
AIC2023 – 15th Congress of the International Colour Association   November 28 - December 2, 2023 

AUGMENTING COLOUR COMMUNICATION IN ENGLISH, 

GREEK AND THAI 

 

D. Mylonas1*, A. Koliousis1, J. Stutters2, P. Katemake3, A. Stockman4 and R.T. Eskew Jr.5   
 

1Faculty of Computing, Mathematical, Engineering and Natural Sciences, Northeastern University 

London, UK. 
2Faculty of Brain Sciences, University College London, UK 

3Faculty of Science, Chulalongkorn University, Thailand. 
4Institute of Ophthalmology, University College London, UK. 

5College of Science, Psychology, Northeastern University Boston, US.  

 

*Corresponding author: Dimitris Mylonas, dimitris.mylonas@nulondon.ac.uk 

 

ABSTRACT 

The number of colour names varies across languages. To augment colour communication 

between speakers of different languages, we need a multilingual method to map how we perceive 

colours to the words we use to describe them. We evaluate the performance of a supervised colour 

naming model, Rotated Split Trees (RST), trained by responses from a crowdsourced colour 

naming experiment in English, Greek and Thai. We assess the generalizability of the model 

across several colour spaces where it performed best in the CIELUV. A comparison of RST with 

previous computational colour naming methods using independent psychophysical data in 

English showed that RST achieves state-of-the-art performance for basic colour categories and 

identifies five additional categories (n = 16) on the surface of the Munsell system. A 

demonstration of the performance of RST in segmenting a synthetic image across the colour 

gamut into colour names in English (n = 30), Greek (n = 28) and Thai (n = 46) further supports 

earlier findings that speakers can identify 30-50 colour names in their native language. 
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INTRODUCTION 

Colour naming describes our cognitive capacity to organise millions of discriminable colours 

into a smaller set of colour categories named, for example, as yellow, turquoise and navy blue. 

Colour names vary across languages, lexically, in number and in range of reference. To augment 

colour communication within and across different languages, it is necessary to have a 

multilingual method for mapping perceptual to cognitive aspects of colour. Computational colour 

naming methods aim to automate the process of classifying colours to colour names that are 

meaningful to speakers of various languages across the colour gamut. For example, given the 

numerical coordinates of a sample in some colour space, what is the best name to describe it in 

different languages?  

 Previous efforts [1-7] have predominantly focused on a limited set of 11 basic colour terms 

(BCTs)[8]. But we [9, 10], and others [11, 12], have shown that BCTs can neither capture the 

full range of visible colours, nor represent the extensive colour lexicons used by native speakers. 

In this study, we evaluate a recent supervised machine learning method, namely Random Split 

Trees (RST) [13], in various colour spaces that not only identifies the basic colours but also 

captures subtleties of colour nomenclature in wide cultural use in English, Greek and Thai. Our 

goal is to augment colour communication between speakers of different languages. 

METHODOLOGY 

In the collection of our behavioural data, we extend previous cross-cultural studies which used 

only the most saturated colour samples by also sampling the interior of the colour solid. A further 
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methodological improvement includes the departure from usual methods which would use a 

small number of observers and/or the use of only a restricted set of basic colour terms. Instead, 

thousands of volunteers from linguistically and demographically diverse populations freely 

named a large number of colours online (available at: https://colournaming.org). Test stimuli 

were 2 degree uniformly coloured discs with a black outline of 1 pixel, presented against a neutral 

grey background. The stimuli consisted of 589 simulated samples approximately uniformly 

distributed in the Munsell Renotation Data and restricted in the sRGB gamut, plus 11 achromatic 

samples [14]. 

We trained RST by 10,000 responses in the crowdsourcing colour naming experiment from 

500 participants in English, 10,000 responses from 500 participants in Greek and 5,000 from 250 

participants in Thai. RST ensembles a set of random binary decision trees where each tree grows 

using the full training dataset and splits nodes at random. Tree-based ensembles are essentially a 

set of hyper-rectangles that can be sensitive to rotations when partitioning the decision space; 

therefore, prior to any splitting, we randomly rotate the representation space to further induce 

diversity within the constructed forest and to improve accuracy at determining the form of colour 

categories in a three-dimensional space. 

RESULT AND DISCUSSION 

EVALUATION OF COLOUR SPACES 

To investigate whether the choice of colour space influences the results of RST, we compared 

the performance of the model using Leave-One-Out and Leave-Planes-Out cross-validations in 

RGB-linear, CIE XYZ 1931, CIELAB, CIELUV and CIECAM02-UCS, assuming the sRGB 

viewing conditions. In the Leave-One-Out mode, we exclude a test chip from the training data 

and predict its histogram of colour names from the trained model. In the Leave-Planes-Out mode, 

we exclude the test chip and all the chips with the same, chroma, or lightness or hue dimensions. 

Each colour space was scored by RMS of Bhattacharyya distances between observed and 

predicted histograms of colour naming responses shown in Table 1. 

 

Table 1: Comparison of colour spaces for classification in colour names using RST. 

Colour Spaces Leave-One-Out Leave-Planes-Out 

RGB (linear) 0.99 1.03 

sRGB 0.99 1.03 

CIEXYZ1931 0.97 1.14 

CAM02UCSsRGB 0.95 1.02 

CIELABD65 0.92 0.97 

CIELUV D65 0.91 0.96 

  

Overall, the predictions of the RST algorithm were better in the approximately 

perceptually uniform colour spaces (CIELAB, CIELUV, CAM02-UCS) than in the non-uniform 

(RGB, sRGB, CIE XYZ 1931) spaces. The best colour space in terms of accuracy of predictions 

in both cross-validation modes was CIELUV in agreement with the reports of a recent study on 

colour clustering [15], although CIELUV’s advantage was slight. 

COMPARISON TO EARLIER COMPUTATIONAL COLOUR NAMING MODELS 

To compare the performance of RST against previous colour naming models based on the 

monolexemic psychophysical data of Sturges and Whitfield [16] in British English, we first 

followed the approach described by Guest & Laar [17] and restricted the responses to their last 

word resulting in 320 distinct colour terms instead of just the eleven terms of previous colour 
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naming models. We trained the RST with these monolexemic responses and inferred their 

histograms for the 330 patches of the Munsell array [8] in CIELUV. 

In Figure 1, we show the segmentation of the simulated Munsell array by RST against 

Sturges & Whitfield’s distributions of BCTs drawn with black boxes (n = 111 chips). The RST 

model assigned the 330 chips to 16 colour terms: the 11 BCTs with perfect accuracy, as well as 

additional terms like turquoise, lilac, maroon, peach, mauve, and teal. 

 
Figure 1. Segmentation of simulated Munsell array into 16 monolexemic colour terms by 

RST model. Coordinates of their centroids were used to colour each name category.  Sturges 
& Whitfield’s mapping of BCTs in British English are drawn with black boxes.  

In Table 2., we show the comparison of the performance of the RST model against 

previous colour naming models of Lammens’s Gaussian model (LGM) [3]; MacLaury’s English 

Speaker (MES)[4]; Benavente and Vanrell’s Triple Sigmoid model (TSM)[1]; Seaborn’s fuzzy 

k-means model (SFKM) [6]; Benavente et al’s Triple Sigmoid- Eliptic Sigmoid model (TSMES) 

[2]; van de Weijer et al’s Probabilistic Latent Semantic Analysis (PLSA)[7]; Parraga & 

Akbarinia’s Neural Isoresponsive Colour Ellipsoids model (NICE) [5]; and Mylonas & 

MacDonald’s Maximum a Posteriori (MAP)[9]. RST achieved the same performance as other 

state-of-the-art colour naming models (SFKM, TSMES, and NICE), with 100% accuracy for 111 

coincidences based on Sturges & Whitfield's results for the 11 basic colour categories. 

Additionally, RST identified five terms on the Munsell array. 

 

Table 2. Comparison of colour naming models on the Munsell array (n=330 chips) against 
Sturges & Whitfield (1995) results. The data for LGM, MES, TSM, SFKM, TSEM, PLSA and 

NICE was obtained from Table 4 in Parrage & Akbarinia (2016). 

Models Coincidences Errors % 

LGM 92 19 17 

MES 107 4 4 

TSM 108 3 3 

SFKM 111 0 0 

TSEM 111 0 0 

PLSA 109 2 2 

NICE 111 0 0 

MAP 110 1 1 

RST 111 0 0 
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COMPUTATIONAL COLOUR NAMING IN ENGLISH, GREEK AND THAI 

To automate the colour naming task across different languages, we trained the RST model on 

unconstrained multilingual datasets in English, Greek, and Thai. Figure 2, shows the performance 

of the model on segmenting a synthetic image, which includes not only the surface but also the 

interior of the colour gamut [10], into lexical colour categories. 

  

 
Figure 2. Segmentation of synthetic test image. Test image (1st row – left). Segmentation of 
test image in British English (1st row – right), Greek (2nd row – left) and Thai (2nd row – right) 

colour names. Coordinates of their centroids were used to colour each name category. 

Learning from British English speakers, the RST algorithm assigned the colour 

coordinates of the synthetic image into 30 colour names. The seven largest categories were BCTs: 

green, blue, grey, pink, purple, yellow and orange. Red and brown were the 10th and 13th largest 

categories. Turquoise (8th) and lime green (9th) were the non-basics with the largest coverage in 

the test image with lilac (11th) and beige (12th) found also to cover regions larger than brown. 

Red was restricted to the most saturated colours with salmon, peach, pink and orange covering 

the pale region of the same hue angles. Turquoise was assigned to pixels all the way from the 

neutral axis to the limit of the gamut while lilac was restricted to the pale regions of purple.  

With data sourced from Greek speakers, RST identified 28 lexical colour categories in the 

test image. The five largest categories were the BCTs green (prasino), purple (mov), grey (gri), 

blue (ble) and pink (roz). Yellow (kitrino) was the 8th, orange (portokali) was the 10th, red 

(kokkino) was the 12th and brown (kafe) was the 19th largest categories. Sky blue (galazio), the 

proposed second blue basic category in Greek, was the 6th largest category covering regions from 

the neutral axis to the limits of the gamut. Similarly, turquoise (tirkuaz) was the 7th most common 

category. Lime green (lahani) and fuchsia (fouxia) were also very popular categories followed 

by beige (bez), salmon (somon) and olive (ladi). Lilac (lila) was assigned to >1% of pixels.  

Learning colour names from Thai speakers, the RST algorithm identified 46 colour names 

in the synthetic image. Again, the seven largest categories were the BCTs green (khiaw), grey 

(thaw), sky blue (fa), pink (chompu), purple (muang), yellow (leaung) and orange (som). Brown 

(namtan) and red (dang) were the 10th and 12th largest categories. The proposed second basic 

blue (namngen) was the 9th most common category. The largest non-basics were light green 
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(khiawon) and light purple (muangon). Compared to all other languages, the turquoise category 

in Thai (faomkhiaw) was assigned to a much smaller number of pixels (<1%).  

Overall, our results reinforce previous findings that the colour space can be segmented into 

30-50 colour categories [10-12]. The large discrepancy in the number of identified colour 

categories between Thai (n = 46) and both English (n = 30) and Greek (n = 28) is likely due to 

the more frequent use of modifiers reported in Thai [18]. A more recent study [19] also found 

that Thai speakers use 20 highly frequent monolexemic colour terms to describe the surface of 

the Munsell system, compared to the 16 terms reported for English in this study. 

CONCLUSION 

In conclusion, we present a supervised computational colour naming model, namely Random 

Split Trees, to automate colour naming in English, Greek and Thai. Our tools and data allowed 

the analysis of colour names both on the surface and within the colour gamut. Our model 

performs best in CIELUV and achieves the same level of state-of-the-art performance as earlier 

models, but goes a step further by identifying 5 additional lexical colour categories in English on 

the surface of the Munsell system. The performance of the model across the colour gamut in 

English, Greek and Thai aligns with empirical findings of earlier studies showing that native 

speakers can identify 30-50 colour names without training. 
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