader to the Supplemental Material
[27]. The samples ϕ ∈ RjΛj are obtained by applying this
network to samples z ∈ RjΛj drawn from a simple prior
distribution qZ such as a standard normal N ð0; 1Þ,

ϕ ¼ gθðzÞ; z ∼ qZ: ð2Þ

Since the network gθ is invertible by assumption, it then
follows by the change of variable theorem that ϕ ∼ qθ with

qθðϕÞ ¼ qZ½g−1θ ðϕÞ�
���� dgθdz

����
−1
: ð3Þ

The architecture of the neural network gθ is chosen
such that (i) invertibility of gθ and (ii) efficient evaluation
of the Jacobian determinant jdgθ=dzj are ensured. A
particular example of such an architecture is nonlinear
independent component estimation (NICE) [28], for which
the neural network gθ consists of invertible coupling layers
yl∶RjΛj → RjΛj, i.e.,

gθðzÞ ¼ ðyL∘yL−1∘…∘y1ÞðzÞ: ð4Þ

Invertibility and efficient evaluation of Jacobian determi-
nant is then ensured by splitting the components of the
layer yl ¼ ðylu; yldÞ in two parts ylu ∈ RjΛj−k and yld ∈ Rk

for given k ∈ f1; jΛj − 1g. The layer ylþ1 ¼ ðylþ1
u ; ylþ1

d Þ is
then recursively defined by

ylþ1
u ¼ ylu;

ylþ1
d ¼ yld þmðyluÞ; ð5Þ

where m is another neural network (not necessarily
satisfying the two requirements from above). Because of
the splitting, this can be easily inverted by

ylu ¼ ylþ1
u ;

yld ¼ ylþ1
d −mðylþ1

u Þ;
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and the determinant of the Jacobian is given by

det
∂ylþ1

∂yl ¼
������
∂ylþ1

u

∂ylu
∂ylþ1

u

∂yld
∂ylþ1

d

∂ylu
∂ylþ1

d

∂yld

������ ¼
���� I 0

� I

���� ¼ 1:

The total Jacobian determinant is then jdgθ=dzj ¼ 1 since it
is the product of the Jacobian determinant of each layer.
Training.—We want to train a generative model that

samples field configurations ϕ ∼ qθ approximately from
the path-integral distribution

pðϕÞ ¼ 1

Z
exp½−SðϕÞ�: ð6Þ

For this, the Kullback-Leibler (KL) divergence [29]
between the normalizing flow qθ and the target distribution
p is minimized, i.e.,

KLðqθjjpÞ ¼
Z

D½ϕ�qθðϕÞ ln
�
qθðϕÞ
pðϕÞ

�
¼ βðFq − FÞ;

where we have defined the variational free energy

βFq ¼ Eϕ∼qθ ½SðϕÞ þ ln qθðϕÞ�; ð7Þ

as well as the expectation value Eϕ∼q½O� ¼ R
D½ϕ�qθðϕÞ

OðϕÞ and the free energy F¼−ð1=βÞlnðZÞ. This diver-
gence vanishes if and only if the distributions q and p are
identical [30].
The KL divergence is minimized by gradient descent

with respect to the parameter θ of the flow qθ. Since the free
energy F does not depend on the flow q, the variational free
energy Fq can equivalently be minimized. Therefore, the
training procedure does not require a target distribution (6)
with a tractable partition function Z. Using the explicit
expression for the probability of the flow (3), we can
rewrite the variational free energy as

βFq ¼ Ez∼qZ

�
S½gθðzÞ� − ln

���� dgθdz

����ðzÞ þ ln qZðzÞ
�
:

In training, the expectation value is approximated by its
Monte Carlo estimate. In machine learning, this approach
of learning a model from an unnormalized target distribu-
tion is very well established [31–34]. Recently, the same
method has been used in the context of lattice field theories
[16]. Furthermore, this approach has been applied to
quantum chemistry [35] and statistical physics [36–38].
The variational free energy does not allow us to infer the

value of the KL divergence since the free energy F is not
known. In order to alleviate this shortcoming, we define the
random variable CðϕÞ ¼ SðϕÞ þ ln qθðϕÞ, which is related
to the variational free energy by βFq ¼ hCiq. In the
Supplemental Material [27], we show that

KLðqθjjpÞ ¼
1

2
VarqðCÞ þOðEq½jw − 1j3�Þ;

where we have defined the importance weight wðϕÞ ¼
½pðϕÞ=qðϕÞ�. Thus convergence of training will result in a
small variance VarqðCÞ. In practice, a Monte Carlo esti-
mate of this quantity can be calculated without any
significant overhead during training as CðϕÞ is also needed
for Monte Carlo estimation of the variational free energy
Fq, see (7). It is therefore advisable to closely monitor the
variance of C during training.
Estimation of thermodynamical observables.—The par-

tition function Z can be rewritten as

Z ¼
Z

D½ϕ�qθðϕÞw̃ðϕÞ; ð8Þ

where we have defined the unnormalized importance
weight w̃ðϕÞ ¼ f( exp½−SðϕÞ�)=(qθðϕÞ)g. Therefore, the
partition function can be estimated by Monte Carlo sam-
pling as follows:

Ẑ ¼ 1

N

XN
i¼1

w̃ðϕiÞ with ϕi ∼ qθ: ð9Þ

We emphasize that the sampling procedure does not need to
be sequential (as for a Markov chain). As a result, it can
very efficiently be parallelized and does not suffer from
autocorrelation. From Ẑ, one can then easily estimate the
free energy by

F̂ ¼ −T ln Ẑ: ð10Þ

From the free energy (10), one can then straightforwardly
obtain estimates for the pressure and entropy, as explained
above. The estimator (10) has been extensively studied in
the context of training an importance weighted variational
autoencoder [39–41]. It was shown in [39] that it is a
statistically consistent estimator if q has support larger or
equal to the target p. In [40], its variance and bias were
derived using the delta method (see also [37,41]). For
convenience, we summarize the relevant results in the
Supplemental Material [27]. Alternatively, one can use the
jackknife method to estimate the bias and variance [42].
Numerical experiments.—We apply the proposed

method to two-dimensional real scalar field theory with
action

S¼
X
x∈Λ

−2κ
X2
μ̂¼1

φðxÞφðxþ μ̂Þþð1−2λÞφðxÞ2þλφðxÞ4;

where κ is the hopping parameter and λ denotes the bare
coupling constant of the theory. The action is invariant
underZ2 transformations, i.e., ϕ → −ϕ. Figure 1 shows the
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absolute magnetization hjϕji as a function of the hopping
parameter κ. As the hopping parameter κ increases, sponta-
neous magnetization is observed.
In the following, we will estimate the free energy Fe at

λe ¼ 0.022 and κe ¼ 0.3 for lattice sizes jΛj ¼ NL × NT of
64 × 8, 48 × 8, 32 × 8, and 16 × 8 with both the flow- and
MCMC-based methods.
Using the flow method, we can directly estimate these

free energies. We modify the NICE architecture to ensure
that the flow qθ is invariant under Z2 transformations,
i.e., qθðϕÞ ¼ qθð−ϕÞ. By the definition (3) of qθ, an odd
function gθð−zÞ ¼ −gθðzÞ implies Z2 invariance of qθ. The
map gθ is odd if all its coupling blocks yl are odd, see (4).
The latter condition can be ensured by choosing an odd
neural networkm for the coupling (5), which we achieve by
using tanh nonlinearities and vanishing biases for the
network m.
After training has completed, the free energy is then

computed using the proposed estimator (10). For error
analysis, we use both the jackknife as well as the delta
method and check that they lead to consistent error
estimates. In many applications, generative models suffer
from “mode dropping” [47]; i.e., some modes of the target
p are not captured by the model qθ. For our specific
estimation method, however, a simple consistency check
can be performed ensuring that mode dropping does not
occur. To this end, we estimate Z ¼ ðEp½w̃−1�Þ−1 by a single
Markov chain at the target point in parameter space and
ensure that this leads to a compatible estimate, see the
Supplemental Material [27].
For MCMC methods, we use a reweighting procedure

[2,3], which is significantly more involved and uses the

relation Fe ¼ ΔFeb þ Fb. Here, Fb is the free energy at
κb ¼ 0 and λb ¼ λe. The value of Fb can be analytically
calculated, since for vanishing Hopping parameter κ,

FðλÞ ¼ −jΛjT ln zðλÞ;

where jΛj denotes the number of sites of the lattice Λ and

zðλÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2λ

4λ

r
exp

�ð1 − 2λÞ2
8λ

�
K1

4

�ð1 − 2λÞ2
8λ

�
;

with Kn being the Bessel function of the second kind. We
prove this relation in the Supplemental Material [27]. The
free energy difference ΔFeb ¼ Fe − Fb ¼ −T lnðZe=ZbÞ
can be obtained by

Epb

�
expð−SeÞ
expð−SbÞ

�
¼ 1

Zb

Z
D½ϕ�e−SbðϕÞ e

−SeðϕÞ

e−SbðϕÞ
¼ Ze

Zb
:

We estimate this expectation value with an overrelaxed
HMC algorithm [43–46]. In practice, the variance of the
estimator will become prohibitively large if the two dis-
tributions pb and pe do not have sufficient overlap. We
therefore choose intermediate distributions pi1 ;…piK ,
ensuring that neighboring distributions pik and pikþ1

have
sufficient overlap. The free energy difference can then be
obtained by

ΔFeb ¼ ΔFe;iK þ ΔFiKiK−1 þ � � � þ ΔFi1b:

In our numerical experiments, we keep λ ¼ 0.022 fixed and
only vary the hopping parameter κ of the intermediate
distributions pi. We choose a difference in hopping
parameter of δκ ¼ 0.01 for κ ∈ ½0.2; 0.3� and δκ ¼ 0.05
for all other intermediate hopping parameters κ. We there-
fore use K ¼ 14 Markov chains with 400 000 steps each.
Thus, a total number of 5.6 × 106 configurations is used for
estimation. For a detailed analysis of the dependence of our
results on this choice of δκ, we refer the reader to the
Supplemental Material [27].
The error analysis is performed with both the uwerr [48]

and jackknife methods, which are checked to lead to
consistent estimates. We again refer the reader to the
Supplemental Material [27] for a more detailed description.
Figure 2 shows that the estimates of both the flow and

MCMCmethods are compatiblewithin error bars. However,
the trajectory of the MCMC method has to pass the critical
region, which is challenging due to critical slowing down.
The flow-based estimate can be directly performed at the
desired point in parameter space and therefore does not
suffer from this problem. This conceptual difference leads
to a significantly more precise estimate by the flow-
based method. For regions in parameter space that do not
require the crossing of a phase transition, MCMC-based
methods have errors of comparable order of magnitude

FIG. 1. Absolute magnetization density as a function of
hopping parameter κ for bare coupling λ ¼ 0.022. Results for
various lattice sizes overlap. The values were estimated with an
overrelaxed Hamiltonian Monte Carlo (HMC) [43–46]. The
dashed line denotes the hopping parameter value κ ¼ 0.3 for
the free energy estimation in the numerical experiments.
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(see Supplemental Material [27]). The ability of the flow to
perform direct estimates is both of practical as well as of
conceptual importance. For example, in finite-temperature
QCD, one often uses a trajectory whose initial free energy is
approximated by the hadron resonance model (see, for
example, [2]), leading to an undesirable systematic error.
Furthermore, summing up the free energy differences along
the trajectory leads to an accumulation of errors. This effect
is often the dominant contribution to the error and is
particularly pronounced in situations for which the trajec-
tory has to cross a phase transition. Such situations are of
great practical relevance, for example, in the deconfined
phase of SU(3) gauge theory [4,5]. We stress that both error
sources are related since the initial free energy is the starting
point of the trajectory.
Conclusion.—In this Letter, we have proposed a method

to directly estimate the free energy and hence thermo-
dynamical observables of lattice field theories using deep
generative models. This method is of great conceptual
appeal as it avoids cumbersome integration through para-
meter space and does not require an exactly or approx-
imately known integration constant. Future work will
focus on scaling this approach to four-dimensional gauge
theories. Recent work has successfully constructed flows
that are manifestly gauge invariant [17,18]. This recent
progress, combined with the enormous ongoing advances
in deep learning, makes it very promising that our method
can be applied to non-Abelian gauge theories, and ulti-
mately QCD, in the not too distant future.
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