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Abstract Efficient discretisations of gauge groups are cru-
cial with the long term perspective of using tensor networks
or quantum computers for lattice gauge theory simulations.
For any Lie group other than U(1), however, there is no class
of asymptotically dense discrete subgroups. Therefore, dis-
cretisations limited to subgroups are bound to lead to a freez-
ing of Monte Carlo simulations at weak couplings, necessi-
tating alternative partitionings without a group structure. In
this work we provide a comprehensive analysis of this freez-
ing for all discrete subgroups of SU(2) and different classes
of asymptotically dense subsets. We find that an appropriate
choice of the subset allows unfrozen simulations for arbitrary
couplings, though one has to be careful with varying weights
of unevenly distributed points. A generalised version of the
Fibonacci spiral appears to be particularly efficient and close
to optimal.

1 Introduction

Gauge theories represent the main ingredients to the cur-
rent standard model (SM) of particle physics, which unifies
the electromagnetic, the weak and the strong interactions.
Despite the tremendous success of the SM, first principle
calculations in non-Abelian gauge theories underlying for
instance quantum chromodynamics (QCD), which describes
the strongly interacting part of the SM, are still challeng-
ing. In the last decades lattice field theoretical methods have
been developed and optimised with great success to provide a
non-perturbative approach for the investigation of such gauge
theories using Monte Carlo (MC) methods.

However, studying QCD for instance at finite density or
its real time dynamics is difficult if not impossible with MC

 e-mail: urbach@hiskp.uni-bonn.de (corresponding author)

methods, either due to the sign problem or because Euclidean
space-time is used. Here is where methods based on the
Hamiltonian formalism in Minkowski space-time can pro-
vide a way out. In fact, tensor network methods have seen
very rapid developments in the recent years towards the possi-
bility of simulations in 2+ 1 and 3+ 1 space-time dimensions
[1,2]. And the number of qubits available on real quantum
devices is ever increasing. This offers a prospect for studying
gauge theories with tensor network methods or on quantum
computers in the not too distant future.

The Hamiltonian formalism for non-Abelian gauge the-
ories with or without matter content was presented a long
time ago in Ref. [3]. Its implementation with TN methods
or on a quantum computer, however, requires some form of
digitisation of SU(N).

There are different ways to digitise SU(N ) or more specif-
ically SU(2) which we will study in this paper. One can for
instance chose a discrete subgroup of SU(2). In the early days
of lattice gauge theory simulations such discrete subgroups
were already investigated to improve the efficiency of the
simulation programmes. Soon it was realised that due to the
finite number of elements in such subgroups a so-called freez-
ing phase transition occurs at some critical 8-value [4,5]. For
B-values larger than this critical value MC simulations are
no longer reliable, because they result in the wrong distribu-
tion (for results in a Zy gauge theory see Refs. [6,7].). There
exist different approaches to overcome this problem: one is to
chose a subgroup with a larger number of elements, if avail-
able. The alternative is to improve the action in order to be
able to simulate at relevant values of the lattice spacing. We
are going to follow the former here, because it can be applied
in addition to improved actions and the two approaches are
in some sense orthogonal.

With the rising interest in quantum computation, inter-
est in digitisations of gauge groups also increased again:
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in Ref. [8] a geodesic mesh was used to discretise SU(2).
The authors study systematic effects of this discretisation in
detail around B = 2, a choice motivated by the onset of the
scaling region.

For the gauge group SU(3) particular choices of digitisa-
tions were first studied in Refs. [9-12]. For this gauge group,
however, improving the action is mandatory [10], otherwise
simulations at values of the lattice spacing in the interest-
ing region are not possible. Recently it was shown that with
modified gauge action and a particular SU(3) subgroup MC
simulations are feasible with sufficiently small lattice spac-
ing values [13-16].

While discrete subgroups have the advantage that they are
closed under multiplication, there is no flexibility in the num-
ber of group elements. This motivates using the isomorphy
between SU(2) and the sphere S3 in four dimensions. The aim
is then to find points on S3 depending on some parameter m
which are dense in S3 as m approaches infinity.

In this paper we investigate all the discrete subgroups of
SU(2) and several representative discretisations of S3. We
study the freezing transition as a function of the number of
elements in these discretisations and show that the discreti-
sation based on so-called Fibonacci lattices behaves opti-
mally. By doing so we go significantly beyond what was
done in Ref. [8] in studying discretisations which have not
been studied before. Moreover, we study the critical §-value
of the freezing transition for the different discretisations and
compare and connect to the analytical understanding of this
phase transition.

2 Lattice action

We work on a hypercubic, Euclidean lattice with the set of

lattice sites
A= {n=o ...,ng—1) €NG:n, =0,1,...,L —1},

with L € N. At every site there are d > 2 link variables
U, (n) € SU(2) connecting to sites in forward direction p =
0,...,d — 1. We define the plaquette operator as

Puy(n) = U, (mU,(n + U} (n + DU (), (1)

where 1 € Ng is the unit vector in direction w. In terms of
Py, we can define Wilson’s lattice action [17]

s=_§ZZReTrPW(n), 2
n o pu<v

with g the inverse squared gauge coupling. We will use the
Metropolis Markov Chain Monte Carlo algorithm to generate
chains of sets {; of link variables!/ = {U,(n) :n € A, u =
0,...,d — 1} distributed according to

PU) o« exp[—SU)]. 3
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The main observable we will study in this paper is the pla-
quette expectation value defined as

1 N
m=ﬁ§mm )
with
2
P(L{) = WZZRCTTPMU(VI)

n o pu<v

3 SU(2) partitionings

In Monte Carlo simulations of lattice SU(N) gauge theories
using the Metropolis algorithms or some variant of ti one
typically requires a proposal gauge link at site n in direction
1L obtained as

U,(n) =V -Uyn).

Here, V is arandom element of SU(NV) with average distance
8 to the identity element. The average distance, measured
using some norm, determines the acceptance rate of the MC
algorithm.

The actual value of 6 needs to be adjusted to tune the
acceptance rate to about 50%, which implies that for 8 — oo
one needs to decrease § further and further.

In numerical simulations, one nowadays represents an ele-
ment U of SU(N) by an N x N complex valued matrix and
constrains it to be unitary with unit determinant. Every com-
plex number is then represented by two floating point num-
bers with accuracy limited by the adopted data type (usu-
ally double precisions floating point numbers). The results
obtained with this quasi continuous representation of SU(2)
will be referred to as reference results in the following. It
imposes, for S-values of practical relevance, no restriction
on the possible elements U’: small enough distances § are
possible.

However, this is not necessarily the case if a finite set of
elements of SU(N) is to be used, like for instance a finite
subgroup of SU(N). Here, there is a lower bound for the
distance between two available elements, which significantly
restricts the possible proposal gauge links. For too large §-
values, therefore, the acceptance drops to (almost) zero, an
effect that was dubbed freezing transition [4].

This transition can be pushed towards larger and larger
B-values by increasing the number of elements in the set.
Since there are in general no finite subgroups of SU(N) with
arbitrarily many elements available, one needs to resort to
sets of elements which do not form a subgroup of SU(N),
but which lie asymptotically dense and are as isotropically
as possible distributed in the group. We will call these sets
partitionings of SU(N).
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Table 1 Quaternionic

representation of Dy, T, O and Group Order Elements
I as f&u\r}g in [19], where D ] E1, i, 4], +h
¢ = —3= denotes the golden — . L S 1 S
ratio T 24 All sign combinations of {£1, i, &, &k, 5 (£l +i £ j £k)}
o 48 All sign combinations and permutations of
. . 1 . . 1 :
{ﬂ:l,:l:z,:l:],:i:k, Lklditj+h), ﬁ(j:lj:z)}
1 120 All sign combinations and even permutations of

{ﬂ:l,j:i,j:j,ik,%(iliiijj:k),%(1+<pi+£+0k)}

Focusing on SU(2), we discuss first some finite subgroups
followed by other partitionings of SU(2).

3.1 Finite subgroups of SU(2)

Due to the double cover relation between SU(2) and SO(3),
finite subgroups of SU(2) can be constructed by taking the
Cartesian product of the cyclic group of order 2 with the sub-
groups of SO(3). Subgroups of SO(3) are obtained by con-
sidering the symmetry transformations of regular polygons,
as well as the rotational symmetries of platonic solids [18].
In the following we will consider the binary tetrahedral
group T, the binary octahedral group O and the binary icosa-
hedral group 1, with 24, 48 and 120 elements respectively.
Their elements are evenly distributed across the whole group,
and research on their behavior has already been conducted
[4]. The last four-dimensional finite subgroup of SU(2) is
the binary dihedral group D4 with 8 elements. One possible
representation of these groups can be found in Table 1.

3.2 Asymptotically dense partitionings of SU(2)

For generating partitionings of SU(2), we use the isomorphy
between SU(2) and the sphere S3 in four dimensions, which
is defined by

xXo +1ix; xp +ixs

xeS & . .
3 (—xz + 1x3 X0 — 1x]

) e SU(2). 5)
For such partitionings, the number of elements can be
increased very easily, i.e. the discretisation of SU(2) can be
made arbitrarily fine.

The reduction approach of SU(2) to a sphere can be gener-
alised to general U(N) and SU(N) which can be expressed as
products of spheres. To this end, we note that U(1) is isomor-
phic to S; and U(N) = SU(N) x U(1) where x denotes the

semi-direct product. This follows from the existence of the

short exact sequence 1 — SU(N) — U(N) E) Uu() — 1.

With respect to SU(N ),! we note that SU(N) acts transi-
tively on S> 1 since the point (1, 0, 0, ..., 0) ismapped to a

! For more detail, see e.g. chapter 22.2¢ in [20].

point z by any element of SU(N) whose first column is z, and
the isotropy subgroup of (1,0,0, ..., 0) is the SUN — 1)
embedding

1 0
0SUWN —1))°

Hence, we obtain
SU(N — 1) - SUN) — SUN)/SUN — 1) = Sov—1

which implies that SU(N) is a principal bundle over Say—1
with fibre SU(N — 1). Thus, by induction with SU(2) =
S3, we can express SU(N) as a product of odd-dimensional
spheres S3, Ss, ..., Soy—1, and U(N) as a product of odd-
dimensional spheres Si, S3, ..., Sony—1.

Our aim is therefore to find a discretisation scheme of the
k-dimensional sphere Sy depending on some parameter m So
that the discretising set S} is dense in Sy as m goes to infinity.
The following examples all meet this requirement. Yet they
differ in the measure or probabilistic weight attributed to
each point. This measure w is defined as the volume of the
Voronoi cell [21,22] of the point using the canonical metric
on S derived from the Euclidean distance, i.e. the measure
is the volume of that part of the sphere closer to the given
point than to any other point.

3.2.1 Genz points

A first, quite intuitive, partitioning is given by the Genz points
[23] setting S} = G, (k) where we define

. . k
— Jo Jk o
Gu(k) = {(so\/;,...,sk\/;) gﬁ =m,

Vie{O,...,k}:sie{:izl},j,'eN}, (6)

that is all integer partitions {jo, ..., jx} of m > 1 includ-
ing all permutations and adding all possible sign combina-
tions. Whenever the argument is dropped, we implicitly set
k = 3. The nearest neighbours of a Genz point can be found

@ Springer
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(up to sign changes) by choosing all pairs i,/ € {0, ..., n}
with j; > 0 and j; < n and replacing

JimJi—1, ji= g +1. @)

Note that all elements of a Genz point other than the i-th and
[-th components remain unchanged by such a replacement
because the denominator /m is fixed. The square distance
between neighbouring points reads

which can be evaluated to (see Appendix A for details)

i = (45 + 35 +0 (i) +0 (i) ©

2
d(ji, ji)* = , (8

which is highly anisotropic. In the regions where both j; and
Jji are of the order m the distance scales as d ~ % whereas
smaller values of j; and j; lead to d ~ \/Lm The minimal

distance is d (%, 3) = % + O (m™3/?) and the maximum is

reached atd(1,0) = \/% . We thus find that the distance does
not only depend on the position of the point but also on the
choice of the neighbour. Therefore even an approximation of
the measure w would require a product over the distances of
a given point to all its neighbours.

As a concluding remark we note that in k£ dimensions the
weight of different point differs by a factor up to
Dmax k2 (10)
Wmin
where the least density (largest measure) is reached where
many of the js are zero. This is in particular the case near
the poles.

3.2.2 Linear discretisation
In order to avoid the aforementioned anisotropy, we consider

the following, linearly discretised, set of points, equivalent
to the geodesic mesh used in [8],

k
1
Ly (k) := {M (500 - ki) | Y Ji = m,
i=0
Vie{O,...,k}:sie{:lzl},j,-eN}, (11

12)

M takes values m > M > —2—. The lower bound is

- Jk+1
assumed when all the j are equal and the upper one when all

@ Springer

but one j are zero. Note that L happens to coincide with the
finite subgroup Dy.

We find the nearest neighbours as before Eq. (7) and we
obtain the change in M from neighbour to neighbour as

Ji—Ji 1
AM=——+0|— 13
v T (m) (13)
yielding the inverse change
1 1 AM 1
— _ = o —
M M+ AM M? + <M3>
Ji—Ji 1
=5 + 0 <m> . (14)

With this we can again calculate the square distance (with an
equivalent definition to Eq. (8), for details see appendix A)

dGi. i = (”M—j)+%+o(%) (1)
It follows from |j; — ji| < M that ‘/ﬁi <d < § to leading
order. Thus the distance has only a weak dependence on the
direction and it always scales as d ~ % with a difference of
at most a factor «/k + 1 between different points. This dif-
ference is governed by the range of M. We therefore find the
largest density of points (smallest distance) with the largest
values of M at the poles.
A good approximation for the weights is given by

k
w A <£> (16)

with the largest deviation

Wmax

~ (k+ D2, (17)

Wmin
3.2.3 Volleyball

A third partitioning reminds of a Volleyball. It is the class of
geodesic polytopes [24] simplest to construct with its points
given by

1 . .
Vi (k) = {M (5005 + -+ Sk Jjk)

, ji) € {all perm. of (m, ay, ..., ar)},

x| (o, -

s; € {£1}, a; € {0, ..., m} } (18)

with M defined in Eq. (12), which takes values m < M <
Vk+1m.

Additionally, the corners of the hypercube, in four dimen-
sions also called Cg, form



Eur. Phys. J. C (2022) 82:237

Page 5 of 13 237

Fig. 1 Fibonacci lattices on S
with 20 (blue), 100 (orange) and
500 (green) vertices

Vo(k) := { sk)|si € {:i:l}}. (19)

1
— (50, ...,
Nk

Form > 1 nearest neighbours can be obtained by j; £1, as
long as the conditions from above hold. The corresponding
change in M is computed to

+ji 1
AM=——+40 20
i <m> (20)
yielding the inverse change
1 1 AM 1
R — _|_ (@)
M M+AM M3
:i:],' 1
SE e <$) . 1)

The square distance in this case reads (see again appendix A
for details)

2
Ji 1 1
W+M2+O<m)’ (22)

where from |j;| < M follows that % <d < % to leading
order. Thus, like for the linear partitioning L, (k), the dis-
tance has only a weak direction dependence and it always
scales as d ~ % with a difference of at most a factor v/k + 1
between different points. This difference is governed by the
range of M. We therefore find the largest density of points
(smallest distance) with the largest values of M at the poles.
Then, a good approximation for the weights is given by

1 \k
w A <M> (23)

with the largest deviation

d(ji, jin* =

Wmax

~ (k+ DN, (24)

Wmin

3.2.4 Fibonacci lattice

The final discretization of SU(2) considered in this work
is a higher dimensional version of the so-called Fibonacci

lattice. It offers an elegant and deterministic solution to the
problem of distributing a given amount of points on a two-
dimensional surface. Fibonacci lattices are used in numerous
fields of research such as numerical analysis or computer
graphics, mostly to approximate spheres (as e.g. shown in
Fig. 1). Mainly inspired by [25], we will now construct a
similar lattice for S3.

The two-dimensional Fibonacci lattice is usually con-
structed within a unit square [0, 1)? as

Aﬁ: <n, meN}
- t
with tm=( ) — mod l,ﬂ),
T n
I =

2

This can be generalized to the hypercube [0, 1)* embedded
in RK:

Aﬁ:{tm|0§m<n, meN}

1 m

t, v

12 aym mod 1
tm = . =

ik a d 1

m k—1 M MO
with

L ¢qQ fori#j,
aj

where Q denotes the field of rational numbers. The square
roots of the prime numbers provide a simple choice for the
constants a;:
(a1, az,a3,...) = (V2,v/3,+/5,...).

The points in A’,‘, are then evenly distributed within the given
Volume. All that is left to do is to map these points onto a
given compact manifold M, in our case SU(2). In order to

maintain the even distribution of the points, such a map ®
needs to be volume preserving in the sense that

@ Springer
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1
f dfx = dVy (25)
QCl0, Vol(M) Jo@ycm

holds for all measurable sets 2.
To find such a map for S3 (and therefore SU(2)) we start
by introducing spherical coordinates

cos Y
__ | sinyrcost
20,4 = sin ¥ sin 6 cos ¢ (26)
sin Y sin 6 sin ¢
with

Y el0,m), 8 €l0,m), ¢ €[0,2m).

Therefore, the metric tensor g;; in terms of the spherical
coordinates (y, y2, y3) := (¥, 0, ¢) is given by

10 0
9z 9z”

8= 5755 =[0siPy 0
vy 0 0 sin®ysin®6

ij
From this one can calculate the Jacobian /|g| to be

Viglh= sin’ Y sing.

As /|g| factorizes nicely into functions only dependent
on one coordinate, one can construct a bijective map
®~! mapping S3 to [0,1)% given by (v, 6,¢) =

(o7 W), ;' @), o3 @) with

(W) = IH Wty 7 ) 251n(21ﬂ)
0 5 .

—f?T osin® _1 (1 — cos(9))

Jo dosing 2

[Fdg 1

—1 _
@5 () = 7 35 =5

]Owdlﬁsinzgz 1 < 1 )

') =

¢.

Looking at some measurable set Q2 = &~ 1() one can see
that the inverse map (®~1)~! = @ trivially fulfils equa-
tion Eq. (25). A Fibonacci-like lattice on S3 is therefore be
given by

Fo={z (Ym(ty), 0 (t3), dm (1)) |0 <m < n, m e N},

with
m

Yn(ty) = @1 (1) = @1 (%),

O (12) = > (t,%l) - cos_ln(l —20mv2 mod 1)) ,

b (D) = @3(13) = 2w (mv/3 mod 1).

@ Springer

4 Methods

In order to test the performance of the finite subgroups
and the partitionings discussed in the last section in Monte
Carlo simulations, we use a standard Metropolis Monte Carlo
algorithm. It consists of the following steps at site n in
direction

1. generate a proposal U ;L (n) from Uy (n).
2. compute AS = S(U;L(n)) - SWU,un)).
3. accept with probability

w(U,,(n)

—_— . 27
w(Uy(n)) @D

Pacc = min {1, exp(—AS)

This procedure is repeated Ny times per n and p before it is
repeated for all (n, ) pairs. As reference we use an algorithm
based on the double precision floating point representation of
the two complex elements a, b needed to represent an SU(2)
matrix

a b
U= (—b* a*) (28)

with the additional constraint aa* + bb* = 1. In this case
w(U) = 1V U and the proposal is generated via U /;(n) =
V - U,(n), as explained above. The algorithm can be tested
for instance in the strong coupling limit 8 — 0 against the
strong coupling expansion derived in Refs. [26,27], which
reads in d dimensions for the plaquette expectation value

P16 = 18- 565+ (56~ 305 ) 16
4 96 9% 288/ 16
d
+ <—% +

In the upper panel of Fig. 2 we show the plaquette expectation
value as a function of 8 ind = 1 4 1 dimensions. In the
lower panel we compare to the corresponding strong coupling
expansion and find very good agreement.

For the subgroups the proposal step is implemented by
multiplication of U, (n) with one of the elements V of the
subgroup adjacent to the identity. Also in this case the weights
w are constant.

In the case of the Genz points, the linear discretisation and
the Volleyball neighbouring points in the partitioning can
be found by geometric considerations as explained in the
previous section. A proposal is chosen uniformly random
from the set of neighbouring points. For the Genz points
we do not take the weights w into account, because of their
complex dependence on the direction and the point itself.
For the linear and the Volleyball discretisations we compare
simulations with and without taking the approximate weights
Egs. (16) and (23) into account.

29\ 1 , .
m) E'B +O(B). (29)
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Fig. 2 Plaquette expectation value as a function of g in 1 4+ 1 dimen-
sions. In the lower panel we compare to the strong coupling expansion
(SCE) Eq. (29)

Due to the locally irregular structure of the Fibonacci
lattices finding the appropriate neighboring elements is not
as straightforward as in the case of the other partitionings.
Therefore, we pregenerate a neighbour list for each element
of the Fibonacci set based on the geometric distance. This
list is read and used during the update process.

In order to study the freezing transition, we follow the
following procedure. For a given B-value we perform a hot
(random gauge field) and a cold (unit gauge field) start sep-
arately. This is repeated for B-values from g; < 1to B¢ in
steps of AB. The phase transition is indicated by either the
fact that hot and cold starts do not equilibrate to the same
average plaquette expectation value for § > B, with one of
the two, typically the cold start, deviating from the reference
result. Or a significant deviation from the reference result is
seen for B > . for both, hot and cold start.

For the purpose of this paper we define the critical value
of B, denoted as B, as the smallest value of B8 for which
forward and backward branches do not agree within errors.
In practice, this will only be a lower bound for ..

Statistical errors are computed based on the so-called I'"-
method detailed in Ref. [28] and implemented in the publicly
available software package hadron [29].

—— reference £5=4.0
[l
D
% —
IS ® @ e
0 @
%
0D
~ @
IS
zl.2 __.B____.&8_ ____8 ____.8
<
=1
- 0 Genz
= O linear w/o weighting
e ¢ linear w/ weighting
| I I I I
0 50 100 150 200

m

Fig. 3 Comparison of plaquette expectation values for Genz partition-
ing G, and linear partitioning L,, w/ and w/o weighting in 1 + 1
dimensions on a L2 = 1002 lattice for 8 = 4.0 as a function of m

Finally, we would like to point out one important dif-
ference in methodology compared to Ref. [8]: we run the
MC algorithm directly on the discrete set of SU(2) elements,
while the authors of Ref. [8] run what we call the reference
algorithm and project to the discrete set afterwards. Then
they study different ways to project onto the discrete set.

5 Results
5.1 Influence of weights

One important difference between finite subgroups and the
partitionings discussed above is the need for weights in the
case of the partitionings. In order to study the influence
of weights, we compare here Genz points with the linear
discretisation for simplicity in d = 1 4 1 dimensions for
L? = 100 lattices.

In Fig. 3 we compare the plaquette expectation value
obtained from MC simulations with Genz points to those with
the linear discretisation with and without weighting taken
into account for 8 = 4.0. The comparison is performed for
values of m in the range from 5 to 200, which adjusts the
fineness of the partitioning. The reference result — generated
with the reference algorithm as discussed above, is indicated
by the red solid line and the corresponding statistical uncer-
tainty by the dashed red lines. This 8-value is representative.
Only at very small B-value, no dependence on m can be
observed.

We observe for the Genz points the strong influence
of missing weights. As expected from our estimate of the
weights, the deviation from the reference result increases
with increasing m.

@ Springer
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1.0 —

Fys

0.8

0.6 —

—— Reference

0.4 —

0.2
O cold start

O hot start
I I I I I I
0 2 4 6 8 10

Fig. 4 Hysteresis loops for the Fibonacci partitioning Fgg and the
linear partitioning with weights included L3. Both have n = 88
elements

In contrast, the linear discretisation without weighting
converges towards the reference result with increasing m.
The smallish deviations from the reference result at small
m-values can be reduced significantly (if not removed com-
pletely) by including the weights in the MC simulation. This
observation appears is largely independent of .

We conclude from these results that it is not worthwhile to
further consider the Genz points. For the linear partitioning
it turns out that the weights appear to be important for small
m-values, but become negligible for large m. However, this
might also depend on the observable.

Note that there are alternative methods than the reweight-
ing as described here to avoid biases, for instance projection
schemes [8]. We find the weight based method more intuitive
and computationally more efficient though.

5.2 Freezing transition

We study the freezing transition using simulations of the
SU(2) gauge theory in 3+ 1 dimensions with L* = 8 lattice
volume. We look at 8 € {0.1,0.2,...,9.9, 10.0}. For each
value of B, 7000 sweeps are performed, once with a hot,
and once with a cold starting configuration. During a single
sweep every lattice site and direction is probed Npi = 10
times. The plaquette is then measured by averaging over the
last 3000 iterations.

Such scans in B can be found in Fig. 4. B, is then estimated
to be the last value before a significant jump in (P), or a
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Fig. 5 The critical value 8. as a function of the number n of elements
in the set. The lines represent the approximation Eq. (30) where the
order N (n) is obtained from Eq. (33)

significant disagreement between the hot and cold start>. We
have checked that the such determined critical S-values do
not depend significantly on the volume.

In Fig. 5 we show the B.-values at which the freezing
transitions takes place as a function of the number n of ele-
ments in the set of points or the subgroups. We compare
the Fibonacci, the linear and the Volleyball partitioning, and
the finite subgroups of SU(2). For the linear and the Vol-
leyball partitioning we also distinguish between results with
and without including weighting to correct for the different
Voronoi cell volumes. The corresponding results are also tab-
ularised in Tables 2, 3, 4 and 5. For the Fibonacci partitioning
we tabularise only results for selected n values.

Also note that our S.-values for the finite subgroups 7, O
and 7 reproduce the ones given in Ref. [4].

Figure 5 suggests that all our SU(2) discretisations behave
qualitatively similar. However, at fixed n-value the sub-
groups, linear and Volleyball partitionings do have smaller
Bc-values compared to the Fibonacci lattice. Moreover, we
observe a significant difference between simulations with and
without weighting included. This difference increases with
increasing n.

2 Fibonacci lattices usually show the latter behavior, which is why
we increase the number of thermalization sweeps to 10 000. This
marginally raised the values of .
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Table 2 f.-values for selected ~

Fibonacci lattice partitionings of N Pe
SU(2) ford = 4 and 8% lattices.
Orders N are approximations 8 42 L)
according to Eq. (33), rounded 12 5.0 L.9(1)
to one digit 24 6.4 3.1(1)
32 7.1 3.7(1)
53 8.5 5.1(1)
88 10.2 6.8(1)
90 10.3 7.0(1)
152 12.3 9.6(1)
Table 3 f.-values for the - w nw
weighted and not-weighted men N Pe Pe
linear discretisation L,, for
1 < m < 5 determined for B 18 42091 0.5(1)
d = 4 on 10* lattices. Orders N 2032 7.1 23() 25(1)
are approximations according to 3 88 102 5.0(1) 6.2(1)
Eq. (33), rounded to one digit 4192 133 83(1) > 10
5 360 164 >15

Table 4 ﬂc-valuesfor the discrete subgroups of SU(2). N are the exact
cyclic orders and N are approximations according to Eq. (33)

Subgroup n N N Be

Dy 8 4 4.2 1.15(15)
T 24 6 6.4 2.15(15)
0 48 8 8.2 3.20(10)
1 120 10 11.3 5.70(20)

In Fig. 5 we have also added a second x-axis indicating
the number of qubits nqubits per link that would be needed
to represent the corresponding discretisation on a quantum
device. We remark that for a SU(2) gauge theory the relevant
region of B-values is around B = 2, where one enters the
scaling region, which is sufficient to reach for traditional
MC simulations [13-15].

In Ref. [4] the authors find that the critical 8-value can be
computed theoretically, at least approximately, for the finite
subgroups. It is based on an analytical calculation of B.(N)
for Zy, which is generalised to finite subgroups as follows:
for the subgroup G, the authors define the set of elements
C(G) closest to the identity, but excluding the identity itself.
Close to the freezing transition, plaquettes are made of iden-
tity links, or g, g~! € C(G) for minimal changes compared
to unit plaquettes. Next, they define N (the cyclic order) as
the minimal integer for which g" = 1. The corresponding
subgroup generated by g is isomorphic to Zy. For the four
groups Dy, T, O and I one finds N = 4, 6, 8 and 10, respec-
tively. This leads to the following expectation for the critical
B-value as a function of N

In (1 +\/§)

Pe(N) ~ 1 —cos(2r/N)’

(30)
However, for Fibonacci, linear and Volleyball partitionings
we no longer deal with subgroups. In particular, taking one
of the elements e closest to the identity element, it is not
guaranteed that there is an N € N for which eV = 1.

Thus, we have to approximate the order N. For (approxi-
mately) isotropic discretisations such as the finite subgroups
and the Fibonacci partitioning a global average over the point
density is bound to yield a good approximation for the ele-
ments in C(G) and therefore N. The volume of the three
dimensional unit sphere is 2772. If we then assume a locally
primitive cubic lattice, the average distance of n points in S3
becomes

o\ 1/3
d(n):(%) . 31)

Two points of this distance together with the origin form a
triangle with the opening angle

. d(n)
a(n) = 2 arcsin - (32)
thus a first approximation of the cyclic order is obtained by
~ 2
Nmy =, (33)
a(n)

which solely depends on the number n of elements in the
partition.

Note that the assumption of a primitive cubic lattice is even
asymptotically incorrect for all the partitionings discussed
in this work and at best a good approximation. How good
an approximation it is, can only be checked numerically. In
specific cases it needs further refinement.

In particular, in the case of the Fibonacci partitioning
the approximation has to be adjusted. Since the points are
distributed irregularly in this case, a path going around the
sphere does not lie in a two-dimensional plane. Instead it fol-
lows some zigzag route which is longer than the straight path.
Assuming the optimal maximally dense packing, we expect
the points to lie at the vertices of tetrahedra locally tiling
the sphere. The length of the straight path would then corre-
spond to the height of the tetrahedron whereas the length of
the actual path corresponds to the edge length. Their ratio is

\/g , 50 N has to be rescaled by this factor to best describe
B for the Fibonacci partitioning.

We show the curve Eq. (30) using N(n) and /3/2N,
respectively, in addition to the data in Fig. 5. The version
with N is in very good agreement with the results obtained
for the finite subgroups while the rescaled version matches
the values for the Fibonacci partitioning remarkably well.

The unweighted simulations of the Volleyball and the
weighted simulations of the linear discretisations also yield
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Table 5 B.-values for the weighted and not-weighted Volleyball dis-
cretisatiqn V,u for 0 < m < 1 determined for d = 4 on 10* lattices.
Orders N are approximations according to Eq. (33), rounded to one
digit

m n N B B
0 16 5.6 1.7(1) 1.7(1)
80 9.8 2.8(1) 4.9(1)

results compatible with the unscaled version of Egs. (30)
and (33). On the other hand, the weighted Volleyball and the
unweighted linear discretisations deviate clearly (Table 5).

6 Discussion and outlook

Some of the results presented in the previous section deserve
separate discussion. Figure 5 shows that the Fibonacci lat-
tice discretisation has larger B.-values at fixed n compared
to the finite subgroups and the other partitionings. This can
be understood due to the irregularity of the points in the
Fibonacci lattices: at fixed n, this irregularity will generate
minimal distances between points which are smaller than the
ones for the other discretisations. Thus, the freezing transition
should appear at comparably larger 8 values only, because
smaller values of |AS| are available.

Also the difference in 8. between simulations with and
without weight included for the linear and Volleyball par-
titionings, respectively, can be understood qualitatively.
Assume the system freezes for the weighted case at some
value 8. Switching off the weighting, there will be subsets
of points with on average lower (or larger) distances between
elements than the average distance. In these regions the |AS|
values required for acceptance will be smaller than the aver-
age |AS| value at this S. And it is reasonable to assume that
these regions are also reached during equilibration. Thus, the
critical 8-value for the not weighted simulation 8" must be
larger or equal 8".

Though this trend is universal, we find an additional supe-
riority of the linear as compared to the Volleyball discreti-
sation. We expect this to be a consequence of the denser
packing of the linear discretisation where most of the points
have twelve neighbours whereas the majority of the points
in the Volleyball discretisation has only six neighbours.

We have obtained excellent predictions for the B.-values
for finite subgroups and Fibonacci partitionings. For finite
subgroups the prediction using N is even better than the pre-
diction using N, in particular for larger n. For the Fibonacci
partitionings the rescaling with the factor /3/2 suggests
that the Fibonacci elements are close to maximally densely
packed. Thisis strongly backed up by the numerical evidence.
Based on this assumption of closest-packing we postulate
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that there is no discretisation scheme yielding a significantly
later freezing transition than the Fibonacci partitioning at an
equal number of points.

Finally, the predicted B, values do not agree with our
observations for the unweighted linear and the weighted Vol-
leyball discretisations, respectively. We do not fully under-
stand these discrepancies, but it suggests that the linear dis-
cretisation has subsets of elements which are close to maxi-
mally densely packed. And the Volleyball discretisation is in
this regard sub-optimal.

In Sect. 3.2 we have explained how SU(N) can be
expressed as a product of odd-dimensional spheres S3, Ss,
..., S2n—1. Since the k-dimensional hypervolume H (Sx) =
25T (“4L) of the k-sphere is well known, we can gen-
eralise the prediction of 8. to N > 2 by adjusting the average
distance from Eq. (31)

2_
IN—1 1/(N"=1)

1
dvmy = |~ [] Ho (34)
k=3,0dd

and applying Eq. (33) and Eq. (30) successively as before. In
particular, this formula readily predicts critical couplings for
the finite subgroups of SU(3) which have been determined
by Bhanot and Rebbi [30]. We show how our prediction com-
pares to the values obtained by Bhanot and Rebbi in Fig. 6.
In addition to the results for B, given in the paper originally
(black circles), we plot the leftmost bounds of the hysteresis
loops® they visualised, denoting the minimal possible value
of B, (red squares). The systematic effect stemming from
different estimations of S, is remarkably large. We therefore
refrain from any conclusion as to the quantitative correctness
of our prediction. Nevertheless it seems well suited to pre-
dict the qualitative scaling of the freezing transition and it
provides the correct order of magnitude.

In this light it is also interesting to discuss the number
of qubits nqupis per link needed to represent these discreti-
sations on a quantum computer. ngupits 1S of course related
to the number of elements via nqupits = log, (). For SU(2)
(see Fig. 5) the usage of the Fibonacci discretisation would
mean only a single qubit improvement per link compared
to the other discretisations. While this does not sound like
much, it might be crucial on so-called near-term noisy quan-
tum devices. Moreover, the added flexibility might be of great
help.

As argued in Refs. [13-15] it is in principle sufficient
to reach the scaling region, which for SU(2) starts around
B = 2. However, with a quantum device one could in prin-
ciple reach very large B-values without suffering from the

3 The hysteresis loop is formed by the different values of the plaquette
corresponding to hot and cold starts, respectively. The minimal S, is
the first point where these results do not agree.
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Fig. 6 The critical value 8. in SU(3) as a function of the number n of
elements in the set. The lines represent the approximation Eq. (30) where
the order N (n) is obtained from Eq. (34) and Eq. (33). The reference
data by Bhanot and Rebbi [30] comes from their Table 1 (“original”)
and from the leftmost points of the hysteresis loops in their Figures 1-3
(“minimal”), respectively

limitations of MC algorithms. At such B-values one could
then seamlessly connect to perturbation theory. Here, the
added flexibility of the Fibonacci discretisation could, again,
be of large help. Moreover, if indeed v/3/2N is relevant also
for SU(3) with the Fibonacci discretisation, the saving in
the number of qubits per link is much larger than for SU(2)
and might become highly relevant (compare the black dashed
with the red dotted line in Fig. 6!).

7 Summary

In this paper we have presented several asymptotically dense
partitionings of SU(2), which do not represent subgroups of
SU(2) but which have adjustable numbers of elements. The
discussed partitionings are not necessarily isotropically dis-
tributed in the group, which requires in principle the inclusion
of additional weight factors in the Monte Carlo algorithms.
We have investigated whether or not the partitionings with-
out and, if possible, with weights included can be used in
Monte Carlo simulations of SU(2) lattice gauge theories by
comparing the plaquette expectation value as a function of 8
to reference results of a standard lattice gauge simulation.
This comparison rules out the usage of the so-called Genz
partitioning, because the weights are difficult to compute and

the difference due to not included weights increases with the
number of elements. Thus, Monte Carlo simulations with fine
Genz partitionings of SU(2) are not feasible.

For the other considered partitionings, this comparison
turned out to give good agreement with the standard simula-
tion code, in particular when the weights are included. More-
over, the finer the discretisation (and the larger the number
of elements) the smaller the deviation between simulations
with and without weighting.

In addition we have investigated the so-called freezing
transition for the partitions and for all finite subgroups of
SU(2). The main result visualised in Fig. 5 is that the parti-
tioning Fj based on Fibonacci lattices allows for a flexible
choice of the number of elements by adjusting k and at the
same time larger B.-values compared to finite subgroups and
the other discussed partitionings. Thus, Fibonacci based dis-
cretisations provide the largest simulatable S-range at fixed n.

Coming back to the introduction, using the partitionings
proposed here does not pose any problem even at very large
B-values at least in Monte Carlo simulations. This leaves us
optimistic for their applicability in the Hamiltonian formal-
ism for tensor network or quantum computing applications.

Finally, the generalisation of the partitionings discussed
here to the case of SU(3) relevant for quantum chromo-
dynamics is straightforward and we expect that the results
obtained in this paper directly translate to this larger group.
It becomes again clear that in the SU(3) case one also needs
to improve the lattice action to avoid the freezing prob-
lem. However, the saving due to the Fibonacci discretisation
would be much larger than for SU(2) if our prediction turns
out to be correct.
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Appendix A: Derivations of the nearest neighbour
distances

The square distance d(j;, j;)? for Genz points can be approx-
imated as follows:

2
o i i — 1 i1 i+ 1
d(]i,]l)2=‘<\/r]—7;—‘/ﬁ77\/]Z—\/Jm )‘ (A1)
1
— i+t = 1 =20 G = D+ i+ i

+1-2V5iGi + D)
(s L -2
= E <2./1 -2 (Jt 273, + O (J,' ))

. R B 2
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For the linear partitioning one readily computes the
approximation

(A2)

(A4)

k
DR+ Gi D=+ Gi+ D2 =P
i'=0

k
>

AM =

- (AS)
i'=0
=M —2j+2j+2-M (A6)
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Ji = Ji 1
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o) (A8)
yielding an inverse change
1 1 _AM Lo 1 (A9)
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Ji — Ji 1
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With this we can again calculate the square distance
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Nearest neighbours for the Volleyball partitioning can be
obtained by modifying j; =1 leading to the following approx-
imation of AM

k
AM = | > j3+Gi£ 1) = j? -

>k (Al4)
i'=0 =0
=M*+2j;+1-M (A15)
+ji 1 i
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and the corresponding inverse change
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Finally, we find the square distance
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