Controllability via DEA 00000 0000 Summary 0

Testing Quantum Computer Controllability via Dimensional Expressivity

Tobias Hartung

Northeastern University - London

In collaboration with F. Gago-Encinas (FU Berlin), D. M. Reich (FU Berlin), K. Jansen (NIC, DESY Zeuthen), and C. P. Koch (FU Berlin).

2023/09/04

Controllability via DEA 00000 0000 Summary 0

Quantum Hardware and Controls

We consider quantum system linearly coupled to external controls with Hamiltonian

$$\hat{H}(t) = \hat{H}(t; u_1, ... u_m) = \hat{H}_0 + \sum_{j=1}^m u_j(t) \hat{H}_j$$

where

- ▶ \hat{H}_0 : time-independent drift Hamiltonian (undisturbed dynamics)
- $\hat{H}_j \ (j \ge 1)$: control Hamiltonians
- u_j : control strengths
- simplicity: $u_j(t)$ rectangular pulses with $||u_jH_j|| \gg ||H_0||$

Controllability 00000	Dimensional Expressivity Analysis 00000	Controllability via DEA 00000 0000

Example

4 qubit system with external $\hat{\sigma}_x$ controls on qubits 1 and 2:

Controllability via DEA 00000 0000 Summary 0

Controllability for Variational Quantum Simulations

Basic VQS setup:

- initialize system in state $|\psi_0\rangle$
- \blacktriangleright use your controls to find solution state $|\psi\rangle$ of variational problem; e.g., ground state of some Hamiltonian

Controllability for Variational Quantum Simulations

Basic VQS setup:

- initialize system in state $|\psi_0\rangle$
- \blacktriangleright use your controls to find solution state $|\psi\rangle$ of variational problem; e.g., ground state of some Hamiltonian

Pure-state Controllability (PSC)

▶ set of reachable states from $|\psi_0\rangle$ coincides with the entire state space of the quantum device $\partial B_{\mathcal{H}}/U(1)$ (unit sphere of the device Hilbert space \mathcal{H} up to factors of $e^{i\alpha}$ with $\alpha \in \mathbb{R}$)

Controllability for Variational Quantum Simulations

Basic VQS setup:

- initialize system in state $|\psi_0\rangle$
- \blacktriangleright use your controls to find solution state $|\psi\rangle$ of variational problem; e.g., ground state of some Hamiltonian

Pure-state Controllability (PSC)

- set of reachable states from $|\psi_0\rangle$ coincides with the entire state space of the quantum device $\partial B_{\mathcal{H}}/U(1)$ (unit sphere of the device Hilbert space \mathcal{H} up to factors of $e^{i\alpha}$ with $\alpha \in \mathbb{R}$)
- Note: since controls are unitary *PSC* means any initial state of the quantum device can be controlled into any other possible state of the device

Controllability via DEA 00000 0000 Summary 0

Controllability for Universal Quantum Computing

Universal Quantum Computing:

• Any unitary operation of the device Hilbert space can be realized.

Controllability via DEA 00000 0000 Summary 0

Controllability for Universal Quantum Computing

Universal Quantum Computing:

• Any unitary operation of the device Hilbert space can be realized.

Operator Controllability (OC)

▶ For any target unitary $\hat{U}_t \in SU(\mathcal{H})$ there exist a time T > 0, a phase $\alpha \in \mathbb{R}$, and controls u_1, \ldots, u_m such that the controlled evolution $\hat{U}(T; u_1, \ldots, u_m)$ satisfies

$$\hat{U}_t = e^{i\alpha} \hat{U}(T; u_1, \dots, u_m)$$

Controllability	
00000	

PSC vs OC

- Pure-State Controllability: any single state can be controlled into any other single state
- Operator Controllability: any orthonormal basis can be controlled into any other orthonormal basis

Controllability	
00000	

PSC vs OC

- Pure-State Controllability: any single state can be controlled into any other single state
- Operator Controllability: any **orthonormal basis** can be controlled into any other **orthonormal basis**
- clearly: $OC \Rightarrow PSC$
- ▶ there exist systems that are
 - ► OC
 - ▶ PSC but not OC
 - ▶ not PSC
- $\blacktriangleright \text{ OC} \succ \text{PSC}$

DEA setup

A Parametric Quantum Circuit C (for us) is the map

 $C: \text{ parameter space } \mathcal{P} \to \text{quantum device state space } \mathcal{S}; \ \vartheta \mapsto |\psi(\vartheta)\rangle,$

i.e., C contains both the gate sequence and the initial state $|\psi_0\rangle$.

"Optimal" Circuit

- ▶ maximally expressive: be able to generate all (physically relevant) states
- ▶ *minimal:* not contain "unnecessary" parameters/gates

Controllability 20000	Dimensional Expressivity Analysis 0000	Controllability via DEA	Summary 0

Finding redundant parameters

 ϑ_k is redundant iff $\partial_k C(\vartheta)$ is a linear combination of the $\partial_j C(\vartheta)$ with $j \neq k$ \Rightarrow inductively check each real partial Jacobian J_k of C

$$J_{k} = \begin{pmatrix} | & | \\ \Re \partial_{1}C & \cdots & \Re \partial_{k}C \\ | & | \\ | & | \\ \Im \partial_{1}C & \cdots & \Im \partial_{k}C \\ | & | \end{pmatrix}$$

for invertibility (e.g., by computing the smallest eigenvalue of $S_k := J_k^* J_k$) \Rightarrow Assuming $\vartheta_1, \ldots, \vartheta_{k-1}$ are independent, then ϑ_k is dependent if and only if det $S_k = 0$. Note $S_k \ge 0$, so we can check $\lambda_{\min} > \varepsilon$ to conclude det $S_k \ne 0$.

 $\underset{00000}{\operatorname{Controllability}}$

Dimensional Expressivity Analysis 00000

Controllability via DEA 00000 0000 Summary o

Example: $C(\vartheta) = \hat{R}_Z(\vartheta_2)\hat{R}_X(\vartheta_1)|0\rangle$

$$C(\vartheta) = \hat{R}_Z(\vartheta_2)\hat{R}_X(\vartheta_1)|0\rangle = \begin{pmatrix} \cos\frac{\vartheta_1}{2}\cos\frac{\vartheta_2}{2} - i\cos\frac{\vartheta_1}{2}\sin\frac{\vartheta_2}{2} \\ -i\sin\frac{\vartheta_1}{2}\cos\frac{\vartheta_2}{2} + \sin\frac{\vartheta_1}{2}\sin\frac{\vartheta_2}{2} \end{pmatrix} \begin{pmatrix} |0\rangle \\ |1\rangle \end{pmatrix}$$

yields

$$J_{1} = \frac{1}{2} \begin{pmatrix} -\sin\frac{\vartheta_{1}}{2}\cos\frac{\vartheta_{2}}{2} \\ \cos\frac{\vartheta_{1}}{2}\sin\frac{\vartheta_{2}}{2} \\ \sin\frac{\vartheta_{1}}{2}\sin\frac{\vartheta_{2}}{2} \\ -\cos\frac{\vartheta_{1}}{2}\cos\frac{\vartheta_{2}}{2} \end{pmatrix} \quad \text{and} \quad J_{2} = \frac{1}{2} \begin{pmatrix} -\sin\frac{\vartheta_{1}}{2}\cos\frac{\vartheta_{2}}{2} & -\cos\frac{\vartheta_{1}}{2}\sin\frac{\vartheta_{2}}{2} \\ \cos\frac{\vartheta_{1}}{2}\sin\frac{\vartheta_{2}}{2} & \sin\frac{\vartheta_{1}}{2}\cos\frac{\vartheta_{2}}{2} \\ \sin\frac{\vartheta_{1}}{2}\sin\frac{\vartheta_{2}}{2} & -\cos\frac{\vartheta_{1}}{2}\cos\frac{\vartheta_{2}}{2} \\ -\cos\frac{\vartheta_{1}}{2}\cos\frac{\vartheta_{2}}{2} & \sin\frac{\vartheta_{1}}{2}\sin\frac{\vartheta_{2}}{2} \end{pmatrix}.$$

Hence

$$S_1 = J_1^* J_1 = \frac{1}{4}$$
 and $S_2 = J_2^* J_2 = \begin{pmatrix} \frac{1}{4} & 0\\ 0 & \frac{1}{4} \end{pmatrix}$

Testing Quantum Computer Controllability via Dimensional Expressivity

Controllability via DEA 00000 0000 Summary 0

Example: $C(\vartheta) = \hat{R}_X(\vartheta_2)\hat{R}_X(\vartheta_1)|0\rangle$

$$C(\vartheta) = \hat{R}_X(\vartheta_2)\hat{R}_X(\vartheta_1)|0\rangle = \begin{pmatrix} \cos\frac{\vartheta_1}{2}\cos\frac{\vartheta_2}{2} - \sin\frac{\vartheta_1}{2}\sin\frac{\vartheta_2}{2} \\ -i\sin\frac{\vartheta_1}{2}\cos\frac{\vartheta_2}{2} - i\cos\frac{\vartheta_1}{2}\sin\frac{\vartheta_2}{2} \end{pmatrix} \begin{pmatrix} |0\rangle \\ |1\rangle \end{pmatrix}$$

yields

$$J_2 = \frac{1}{2} \begin{pmatrix} -\sin\frac{\vartheta_1}{2}\cos\frac{\vartheta_2}{2} - \cos\frac{\vartheta_1}{2}\sin\frac{\vartheta_2}{2} & -\cos\frac{\vartheta_1}{2}\sin\frac{\vartheta_2}{2} - \sin\frac{\vartheta_1}{2}\cos\frac{\vartheta_2}{2} \\ 0 & 0 \\ 0 & 0 \\ -\cos\frac{\vartheta_1}{2}\cos\frac{\vartheta_2}{2} + \sin\frac{\vartheta_1}{2}\sin\frac{\vartheta_2}{2} & \sin\frac{\vartheta_1}{2}\sin\frac{\vartheta_2}{2} - \cos\frac{\vartheta_1}{2}\cos\frac{\vartheta_2}{2} \end{pmatrix}.$$

Hence

$$S_1 = J_1^* J_1 = \frac{1}{4}$$
 and $S_2 = J_2^* J_2 = \frac{1}{4} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ with $\sigma(S_2) = \{0, \frac{1}{2}\}$.

Testing Quantum Computer Controllability via Dimensional Expressivity

Controllability via DEA 00000 0000 Summary 0

Hybrid quantum-classical implementation of DEA

- Use quantum device to measure matrices $S_k = J_k^* J_k = \begin{pmatrix} S_{k-1} & A_k \\ A_k^* & c_k \end{pmatrix}$.
 - requires 1 ancilla qubit

L. Funcke, TH, K. Jansen, S. Kühn, P. Stornati, Quantum 5, 422 (2021) L. Funcke, TH, K. Jansen, S. Kühn, M. Schneider, P. Stornati, 2021 IEEE ICWS, 693-702 (2021)

Controllability via DEA 00000 0000 Summary 0

Hybrid quantum-classical implementation of DEA

- Use quantum device to measure matrices $S_k = J_k^* J_k = \begin{pmatrix} S_{k-1} & A_k \\ A_k^* & C_k \end{pmatrix}$.
 - requires 1 ancilla qubit
- Check classically for invertibility of all S_k $(2 \le k \le N)$.

L. Funcke, TH, K. Jansen, S. Kühn, P. Stornati, Quantum 5, 422 (2021) L. Funcke, TH, K. Jansen, S. Kühn, M. Schneider, P. Stornati, 2021 IEEE ICWS, 693-702 (2021)

Controllability via DEA 00000 0000 Summary 0

Hybrid quantum-classical implementation of DEA

- Use quantum device to measure matrices $S_k = J_k^* J_k = \begin{pmatrix} S_{k-1} & A_k \\ A_k^* & c_k \end{pmatrix}$.
 - requires 1 ancilla qubit
- Check classically for invertibility of all S_k $(2 \le k \le N)$.
- ⇒ Memory: $O(N^2)$ CPU calls: $O(N^4)$ QPU calls: $O(N^2 \varepsilon^{-2})$ where ε is the acceptable noise level for S_k

L. Funcke, TH, K. Jansen, S. Kühn, P. Stornati, Quantum 5, 422 (2021)

L. Funcke, TH, K. Jansen, S. Kühn, M. Schneider, P. Stornati, 2021 IEEE ICWS, 693-702 (2021)

Controllability via DEA 00000 0000 Summary 0

Hybrid quantum-classical implementation of DEA

- Use quantum device to measure matrices $S_k = J_k^* J_k = \begin{pmatrix} S_{k-1} & A_k \\ A_k^* & c_k \end{pmatrix}$.
 - requires 1 ancilla qubit
- Check classically for invertibility of all S_k $(2 \le k \le N)$.
- ⇒ Memory: $O(N^2)$ CPU calls: $O(N^4)$ QPU calls: $O(N^2 \varepsilon^{-2})$ where ε is the acceptable noise level for S_k
- \Rightarrow Polynomial in #parameters N

L. Funcke, TH, K. Jansen, S. Kühn, P. Stornati, Quantum 5, 422 (2021) L. Funcke, TH, K. Jansen, S. Kühn, M. Schneider, P. Stornati, 2021 IEEE ICWS, 693-702 (2021)

Controllability 00000	Dimensional Expressivity Analysis 00000	Controllability via DEA $\bigcirc 0000 \\ 0000 $	Summary O
			(
Pure-State Controllability			
			(
DEA and PSC			

▶ DEA computes local dimension of the image manifold of the quantum circuit

DEA and PSC

- ▶ DEA computes local dimension of the image manifold of the quantum circuit
- under reasonable assumptions:
 - ▶ local dimension = dimension of manifold of reachable states with probability 1
 - image manifold of quantum circuit is closed submanifold without boundary of quantum device state space $\partial B_{\mathcal{H}}/U(1)$
 - ⇒ image manifold = set of reachable state = $\partial B_{\mathcal{H}}/U(1)$ if and only if the number of independent parameters in the quantum circuit = dim $(\partial B_{\mathcal{H}}/U(1))$

Summary

DEA and PSC

- ▶ DEA computes local dimension of the image manifold of the quantum circuit
- under reasonable assumptions:
 - \blacktriangleright local dimension = dimension of manifold of reachable states with probability 1
 - image manifold of quantum circuit is closed submanifold without boundary of quantum device state space $\partial B_{\mathcal{H}}/U(1)$
 - ⇒ image manifold = set of reachable state = $\partial B_{\mathcal{H}}/U(1)$ if and only if the number of independent parameters in the quantum circuit = dim $(\partial B_{\mathcal{H}}/U(1))$
- ▶ find control based quantum circuit and check dimensional expressivity

Summary

Controllability 00000	Dimensional Expressivity Analysis 00000	Controllability via DEA 00000	Summary o
Pure State Controllability			
Pure-State Controllability			

PSC Circuit

Idea: Trotter product n layers of rotations around drift and control hamiltonians

$$C(\vartheta) = L(\vartheta_{(n-1)(m+1)}, \dots, \vartheta_{(n-1)(m+1)+m}) \cdots L(\vartheta_0, \dots, \vartheta_m) |\psi_0\rangle$$

with the $k^{\rm th}$ layer

$$L(\vartheta_{k(m+1)},\ldots,\vartheta_{k(m+1)+m}) = \underbrace{e^{-i\frac{\vartheta_{k(m+1)+m}}{2}\hat{H}_m}}_{\hat{R}_m(\vartheta_{k(m+1)+m})} \cdots \underbrace{e^{-i\frac{\vartheta_{k(m+1)+1}}{2}\hat{H}_1}}_{\hat{R}_1(\vartheta_{k(m+1)+1})} \underbrace{e^{-i\frac{\vartheta_{k(m+1)}}{2}\hat{H}_0}}_{\hat{R}_0(\vartheta_{k(m+1)})}$$

Controllability	
00000	

Controllability via DEA 00000

Summary o

Pure-State Controllability

PSC Circuit Example

Pure-State Controllability

PSC Analysis

DEA with randomly chosen parameters terminates if

- maximal expressivity is reached \Rightarrow PSC
- ▶ full redundant layer is reached \Rightarrow not PSC

Controllability via DEA 00000

Summary 0

Pure-State Controllability

PSC Examples (need 31 independent parameters)

- coupling strengths (MHz):
 J_{0,1} = 170, J_{1,2} = 220, J_{2,3} = 150
- qubit frequencies (GHz): $\omega_0 = 5.40$, $\omega_1 = 5.30$, $\omega_2 = 5.42$, $\omega_3 = 5.37$

- coupling strengths (MHz):
 J_{0,1} = 170, J_{1,2} = 220, J_{2,3} = 150
- qubit frequencies (GHz): $\omega_0 = 5.40$, $\omega_1 = 5.30$, $\omega_2 = 5.42$, $\omega_3 = 5.37$

Controllability via DEA 0000

Summary 0

Pure-State Controllability

PSC Examples (need 31 independent parameters)

- coupling strengths (MHz):
 J_{0,1} = 170, J_{1,2} = 220, J_{2,3} = 150
- qubit frequencies (GHz): $\omega_0 = 5.40$, $\omega_1 = 5.30$, $\omega_2 = 5.42$, $\omega_3 = 5.37$
- first 31 parameters are all independent \Rightarrow PSC

- coupling strengths (MHz):
 J_{0,1} = 170, J_{1,2} = 220, J_{2,3} = 150
- qubit frequencies (GHz): $\omega_0 = 5.40$, $\omega_1 = 5.30$, $\omega_2 = 5.42$, $\omega_3 = 5.37$
- only 29 independent parameters before redundant layer ⇒ not PSC

Controllability	Dimensional Expressivity Analysis	Controllability via DEA $_{\circ\circ\circ\circ\circ}^{\circ\circ\circ\circ\circ}$	Summary
00000	00000		0
Operator Controllability			

OC as PSC problem

- need to control arbitrary $\hat{U} \in U(\mathcal{H})/U(1) \hookrightarrow L(\mathcal{H}) \cong \mathcal{H} \otimes \mathcal{H}$
- $\blacktriangleright \ \mathcal{H} \otimes \mathcal{H}$ can be represented as qubit system of double size
- Can we relate PSC in $\mathcal{H} \otimes \mathcal{H}$ to OC in \mathcal{H} ?

Controllability 00000	Dimensional Expressivity Analysis 00000	Controllability via DEA $\odot 0000$ $\bullet 000$	Summary o
Operator Controllability			

OC as PSC problem

- need to control arbitrary $\hat{U} \in U(\mathcal{H})/U(1) \hookrightarrow L(\mathcal{H}) \cong \mathcal{H} \otimes \mathcal{H}$
- $\blacktriangleright \ \mathcal{H} \otimes \mathcal{H}$ can be represented as qubit system of double size
- Can we relate PSC in $\mathcal{H} \otimes \mathcal{H}$ to OC in \mathcal{H} ?
- Yes! Lifting via Choi-Jamiołkowski isomorphism!

Controllability 00000	Dimensional Expressivity Analysis 00000	Controllability via DEA $^{\circ\circ\circ\circ\circ}_{\bullet\circ\circ\circ\circ}$	$_{\rm o}^{\rm Summary}$
Operator Controllability			

OC as PSC problem

- need to control arbitrary $\hat{U} \in U(\mathcal{H})/U(1) \hookrightarrow L(\mathcal{H}) \cong \mathcal{H} \otimes \mathcal{H}$
- $\blacktriangleright \ \mathcal{H} \otimes \mathcal{H}$ can be represented as qubit system of double size
- Can we relate PSC in $\mathcal{H} \otimes \mathcal{H}$ to OC in \mathcal{H} ?
- Yes! Lifting via Choi-Jamiołkowski isomorphism!
- \blacktriangleright now have A (original) and B (copy) subsystems
- prepare maximally entangled state $|\psi_{ME}\rangle = \sum_{i=0}^{d-1} \frac{1}{\sqrt{d}} |e_i\rangle \otimes |e_i\rangle$
- \blacktriangleright consider PSC circuit in A and drift only in B
- ▶ do DEA

Controllability	
00000	

Summary 0

Operator Controllability

OC Circuit Example

Testing Quantum Computer Controllability via Dimensional Expressivity

T. Hartung

Operator Controllability

OC Analysis

DEA with randomly chosen parameters terminates if

- maximal expressivity is reached \Rightarrow OC
- ▶ full redundant layer is reached \Rightarrow not OC

Controllability	7
00000	

Summary o

Operator Controllability

OC Examples (need 63 independent parameters)

- couplings (MHz): $J_{0,1} = 170, J_{1,2} = 220$
- original qubit frequencies (GHz): $\omega_0 = 5.40, \ \omega_1 = 5.30, \ \omega_2 = 5.42$
- ancilla qubit frequencies (GHz): $\omega_3 = 5.37, \ \omega_4 = 5.29, \ \omega_5 = 5.34$

- couplings (MHz): $J_{0,1} = 170, J_{1,2} = 220$
- original qubit frequencies (GHz): $\omega_0 = 5.40, \ \omega_1 = 5.30, \ \omega_2 = 5.42$
- ancilla qubit frequencies (GHz): $\omega_3 = 5.37, \ \omega_4 = 5.29, \ \omega_5 = 5.34$

Controllability	7
00000	

Summary o

Operator Controllability

OC Examples (need 63 independent parameters)

- couplings (MHz): $J_{0,1} = 170, J_{1,2} = 220$
- original qubit frequencies (GHz): $\omega_0 = 5.40, \ \omega_1 = 5.30, \ \omega_2 = 5.42$
- ancilla qubit frequencies (GHz): $\omega_3 = 5.37, \ \omega_4 = 5.29, \ \omega_5 = 5.34$
- ▶ 63 of first 64 parameters are independent
 ⇒ OC

- couplings (MHz): $J_{0,1} = 170, J_{1,2} = 220$
- original qubit frequencies (GHz): $\omega_0 = 5.40, \ \omega_1 = 5.30, \ \omega_2 = 5.42$
- ancilla qubit frequencies (GHz): $\omega_3 = 5.37, \ \omega_4 = 5.29, \ \omega_5 = 5.34$
- only 31 independent parameters before redundant layer (layer 11) \Rightarrow not OC

Summary

What have we got? arXiv:2308.00606

- \blacktriangleright hybrid quantum-classical algorithms to test PSC and OC
- ▶ can run directly on quantum hardware with ancilla qubits
- ▶ resource efficient hardware design
 - ▶ if a control is always redundant, you don't need it
 - deduce minimum number of local controls given set of potential controls
- ▶ can identify whether hardware is universal or at least enough for VQS

Summary

What have we got? arXiv:2308.00606

- \blacktriangleright hybrid quantum-classical algorithms to test PSC and OC
- ▶ can run directly on quantum hardware with ancilla qubits
- resource efficient hardware design
 - ▶ if a control is always redundant, you don't need it
 - deduce minimum number of local controls given set of potential controls
- can identify whether hardware is universal or at least enough for VQS

What do we need?

- \blacktriangleright fully quantum DEA implementation to remove classical bottleneck
- study systems with non-local controls

Summary

What have we got? arXiv:2308.00606

- \blacktriangleright hybrid quantum-classical algorithms to test PSC and OC
- ▶ can run directly on quantum hardware with ancilla qubits
- resource efficient hardware design
 - ▶ if a control is always redundant, you don't need it
 - deduce minimum number of local controls given set of potential controls
- can identify whether hardware is universal or at least enough for VQS

What do we need?

- \blacktriangleright fully quantum DEA implementation to remove classical bottleneck
- study systems with non-local controls

Future ideas?

- study systems with non-local controls
- ▶ How does removal of controls affect control time (quantum speed limit)?

