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The first method is the dimensional expressivity
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1. Introduction
The Standard Model (SM) of particle physics classifies all known elementary particles and fully
describes the electromagnetic, weak and strong interactions. All the particles of the SM have by
now been identified experimentally, including the infamous Higgs boson, the W- and Z-bosons,
the photons, gluons, quarks, neutrinos and the charged leptons with the electron being the most
prominent example. The SM is extremely successful and describes physical phenomena over a
large distance range from 10−18 m (the distances probed at particle colliders) to 1026 m (the size
of the observable universe) without any contradiction to experiment. The predictions of the SM
have been experimentally confirmed up to 11 digits of precision, such that it can be considered
the most precisely tested theory in the history of science.

These are amazing results, in particular because there are extensive world-wide efforts to
detect physics beyond the SM, e.g. with experiments such as the LHC at CERN [1], Belle II at
KEK [2], CEBAF at JLab [3], XENON1T at LNGS [4] or DUNE at Fermilab [5]. These experimental
searches are strongly motivated by the fact that, despite its success, the SM cannot explain
several experimentally observed physical phenomena [6]. Probably the most striking example
is the asymmetry between matter and antimatter in our universe, which leads to our sheer
existence. This asymmetry requires a substantial amount of CP-violation, which is orders of
magnitude larger than predicted by the SM. At the same time, the SM predicts CP-violation for
the weak and strong interactions, but no such violation has been observed for the latter. The
SM also cannot explain why the masses of the elementary particles are strongly hierarchical
and why the strengths of the fundamental interactions differ by many orders of magnitude.
Finally, the theoretical origins of the mysterious dark matter, dark energy and neutrino masses
remain fundamentally open questions of the SM. In addition to these observational puzzles of
the SM, there are also several theoretical issues, most importantly the missing UV-completion
of quantum gravity [6]. Moreover, the scalar field theory that describes the Higgs boson might
become a trivial, non-interacting theory at some high-energy scale. It is currently an open question
whether the Higgs self-coupling might vanish well below the Planck scale [7,8], which is the
fundamental cut-off scale of the SM. If so, this could give rise to quantum triviality or vacuum
stability issues, which might require extra couplings of the Higgs boson to new physics above
LHC energies.

In the light of these open questions of the SM, it is of utmost importance to understand
phenomena such as CP-violation or the matter–antimatter asymmetry from a fundamental point
of view. To this end, we require analytical tools like perturbation theory and, crucially, numerical
tools that enable us to go beyond and explore inherently non-perturbative phenomena.

The standard path to study such non-perturbative phenomena is to put the theory on a
Euclidean space–time lattice and employ Markov Chain Monte Carlo (MCMC) methods. The
lattice theory provides a non-perturbative regularization,1 both in the ultraviolet regime through
a non-zero value of the lattice spacing and in the infrared regime through a finite volume [14,15].
Such numerical techniques have been very successful for computing various predictions of the
theory behind quarks and gluons called quantum chromodynamics (QCD). Examples are the
computation of the hadron spectrum and their structure, fundamental parameters of QCD and
the order parameter of spontaneous chiral symmetry breaking [16].

However, the MCMC-based methods fail when addressing the questions of CP-violation and
the matter–antimatter asymmetry. The reason is the infamous sign problem [17], which leads
to complex phases that prevent the application of the MCMC technique. In addition, MCMC
calculations are usually performed in Euclidean space–time and therefore fail to study real-time
evolution, e.g. the out-equilibrium-dynamics following heavy-ion collisions or quench dynamics.
Such phenomena are important to understand, e.g. the physics of heavy-ion collisions at the
LHC or the Schwinger effect leading to electron–positron production in strong electric fields.
This is exactly the point where quantum computers enter the game, which are able to efficiently

1For a more general non-perturbative regularization formalism of quantum field theories using the ζ -regularization, see
[9–13]. In particular, in [9,13] very first quantum simulations within this framework were performed.
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simulate strongly correlated many-body systems. In particular, quantum simulations rely on
the Hamiltonian formulation in Minkowskian space–time and do not rely on MCMC methods,
therefore circumventing the sign problem and enabling the study of real-time dynamics. Thus,
quantum computing might eventually open the door to perform simulations of the SM in three
spatial dimensions, in particular in regimes that are inaccessible with other approaches.

Of course, the ambitious goal of quantum simulating the SM is presently rather far away,
given that only noisy intermediate-scale quantum (NISQ) computers are currently available.
Still, first quantum simulations of gauge theories in lower dimensions showing some of the
relevant features of the SM have already been successfully performed [18–27]. In addition,
resource efficient formulations of gauge theories for quantum computations have been developed
[28–33], and the Hamiltonian formulation of the CP-violating topological θ -terms in three spatial
dimensions has been derived [34]. In general, the path towards quantum simulations of 3 + 1D
particle physics requires many incremental steps, including algorithmic development, hardware
improvement, methods for circuit design, as well as error mitigation and correction techniques.
In addition, validating quantum simulation experiments is essential for obtaining reliable results,
in particular in regimes which are inaccessible with MCMC methods. Classical Hamiltonian
simulations, in particular tensor network methods, have been proven to be suitable for this task
[35–46]. For detailed reviews on quantum simulations for high energy physics, see [47–49].

One promising approach to using NISQ devices to efficiently perform quantum simulations is
hybrid quantum-classical algorithms, most crucially the variational quantum eigensolver (VQE)
[50,51]. The VQE algorithm has already found numerous applications for studying benchmark
models of particle physics in lower dimensions [47–49]. Using VQE, the computing-intensive cost
function is evaluated on the quantum computer, while the optimization of the circuit parameters
is performed on a classical computer via a feedback loop. When performing such simulations,
one faces two fundamental challenges, which we will address in this article.

First, the construction of the quantum circuit is key to compute the desired cost function.
However, until recently, there had been no general scheme to guide this construction. We filled
this gap by developing a method to custom-build quantum circuits, incorporate or remove
symmetries, and determine the expressivity and minimality of given circuits [52,53].

Second, current quantum computers are still very noisy, which means there are large errors in
the state preparation, the gate operations, and the readout process. To use quantum computers
for quantum simulations, it is extremely important to mitigate, if not correct for, these errors. We
recently developed an efficient error mitigation method that enables us to mitigate one of the most
dominant errors on current superconducting quantum hardware, which is the readout error [54].

Both aspects, the dimensional expressivity analysis and the readout error mitigation, at first
sight seem like technical algorithmic points, which defer from our goal to perform quantum
simulations of high-energy physics. However, they are essential tools to optimize the performance
of present-day noisy quantum devices and to efficiently implement quantum simulations with
current and future devices. Thus, these tools are an important step to improve the simulations
of low-dimensional benchmark models in high-energy physics and to prepare for quantum
simulations in three spatial dimensions in the future. The following two sections will provide
a detailed review of the circuit expressivity analysis and the error mitigation scheme developed
by us to reach these goals.

2. Circuit expressivity
Parametric quantum circuits (see figure 2 for an example) are at the heart of the VQE algorithm.
It is therefore essential to find suitable ansatz circuits for obtaining the desired solution, which
is usually the low-lying energy spectrum of the given problem Hamiltonian. This requires that
the circuit should be equipped with sufficiently many parametric gates to express the solution.
At the same time, the number of gates should be chosen to be minimal in order to reduce
effects of noise in a VQE simulation. There is no general principle for designing such minimal
but maximally expressive circuits. Therefore, in [52,53] we recently developed a dimensional
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q
jC(q)
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Figure 1. Representation of the tangent space (illustrated in yellow) in the point θ (red dot) of themanifoldM spanned by the
tangent vector |∂jC(θ )〉 (blue arrow). (Online version in colour.)

expressivity analysis, which provides a systematic and practical way to determine whether a
given quantum circuit is sufficiently expressive and whether there are redundant parameters. In
particular, it can be used to optimize a given quantum circuit through the removal of redundant
parameters and unwanted symmetries.

In a quantum circuit C(θ ), a number of unitary gates that depend on parameters θ are
employed. As such, the quantum circuit C(θ) can be understood as a map from a parameter
space into the quantum device state space. This leads to a manifold M of states |C(θ )〉 that
can be reached. In addition, we have a manifold S of physical states of the quantum device.
A quantum circuit C that generates only physical states therefore has a manifold M that is
contained in S. In order to have a minimal but maximally expressive circuit, the co-dimension
of M, codim(M) = dim(S) − dim(M), has to vanish and the number of parameters has to be equal
to dim(S).

The co-dimension can be determined by computing the tangent vectors |∂jC(θ )〉 for a given
parameter θj, see figure 1, and by testing their linear independence. In particular, a parameter θk
is redundant if |∂kC(θ)〉 is a linear combination of |∂jC(θ)〉, j �= k. Once the parameter θk is analysed,
the procedure can be iterated to the parameter θk+1 until all parameters have been visited or
sufficiently many independent parameters have been found to ensure the wanted expressivity.
Having identified the set of dependent (and unnecessary) parameters, they can be removed by
setting them to a suitable constant value, and a minimal circuit is constructed. This circuit is
furthermore maximally expressive if dim(S) many independent parameters remain. Hence, the
approach becomes efficiently scalable as soon as dim(S) no longer scales exponentially in the
number of qubits. This is commonly seen in many physical Hamiltonians for which symmetries
and entanglement restrictions imply that dim(S) only grows polynomially with the number of
qubits.

For example, for QISKIT’s EfficientSU2 2-local circuit for three qubits [55] shown in figure 2,
such an analysis shows that the coloured unitary gates are redundant and can be removed.

In practice, starting from the (real partial) Jacobian

Jk =
(

Re |∂1C〉 · · · Re |∂kC〉
Im |∂1C〉 · · · Im |∂kC〉

)
, (2.1)

we construct the matrix Sk = J∗k Jk. The quantum circuit contains dependent parameters if
detSk = 0. This in turn means that the matrix Sk contains vanishing eigenvalues. The dependence
of the parameters can then be determined iteratively by computing the eigenvalues of Sk. Starting
with S1 (which is trivially independent), we move to S2 and check whether it has a vanishing
eigenvalue. If this is the case, then the second parameter is removed. We continue by adding one
parameter at a time and checking for the smallest eigenvalue to be zero, until all parameters have
been checked. A nice feature of our approach is that Sk itself can be computed efficiently on the
quantum computer employing one ancilla qubit, while the invertibility of Sk, i.e. the computation
of the eigenvalues, can be performed efficiently on a classical device (see [52] for details).
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Figure 2. QISKIT’s EfficientSU2 2-local circuit with two layers. The coloured gates represent the gates that can be
removed after the expressivity analysis developed here. (Online version in colour.)
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Figure 3. Single-qubit experiments on (a) ibmq_ourense and (b) ibmq_vigo. We show the smallest (triangles) and second
smallest (dots) eigenvalues of the matrix Sk . The filled symbols are the exact solutions. The open symbols represent different
statistics: orange, green and red markers stand for 1000, 4000 and 8000 shots, respectively. The error bars for the experimental
data represent the uncertainty from the finite number of shots. (Online version in colour.)

(a) Experimental results
In figure 3, we show the smallest and second smallest eigenvalues of Sk for a 1-qubit test case.
Our experiments have been carried out on the ibmq_ourense and ibmq_vigo quantum hardware
devices. As explained in the caption of figure 3, we have performed different numbers of shots,
meaning different numbers of repetitions of the circuit to collect statistics of the measurement
outcomes. The experimental results are shown with open symbols in figure 3, while the exact
solutions are shown with filled symbols. We observe that we can indeed identify eigenvalues that
are compatible with zero within a given precision ε (see [52] for details). Thus, our expressivity
analysis allows us to identify dependent parameters of quantum circuits on actual quantum
hardware.

(b) Discussion
Through our hybrid quantum-classical approach of computing Sk on the quantum device and
testing the invertibility on a classical computer, we are able to escape an exponential scaling
of computational resources, rendering our method efficient. As already mentioned earlier, in all
numerical experiments we can identify a zero eigenvalue within a prescribed precision ε. We can
estimate the required computational resources of our method for Np parameters in the quantum
circuit: we need O(N2

p) memory, O(N4
p) calls on the classical machine and O(N2

p/ε
2) calls on the

quantum device. Note that the numerical cost of analysing a given quantum circuit is actually
independent from the number of qubits employed.

Our fundamental step of identifying redundant parameters can also be employed to remove
unwanted symmetries. For example, a quantum circuit does not need to be able to generate the
state eiα |ψ〉 if it can already generate |ψ〉. To find the parameters that only contribute such an
unwanted symmetry to the circuit, we first artificially add this symmetry to the circuit. In the case
of the global phase symmetry, we initialize the quantum device in |0〉 and insert a single-qubit
RZ(φ) gate into the circuit. By checking this parameter φ first, it will be considered independent.
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Thus, any further parameter θk, whose independent contribution is the phase generation, will
now be identified as redundant. Finally, we remove the artificially inserted RZ(φ) gate and obtain
a circuit that no longer generates arbitrary phases.

This idea can be generalized to more complicated symmetries. In general, if a continuous
symmetry has dimension d, e.g. d = 3 for SU(2), then d parameters φk are necessary to artificially
enforce the symmetry. The symmetry can then be removed from the circuit C(θ ) by extending C
to the artificially symmetric circuit C̃(φ, θ ) and testing the parameters φ before continuing to test
the parameters θ .

This circuit optimization becomes even more efficient if we start with an already partially
optimized circuit. For example, if the physically relevant state space is the entire quantum device
state space but with certain symmetries removed, then we would like to start with a minimal
but maximally expressive quantum circuit and optimize it using the removal of symmetries
technique. This can be achieved using an inductive procedure. It is easy to find a minimal,
maximally expressive circuit on a single qubit, e.g. RY(θ3)RZ(θ2)RX(θ1)|0〉. Once we have found
a minimal, maximally expressive circuit for Q qubits, we can inductively construct a circuit
for Q + 1 qubits. This can be achieved by controlling an already available circuit CQ with
the additionally added qubit [53]. In this way, it becomes possible to construct candidates for
minimal, maximally expressive circuits from their already existing counterparts with one fewer
qubit.

In practical applications, it might turn out that a maximally expressive circuit, although being
minimal, is still too large to implement it on a given hardware device. In such cases, it is
important to estimate the best-approximation error of the circuit that should be used. In particular,
it is important to understand the worst-case scenario for such a situation. To find the best-
approximation error, we have used a technique based on Voronoi diagrams [56,57]. In particular,
we have determined the number of Voronoi points necessary to obtain a good estimate of the best-
approximation error [53]. This best-approximation error estimate provides an upper bound that
converges to the best-approximation error for infinitely many Voronoi points. Additionally, we
have provided a lower bound on the best-approximation error. This provides a practical way to
estimate the worst-case best-approximation error in cases where a minimal, maximally expressive
circuit cannot be used due to the lack of a sufficient number of gates with high fidelity.

3. Error mitigation
Errors on quantum computers are caused by various sources of noise, including limited coherence
times, imperfections in the implementations of the gate operations, as well as the measurement
process. While current and future NISQ devices do not allow for quantum error correction due
to the small number of qubits and their large noise levels, errors can be partly corrected through
error mitigation schemes (e.g. [54,58–68]). The general idea of these schemes is to use a low-
overhead procedure, e.g. to alter the circuit executed on the quantum device, to post-process the
data collected from the device, to measure modified operators, or combinations thereof. In this
way, the effects of quantum noise can be alleviated and more reliable estimates for expectation
values of observables can be obtained.

The final measurement can be among the most dominant sources of error, with error rates
of up to O(10) per cent [64]. These errors arise from bit flips, i.e. from erroneously reading out
an outcome as 0 given it was actually 1, and vice versa. In the following, we will focus on a
specific method developed by us [54], which is tailored for readout errors and can be practically
implemented on existing quantum hardware. Our method scales only polynomially with the
system size and is hence efficient (for a detailed comparison to previous works, see [54]).

Throughout this section, we focus on readout errors only and neglect all other sources of error.
Thus, we assume that the quantum device prepares a pure state |ψ〉, which we measure in the
computational basis. In order to be able to obtain the expectation value of an observable, we have
to run the circuit a number of times and collect statistics of the measurement outcomes. Just as in
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Table 1. List of possible outcomes of the energy measurement in a state |ψ〉 = c1|0〉 + c2|1〉 and their probability of
occurrence for different cases of bit-flips.

outcome measured energy operator probability

no bit flips EZ = +|c1|2 − |c2|2 Z (1 − p)2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0→ 1, 1→ 1 E1 = −|c1|2 − |c2|2 −1 p(1 − p)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0→ 0, 1→ 0 E2 = +|c1|2 + |c2|2 = −E1 1 (1 − p)p
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0→ 1, 1→ 0 E3 = −|c1|2 + |c2|2 = −EZ −Z p2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the previous section, we refer to this number of repetitions as the number of shots s. Moreover,
we assume that readout errors caused by bit flips between different qubits are uncorrelated.

For an illustration of the basic idea, let us consider a very simple Hamiltonian that consists
only of the operator Z, i.e. the third Pauli matrix. We want to measure the expectation value of
this Hamiltonian in an arbitrary pure single-qubit state, |ψ〉 = c1|0〉 + c2|1〉, where the complex
coefficients fulfill the normalization condition |c1|2 + |c2|2 = 1. The exact energy then evaluates to

EZ = 〈ψ |Z|ψ〉 = 〈
0|c∗

1Zc1|0
〉+ 〈

1|c∗
2Zc2|1

〉= |c1|2 − |c2|2. (3.1)

This noise-free result changes in the presence of bit-flip errors in the readout process, i.e. due to
the misidentification of the outcome 0 as 1 and vice versa. For illustrative purposes, let us first
assume that the probabilities for misidentifying the outcome 0 as 1 and the outcome 1 as 0 are
the same. For this case, we give in table 1 the possibilities for correct and wrong measurements.
From table 1, we see that instead of the exact result EZ, we instead obtain an expected value of the
observable energy subject to bit flips ẼZ, which evaluates to

ẼZ = (1 − p)2EZ + p(1 − p)(E1 + E2) + p2E3 = (1 − 2p)EZ. (3.2)

From equation (3.2), it becomes apparent that one can reconstruct the exact energy from the noisy
result, as long as one knows the bit-flip probability and p �= 1/2.

Alternatively, instead of treating the bit-flips as part of the measurement process, we can
change the point of view and consider them as part of the operator to be measured. Thus, we
consider random operators to be measured. In table 1, we also list the corresponding operators
for our single-qubit example. The expected value of the noisy operator subject to bit flips is then
given by

EZ̃ = (1 − p)2Z + p(1 − p)(−1 + 1) − p2Z = (1 − 2p)Z. (3.3)

This change in point of view also allows for generalizing the method to arbitrary operators acting
on more than a single qubit. In the following, we illustrate this with a two-qubit example and
now consider the general case of arbitrary bit-flip probabilities for the different qubits. Performing
a similar analysis as for the single-qubit case above, and inverting the corresponding equation,
we obtain

Z2 ⊗ Z1 = 1
γ (Z2)γ (Z1)

E(Z̃2 ⊗ Z̃1) − γ (11)
γ (Z2)γ (Z1)

E(Z̃2) ⊗ 11

− γ (12)
γ (Z2)γ (Z1)

12 ⊗ E(Z̃1) + γ (12)γ (11)
γ (Z2)γ (Z1)

12 ⊗ 11. (3.4)

In the expression above, the factors γ (Oq) are given by

γ (Oq) :=
{

1 − pq,0 − pq,1 for Oq = Zq

pq,1 − pq,0 for Oq =1q.

}
, (3.5)

where pq,0 denotes the probability that a bit-flip from 0 to 1 occurs on qubit q and pq,1 denotes the
probability for a bit-flip from 1 to 0 on qubit q. Just as before, E denotes the expectation value of
the noisy operator subject to bit flips.
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Figure 4. Energy histogram for the transverse field Ising model for 2048 experiments, N = 4 qubits, and couplings J = −1,
h= 1. For each of the experiments, we used s= 2048 shots and a homogeneous bit-flip probability pq,b = p= 0.05 for all
qubits. (Online version in colour.)

From the considerations above, we see that equation (3.4) allows us to obtain the correct
expectation value of a two-qubit operator by measuring noise-afflicted expectation values of Z1,
Z2 and Z1 ⊗ Z2 on the quantum device and combining them with factors that only depend on the
known bit-flip probabilities. A key observation is that the statistical expectation value E(Z̃Q . . . Z̃1)
of Q qubits can be factorized in single-qubit expectation values

E(Z̃Q . . . Z̃1) = EZ̃Q · · · EZ̃1. (3.6)

Note that E denotes the expectation value of the noisy operator subject to bit flips, which should
not be confused with the quantum mechanical expectation value of the operator. An inductive
proof of equation (3.6) can be found in [54]. This equation is the reason why the method of
readout error mitigation developed in [54] only scales polynomially and hence is efficient for
k-local Hamiltonians, i.e. for most model systems in high-energy and condensed matter physics.

(a) Experimental results
As a first non-trivial example to test our readout error mitigation scheme, we have considered the
transverse field Ising (TI) model

HTI = J
L∑

i=1

ZiZi+1 + h
L∑

i=1

Xi. (3.7)

Here, J and h are the nearest neighbour and magnetic field coupling, respectively. Note that the
model shows a quantum phase transition when |J/h| = 1, and can hence be considered as a good
benchmark model for studying critical phenomena. We have performed numerical computations
simulating a noisy readout process with bit flips, and measured the resulting ground-state
expectation value of the TI Hamiltonian for various parameters and different numbers of shots s.
The obtained histogram for one example with couplings J = −1, h = 1 and four qubits is shown in
figure 4. There, the vertical dashed line is the true ground-state energy, and it can be seen that the
mean of the measured histogram is clearly shifted away from the exact result due to the bit flips.
However, our method allows us to predict the form of the histogram, and the orange line in the
figure represents the prediction, which basically coincides with a fit to the histogram indicated by
the black solid line. This demonstrates that our method is able to reproduce the measured energy
histogram, which in turn allows us to reconstruct the correct ground-state energy.

An important question is the scaling of the error of the measured ground-state energy as a
function of shots s. To this end, we have performed simulations for two qubits using Qiskit [55],

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

26
 F

eb
ru

ar
y 

20
24

 



9

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210062

...............................................................

s

10–1

10–2

10–1

10–2

10–1

10–2

102 103 104 102 103 102 103104 104

(a)

simulator
readout error only

s

(b)

simulator
full noise model

s

(c)

hardware

Figure 5. Mean value (blue dots) and standard deviation (orange triangles) for the absolute error of 〈Ψ |Z2 ⊗ Z1|Ψ 〉 after
applying the correction procedure (filled symbols) and without it (open symbols) as a function of the number of shots s. Each
data point is obtained by carrying out 1024 experiments. The different panels correspond to (a) a classical simulation of two
qubits of the ibmq_london quantum device taking into account readout noise only, (b) the same simulationwith a noisemodel
emulating the full hardware noise, and (c) data obtained from the actual quantumhardware. The lines represent a power lawfit
to themean error with the green line corresponding to a fit to all of our data points for the mean absolute error. The red dashed
lines corresponds to a fit including only the four smallest values of s. The vertical grey dashed lines in panels (a) and (b) indicate
the maximum number of shots that can be executed on the actual quantum hardware. (Online version in colour.)

Table 2. Exponentsβ of power-law fits as−β to our simulated and hardware data on the ibmq_london quantum device.

simulation
(readout only)

simulation
(full noise) hardware

full dataset 0.501 0.238 0.390
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

four lowest data points 0.492 0.446 0.478
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and compared the mean value and the standard deviation of the error∣∣∣〈ψ |Z̃2 ⊗ Z̃1|ψ〉measured − 〈ψ |Z2 ⊗ Z1|ψ〉exact

∣∣∣ , (3.8)

obtained for 1024 randomly drawn wave functions |ψ〉. In figure 5, we show the scaling of the
mean value of the error as well as the standard deviation as a function of the number of shots,
both with and without mitigation. Panel (a) contains the data from a simulation with readout
error only, and panel (b) the data obtained using a noise model that mimics the full noise of the
quantum hardware. The data are fitted to a power law as−β with the green line taking all data
into account, whereas the red line only fits the lowest four data points.

As can be seen, for the case of readout noise only (cf. figure 5a) and our error mitigation method
applied, the expected error scaling of ∝ s−β is observed with β compatible with 0.5 (table 2). When
the full noise model is switched on (figure 5b), deviations from this scaling at a number of shots
O(103) are found. At this level, the readout error is almost fully corrected and other sources of
errors become dominant, which require different noise mitigation techniques. Thus, we find a
large reduction of the readout error compared to the results without any mitigation.

In figure 5c, we show the results of the mean error and the standard deviation for running
our experiments on the actual ibmq_london quantum hardware. Also here we observe an order
of magnitude improvement in the errors and a scaling in the number of shots compatible with
∝ s−β , see table 2 for the values of β. Figure 5c demonstrates that our error mitigation approach is
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Figure 6. Bit-flip probabilities p0,0 (blue triangles) and p0,1 (orange dots) for the single qubit case as a function of repetitions
of the experiment using (a) a noise model mimicking the readout errors of ibmq_london only, (b) a noise model mimicking the
full noise of ibmq_london, and (c) the actual quantum hardware. The solid lines correspond to the data provided by the noise
model. (Online version in colour.)

working in practice and can hence be very useful in future applications for performing quantum
simulations.

A key ingredient of our approach is the calibration of the readout errors of the qubits used
in our experiments. Such calibrations have to be carried out before each run since there is a
strong drift in the bit-flip probabilities. This is shown in figure 6. While the bit-flip probability
is consistent with the values of the noise model in the simulator runs (figure 6a,b), the values
observed on real hardware differ significantly from those provided in the noise model (cf.
figure 6c). This requires a calibration of the bit-flip probabilities before a quantum simulation
is carried out in order to apply our error mitigation scheme.

(b) Discussion
On the superconducting devices used in our experiments, we generally observe that readout
errors of different qubits are uncorrelated to a good approximation. Thus, we have neglected
multi-qubit correlations in this work. However, such correlations can be taken into account as
discussed in [54] through multi-qubit calibrations.

Our method can also be applied, at least in principle, to other sources of noise. If, for example,
we consider the qubit relaxation error with characteristic time scale T1 (decay of |1〉 to |0〉) [55],
the measurement outcome for the Z operator corresponds to Z̃ = p(t)Z + [1 − p(t)]1, where p(t) =
exp[−(t/T1)] is the probability that |1〉 has not yet decayed. Then the exact operator Z is obtained
from the noisy one by Z = [1/p(t)]Z̃ − {[1 − p(t)]/p(t)}1, meaning that we can again reconstruct
the operator Z through noisy measurements.

Another advantage of our method is that it can be pre-processed, meaning the operator to be
measured can be directly replaced with an appropriate linear combination of operators whose
quantum mechanical expectation value subject to bit-flips corresponds to the true expectation
value of the original operator. This allows for easy use of our method with existing software
frameworks. For example, many libraries provide functions implementing the VQE algorithm,
which typically ask for a Hamiltonian as an input parameter. Passing the appropriate bit-flip
corrected Hamiltonian as an argument, the readout errors can be mitigated without additional
effort.

As already mentioned above, our error mitigation method scales polynomially for k-nearest
neighbour Hamiltonians and adds a moderate overhead for non-local Hamiltonians. Since most
models in high-energy or condensed matter physics have Hamiltonians with nearest or next-to-
nearest interactions, our error mitigation scheme is therefore efficient.

4. Conclusion
In this article, we have reviewed two algorithmic advances towards eventually simulating models
in high-energy physics and beyond with quantum devices. The motivation for such quantum
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simulations is twofold: first, there are several experimentally observed phenomena, such as the
large amount of CP-violation in the universe, which cannot be explained by the SM; and second,
several of these phenomena cannot be simulated with classical MCMC methods.

When realizing simple benchmark models on a quantum computer, for example, the 1 + 1
dimensional Schwinger model, the results can be erroneous even for a small number of qubits.
The reasons are various sources of noise on present quantum devices. It is therefore highly
desirable to develop methods to reduce the number of noisy quantum gates and to mitigate the
noise before embarking on simulations of realistic models.

To this end, we first developed the dimensional expressivity analysis, which allows us to
identify redundant gates in a given quantum circuit. This in turn leads to the construction of
minimal, but maximally expressive quantum circuits. In this way, we reduced the number of
noisy gates and ensured that the constructed quantum circuit can reach the desired manifold
of quantum states. If a maximally expressive quantum circuit cannot be realized, we developed
an additional technique based on Voronoi diagrams to bound the best-approximation error,
which helps us to estimate how far away the quantum computation can be from the desired
state space.

As a second step, we developed a very general and efficient scheme for mitigating the readout
error, which is presently among the dominating error on superconducting quantum computers.
Our scheme relies on the readout error calibration of the used qubits and allows us to evaluate the
exact Hamiltonian from noisy measurements. We demonstrated the performance of our method
by quantum computations both on the IBM-Q simulator and the IBM-Q hardware. Our algorithm
shows a polynomial scaling in the number of qubits and is therefore efficient, at least when k-
nearest neighbour interactions are considered. We are presently working on extending this error
mitigation scheme to other sources of noise on quantum computers.

These advances in the circuit expressivity analysis and error mitigation help tremendously to
render quantum computer simulations more reliable. Thus, one can eventually come back to the
targeted simulations of high-energy physics models, with the goal of addressing at least some of
the remaining open questions of the SM of particle physics.
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