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Quantum Hardware and Controls

We consider quantum system linearly coupled to external controls with Hamiltonian

Ĥ(t) = Ĥ(t;u1, ...um) = Ĥ0 +
m

∑
j=1

uj(t)Ĥj

where
▸ Ĥ0: time-independent drift Hamiltonian (undisturbed dynamics)
▸ Ĥj (j ≥ 1): control Hamiltonians
▸ uj : control strengths
▸ simplicity: uj(t) rectangular pulses with ∥ujHj∥≫ ∥H0∥
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Example
4 qubit system with external σ̂x controls on qubits 1 and 2:

ω0 ω1 ω2 ω3

X̂0X̂1 X̂1X̂2 X̂2X̂3

X̂1 X̂2

drift: Ĥ0 =
3

∑
j=0
−
ωj

2
Ẑj
+

2

∑
k=0

Jk,k+1X̂kX̂k+1

controls: Ĥ1 =X̂
1 and Ĥ2 = X̂

2
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Controllability for Variational Quantum Simulations

Basic VQS setup:
▸ initialize system in state ∣ψ0⟩

▸ use your controls to find solution state ∣ψ⟩ of variational problem; e.g., ground
state of some Hamiltonian

Pure-state Controllability (PSC)
▸ set of reachable states from ∣ψ0⟩ coincides with the entire state space of the

quantum device ∂BH/U(1) (unit sphere of the device Hilbert space H up to
factors of eiα with α ∈ R)

▸ Note: since controls are unitary PSC means any initial state of the quantum
device can be controlled into any other possible state of the device
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Controllability for Universal Quantum Computing

Universal Quantum Computing:
▸ Any unitary operation of the device Hilbert space can be realized.

Operator Controllability (OC)
▸ For any target unitary Ût ∈ SU(H) there exist a time T > 0, a phase α ∈ R, and

controls u1, . . . , um such that the controlled evolution Û(T ;u1, . . . , um) satisfies

Ût = e
iαÛ(T ;u1, . . . , um)
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PSC vs OC
▸ Pure-State Controllability: any single state can be controlled into any other

single state
▸ Operator Controllability: any orthonormal basis can be controlled into any

other orthonormal basis

▸ clearly: OC ⇒ PSC
▸ there exist systems that are

▸ OC
▸ PSC but not OC
▸ not PSC

▸ OC ≻ PSC
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DEA setup

A Parametric Quantum Circuit C (for us) is the map

C ∶ parameter space P → quantum device state space S; ϑ↦ ∣ψ(ϑ)⟩ ,

i.e., C contains both the gate sequence and the initial state ∣ψ0⟩.

“Optimal” Circuit

▸ maximally expressive: be able to generate all (physically relevant) states
▸ minimal: not contain “unnecessary” parameters/gates
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Finding redundant parameters
ϑk is redundant iff ∂kC(ϑ) is a linear combination of the ∂jC(ϑ) with j ≠ k

⇒ inductively check each real partial Jacobian Jk of C

Jk =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∣ ∣

R∂1C ⋯ R∂kC
∣ ∣

∣ ∣

I∂1C ⋯ I∂kC
∣ ∣

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

for invertibility (e.g., by computing the smallest eigenvalue of Sk ∶= J∗k Jk)
⇒ Assuming ϑ1, . . ., ϑk−1 are independent, then ϑk is dependent if and only if

detSk = 0. Note Sk ≥ 0, so we can check λmin > ε to conclude detSk ≠ 0.
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Example: C(ϑ) = R̂Z(ϑ2)R̂X(ϑ1) ∣0⟩

C(ϑ) =R̂Z(ϑ2)R̂X(ϑ1) ∣0⟩ = (
cos ϑ1

2 cos ϑ2

2 − i cos
ϑ1

2 sin ϑ2

2

−i sin ϑ1

2 cos ϑ2

2 + sin
ϑ1

2 sin ϑ2

2

)(
∣0⟩
∣1⟩
)

yields

J1 =
1

2

⎛
⎜
⎜
⎜
⎜
⎝

− sin ϑ1

2 cos ϑ2

2

cos ϑ1

2 sin ϑ2

2

sin ϑ1

2 sin ϑ2

2

− cos ϑ1

2 cos ϑ2

2

⎞
⎟
⎟
⎟
⎟
⎠

and J2 =
1

2

⎛
⎜
⎜
⎜
⎜
⎝

− sin ϑ1

2 cos ϑ2

2 − cos ϑ1

2 sin ϑ2

2

cos ϑ1

2 sin ϑ2

2 sin ϑ1

2 cos ϑ2

2

sin ϑ1

2 sin ϑ2

2 − cos ϑ1

2 cos ϑ2

2

− cos ϑ1

2 cos ϑ2

2 sin ϑ1

2 sin ϑ2

2

⎞
⎟
⎟
⎟
⎟
⎠

.

Hence

S1 = J
∗
1 J1 =

1

4
and S2 = J

∗
2 J2 = (

1
4 0

0 1
4

)
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Example: C(ϑ) = R̂X(ϑ2)R̂X(ϑ1) ∣0⟩

C(ϑ) =R̂X(ϑ2)R̂X(ϑ1) ∣0⟩ = (
cos ϑ1

2 cos ϑ2

2 − sin
ϑ1

2 sin ϑ2

2

−i sin ϑ1

2 cos ϑ2

2 − i cos
ϑ1

2 sin ϑ2

2

)(
∣0⟩
∣1⟩
)

yields

J2 =
1

2

⎛
⎜
⎜
⎜
⎜
⎝

− sin ϑ1

2 cos ϑ2

2 − cos
ϑ1

2 sin ϑ2

2 − cos ϑ1

2 sin ϑ2

2 − sin
ϑ1

2 cos ϑ2

2
0 0
0 0

− cos ϑ1

2 cos ϑ2

2 + sin
ϑ1

2 sin ϑ2

2 sin ϑ1

2 sin ϑ2

2 − cos
ϑ1

2 cos ϑ2

2

⎞
⎟
⎟
⎟
⎟
⎠

.

Hence

S1 = J
∗
1 J1 =

1

4
and S2 = J

∗
2 J2 =

1

4
(
1 1
1 1
) with σ(S2) = {0,

1

2
} .
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Hybrid quantum-classical implementation of DEA

▸ Use quantum device to measure matrices Sk = J∗k Jk = (
Sk−1 Ak

A∗k ck
).

▸ requires 1 ancilla qubit

▸ Check classically for invertibility of all Sk (2 ≤ k ≤ N).
⇒ Memory: O(N2)

CPU calls: O(N4)

QPU calls: O(N2ε−2) where ε is the acceptable noise level for Sk
⇒ Polynomial in #parameters N

L. Funcke, TH, K. Jansen, S. Kühn, P. Stornati, Quantum 5, 422 (2021)
L. Funcke, TH, K. Jansen, S. Kühn, M. Schneider, P. Stornati, 2021 IEEE ICWS, 693-702 (2021)
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Pure-State Controllability

DEA and PSC

▸ DEA computes local dimension of the image manifold of the quantum circuit

▸ under reasonable assumptions:
▸ local dimension = dimension of manifold of reachable states with probability 1
▸ image manifold of quantum circuit is closed submanifold without boundary of

quantum device state space ∂BH/U(1)
⇒ image manifold = set of reachable state = ∂BH/U(1) if and only if the number

of independent parameters in the quantum circuit = dim(∂BH/U(1))
▸ find control based quantum circuit and check dimensional expressivity
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Pure-State Controllability

PSC Circuit

Idea: Trotter product n layers of rotations around drift and control hamiltonians

C(ϑ) = L(ϑ(n−1)(m+1), . . . , ϑ(n−1)(m+1)+m) ⋯ L(ϑ0, . . . , ϑm) ∣ψ0⟩

with the kth layer

L(ϑk(m+1), . . . , ϑk(m+1)+m) = e−i
ϑk(m+1)+m

2
Ĥm

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R̂m(ϑk(m+1)+m)

⋯ e−i
ϑk(m+1)+1

2
Ĥ1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R̂1(ϑk(m+1)+1)

e−i
ϑk(m+1)

2
Ĥ0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R̂0(ϑk(m+1))
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Pure-State Controllability

PSC Circuit Example

|0⟩

|0⟩

|0⟩

R̂0 (ϑ0)

R̂3 (ϑ3)

R̂2 (ϑ2)

R̂1 (ϑ1)

· · ·

· · ·

· · ·

R̂0 (ϑk)

R̂3 (ϑk+1)

R̂2 (ϑk+2)

R̂1 (ϑk+3)

· · ·

· · ·

· · ·
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Pure-State Controllability

PSC Analysis
DEA with randomly chosen parameters terminates if
▸ maximal expressivity is reached ⇒ PSC
▸ full redundant layer is reached ⇒ not PSC

Start

System with
m controls

and dim(H) = d

Layer number nl;
ϑ̃ and |ψ0⟩.

Define CPSC(ϑ̃)

Run DEA

exprdim = 2d− 1 ?

Yes

PSC

No Last m+ 1
parameters
redundant?

Yes

Not PSC

No

nl = nl + 1
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Pure-State Controllability

PSC Examples (need 31 independent parameters)

ω0 ω1 ω2 ω3

X̂0X̂1 X̂1X̂2 X̂2X̂3

X̂1 X̂2

▸ coupling strengths (MHz):
J0,1 = 170, J1,2 = 220, J2,3 = 150

▸ qubit frequencies (GHz): ω0 = 5.40,
ω1 = 5.30, ω2 = 5.42, ω3 = 5.37

▸ first 31 parameters are all
independent ⇒ PSC

ω0 ω1 ω2 ω3

X̂0X̂1 X̂1X̂2 X̂2X̂3

X̂0 X̂2 Ẑ3

▸ coupling strengths (MHz):
J0,1 = 170, J1,2 = 220, J2,3 = 150

▸ qubit frequencies (GHz): ω0 = 5.40,
ω1 = 5.30, ω2 = 5.42, ω3 = 5.37

▸ only 29 independent parameters
before redundant layer ⇒ not PSC
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Operator Controllability

OC as PSC problem
▸ need to control arbitrary Û ∈ U(H)/U(1)↪ L(H) ≅H⊗H

▸ H⊗H can be represented as qubit system of double size
▸ Can we relate PSC in H⊗H to OC in H?

▸ Yes! Lifting via Choi-Jamiołkowski isomorphism!

▸ now have A (original) and B (copy) subsystems
▸ prepare maximally entangled state ∣ψME⟩ = ∑

d−1
i=0

1√
d
∣ei⟩⊗ ∣ei⟩

▸ consider PSC circuit in A and drift only in B
▸ do DEA

Testing Quantum Computer Controllability via Dimensional Expressivity T. Hartung



Controllability Dimensional Expressivity Analysis Controllability via DEA Summary

Operator Controllability

OC as PSC problem
▸ need to control arbitrary Û ∈ U(H)/U(1)↪ L(H) ≅H⊗H
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Operator Controllability

OC Circuit Example

|ψME⟩

q0

q1

q2

q3
q4
q5

· · ·

· · ·

· · ·

· · ·
· · ·
· · ·

R̂A
0 (ϑ0)

R̂B
0 (ϑ0)

R̂∗
3 (ϑ3)

R̂∗
2 (ϑ2)

R̂∗
1 (ϑ1) · · ·

· · ·

· · ·

· · ·
· · ·
· · ·

R̂A
0 (ϑk)

R̂B
0 (ϑk)

R̂∗
3 (ϑk+3)

R̂∗
2 (ϑk+2)

R̂∗
1 (ϑk+1) · · ·

· · ·

· · ·

· · ·
· · ·
· · ·
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Operator Controllability

OC Analysis
DEA with randomly chosen parameters terminates if
▸ maximal expressivity is reached ⇒ OC
▸ full redundant layer is reached ⇒ not OC

Start

System with
m controls

and dim(H) = d

Add ancilla qubits

Layer number nl;
ϑ̃ and |ψ0⟩.

Define CAB
OC(ϑ̃)

Run DEA

exprdim = d2 − 1 ?

Yes

OC

No Last m+ 1
parameters
redundant?

Yes

Not OC

No

nl = nl + 1
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Operator Controllability

OC Examples (need 63 independent parameters)

ω0 ω1 ω2

Ẑ0Ẑ1 Ẑ1Ẑ2

X̂0 Ŷ 1 X̂2

▸ couplings (MHz): J0,1 = 170, J1,2 = 220

▸ original qubit frequencies (GHz):
ω0 = 5.40, ω1 = 5.30, ω2 = 5.42

▸ ancilla qubitfrequencies (GHz):
ω3 = 5.37, ω4 = 5.29, ω5 = 5.34

▸ 63 of first 64 parameters are independent
⇒ OC

ω0 ω1 ω2

Ẑ0Ẑ1 Ẑ1Ẑ2

X̂0 Ŷ 1 Ẑ2

▸ couplings (MHz): J0,1 = 170, J1,2 = 220

▸ original qubit frequencies (GHz):
ω0 = 5.40, ω1 = 5.30, ω2 = 5.42

▸ ancilla qubit frequencies (GHz):
ω3 = 5.37, ω4 = 5.29, ω5 = 5.34

▸ only 31 independent parameters before
redundant layer (layer 11) ⇒ not OC
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X̂0 Ŷ 1 X̂2

▸ couplings (MHz): J0,1 = 170, J1,2 = 220

▸ original qubit frequencies (GHz):
ω0 = 5.40, ω1 = 5.30, ω2 = 5.42

▸ ancilla qubitfrequencies (GHz):
ω3 = 5.37, ω4 = 5.29, ω5 = 5.34

▸ 63 of first 64 parameters are independent
⇒ OC

ω0 ω1 ω2
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What have we got? arXiv:2308.00606
▸ hybrid quantum-classical algorithms to test PSC and OC
▸ can run directly on quantum hardware with ancilla qubits
▸ resource efficient hardware design

▸ if a control is always redundant, you don’t need it
▸ deduce minimum number of local controls given set of potential controls

▸ can identify whether hardware is universal or at least enough for VQS

What do we need?
▸ fully quantum DEA implementation to remove classical bottleneck
▸ study systems with non-local controls

Future ideas?
▸ study systems with non-local controls
▸ How does removal of controls affect control time (quantum speed limit)?
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