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Interventions to mitigate the spread of infectious diseases, while succeeding in
their goal, have economic and social costs associated with them. These limit
the duration and intensity of the interventions. We study a class of interven-
tions which reduce the reproduction number and find the optimal strength of
the intervention which minimizes the final epidemic size for an immunity
inducing infection. The intervention works by eliminating the overshoot
part of an epidemic, and avoids a second wave of infections. We extend the
framework by considering a heterogeneous population and find that the opti-
mal intervention can pose an ethical dilemma for decision and policymakers.
This ethical dilemma is shown to be analogous to the trolley problem. We
apply this optimization strategy to real-world contact data and case fatality
rates from three pandemics to underline the importance of this ethical
dilemma in real-world scenarios.
1. Introduction
Infectious disease epidemics have been suppressed and mitigated using a
combination of non-pharmaceutical interventions (NPIs) such as lock downs,
social distancing, mask wearing and contact tracing, and by pharmaceutical inter-
ventions such as immunizing the population using vaccines. In the absence of
vaccines, NPIs are the primary option. However, NPIs, and in particular, lock
downs, can have significant economic, mental health and social costs associated
with them. Instead of protracted or repeated lock downs (as observed during the
COVID-19 pandemic), a one-shot intervention has been suggested as a possible
alternative for diseases that induce immunity upon recovery from infection. An
intense but short-duration lockdown is imposed near the peak of the epidemic to
stop the transmission during the overshoot phase of the epidemic and reduce the
final size (total numberof infections) to the herd immunity threshold of the epidemic
(number immune in thepopulation required to stop the growth in infections) [1]. The
overshoot phase is when the number of active infections start to decline (effective
reproduction number is less than one), but a significant number of new infections
are created. The overshoot is the difference between the final size andherd immunity
threshold. Thus such interventions reduce the overshoot to zero (see Glossary in the
electronic supplementary material for detailed definitions of technical terms).

In this work, we explore an alternative strategy to achieve the same outcome
through a prolonged but weaker intervention instead of a short and intense inter-
vention. Such an intervention, if implemented early, will have the added benefit
of reducing and delaying the peak of the epidemic as well, in contrast to the one-
shot intervention [1]. As with the one-shot intervention, the rationale of this strat-
egy is to calibrate the intervention in such a manner that the final size of the
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mitigated epidemic is identical to the herd immunity threshold
of the original epidemic. Therefore, when the intervention
ends, there is no risk of further introductions developing
into future epidemics or a second wave of infections. We
show that this strategy is an optimal strategy for minimizing
the final size in the long term.

In the context of COVID-19 modelling, research on
optimal interventions has attempted to include economic
costs along with the objective of reducing infections: using
detailed agent-based models [2] and fine-tuned intervention
strategies [3,4], a balance is sought between socio-economic
and health costs to minimize the total cost [5], or the claim
that interventions reduce the economic well-being of a society
has been challenged [6,7]. Optimal interventions have also
been studied as resource allocation problems where a limited
stockpile of vaccine is available or a limited ‘amount’ of social
distancing is acceptable and the objective is to find the distri-
bution of the intervention that minimizes the reproduction
number or a health-related objective function [8–10].

Wedonot include economic costs in an explicitmanner inour
model. The amount of reduction inR0 can be interpreted as the
cost—the higher the reduction inR0, higher the social and econ-
omic cost of intervention. The calculations involved in finding the
optimal strategymainly rely on the knowledge of the basic repro-
duction number (or the next generationmatrix). We show that in
populations with transmission heterogeneity, implementing an
optimal intervention to minimize the final size could involve a
moral/ethical dilemma for decision-makers, which is analogous
to the commonly known trolley problem [11,12]. The dilemma
arises as a result of transmission heterogeneity in the population.
We performed a literature search with relevant keywords and
were unable to find any research that examined NPIs with
an ethical dilemma (see electronic supplementary material for
keywords). A pre-print, Ragonnet et al. [13], had a similar
approach in that they optimized synthetic contact matrices from
various European countries to minimize deaths or years of life
lost by achieving herd immunity for the COVID-19 epidemics.
Their model and intervention scenarios are quite complex:
a transmissionmodel with six stages of infection, waning immu-
nity and duration of intervention. They find through numerical
methods that increasing transmission in younger age groups is
required to minimize the years of life lost for the COVID-19 epi-
demics. Another article, Babajanyan & Cheong [14], also used
this strategy of achieving herd immunity in amodelwith suscep-
tible → infected → recovered (SIR) disease and resource growth
dynamics in the context of COVID-19. This study did not explore
any strategies where transmission is increased. Our work differs
from the above-mentioned studies as we explore strategies that
increase transmission, in detail and discuss the ethical dilemma.
The model we use has the minimal complexity required to
explore the underlying mechanisms of this ethical dilemma for
a wide range of basic reproduction numbers and to show the
impact of heterogeneity and population structure on epidemics
and interventions.

In the following sections, we explain the modelling frame-
work, results of our analysis, and conclude with a discussion
of our modelling assumptions and the ethical dilemma that
decision-makers could face.
2. Methods
We use deterministic SIR and SIR-like models to study
the optimal intervention. In §§2.1 and 2.2, we explain the
models used for a homogeneous population and for a hetero-
geneous population, respectively, in addition to describing
the calculations for finding the optimal intervention. In §2.3,
we describe how this optimization strategy is applied to real--
world data and in §2.4, we explain how an optimal
intervention can be found if there is a delay in the start of
the intervention.
2.1. Homogeneous population
We use an SIR model with the variables s, i and r to represent the
fractions of individuals in the total population who are
susceptible, infected and recovered, respectively [15,16]. The
population is assumed to be closed (no entry/exit) and it is
normalized such that s + i + r = 1.

In this case, the final size of the epidemic is completely deter-
mined by the basic reproduction numberR0 and can be obtained
using the following equation [15,16]:

ln
sðt2Þ
sðt1Þ ¼ �R0ðrðt2Þ � rðt1ÞÞ, ð2:1Þ

where s(t1) and s(t2) are the fractions of susceptible and r(t1) and
r(t2) are the fractions of recovered individuals in the population
at time instants, t1 and t2. Using the conditions i(t1)≈ 0, r(t1) = 0
and i(t2)≈ 0, which describe the population at the start and
end of an epidemic, the well-known final size relation can be
obtained [15–18]

rð1Þ ¼ 1� e�R0rð1Þ: ð2:2Þ
An intervention that reduces transmission would affect the basic
reproduction number as R0 ! R0ð1� cÞ where 0≤ c≤ 1. In the
case of a homogeneous population, herd immunity is achieved
when the fraction of susceptible individuals in the population is
less than 1=R0. Therefore, we substitute sðt2Þ ¼ 1=R0 and s(t1) =
1 and solve for c. We find the optimal reduction in the basic
reproduction number is

c ¼ 1� lnR0

R0 � 1
: ð2:3Þ

We verify this analytical result in §3.1 by simulating an epidemic
where R0 is changed to R0ð1� cÞ in the early stage of the
epidemic and the intervention is switched off once the active
infections, i(t), decline to a negligible number.
2.2. Heterogeneous population
In a heterogeneous population, individuals may be further
stratified into groups. To represent the fraction of individuals
in the total population who belong to a group k, we use the
variables sk, ik and rk such that sk + ik + rk = nk, where nk is the pro-
portion of the population who belong to group k and

P
k nk ¼ 1.

Heterogeneity in transmission characteristics can affect the be-
haviour of epidemics in a significant manner. Epidemics in
populations with different transmission structures but identical
reproduction numbers can have widely different final sizes. An
epidemic in a heterogeneous population can be described by
the following SIR-like model, assuming identical duration of
infection for all groups and measuring time in the units of the
average infection duration,

dsk
dt

¼ �sk
X
l

Bklil, ð2:4Þ

dik
dt

¼ sk
X
l

Bklil

 !
� ik ð2:5Þ

and
drk
dt

¼ ik: ð2:6Þ



Table 1. The age groups used in the contact matrix from [20], their names used in this article, size of the group (as a proportion of the total population),
approximate estimates of case fatality rates (CFRs) obtained from [21–23].

age group
(years) group name

group size
(Netherlands)

CFR (COVID-19/
multinational)

CFR (2009 flu/
Mexico)

CFR (1918 flu/
USA)

1–5 children 0.06 0.000031 0.0096 0.0168

6–12 pre-adolescents 0.09 0.000008 0.0038 0.0047

13–19 adolescents 0.11 0.000028 0.004 0.0082

20–39 young adults 0.34 0.000214 0.026 0.0272

40–59 middle adults 0.23 0.001807 0.054 0.0149

60+ elderly 0.17 0.029520 0.059 0.0378
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The term Bkl is the average number of infectious contacts that an

individual in group l causes in group k. The next generation
matrix, G [19], can be constructed for this system with entries

GklðtÞ ¼ skðtÞBkl: ð2:7Þ
The term Gkl is the expected number of infections that would be
caused in fully susceptible group k by an infected individual in
group l. The dominant eigenvalue of G gives the reproduction
number of the system [19].

The epidemic sizes for this model are given in [17,18]

rkð1Þ ¼ nkð1� e�
P

l
Bklrlð1ÞÞ: ð2:8Þ

It should be noted that we normalize the final size for the hetero-
geneous population to be the number of infections in a group as
a fraction of the total population.

The recipe for optimization is similar to the homogeneous
case. In the heterogeneous case, we find the level set where the
reproduction number is equal to one (analytically in the case of
two groups and numerically for more groups), which is the infi-
nite set of values of sk that would achieve the herd immunity
threshold. Then, we optimize subject to this constraint to find
the values, s�k , that minimizes the cost function (the final size or
a weighted sum of final sizes of each group). From this, we
obtain r�k ¼ nk � s�k . Finding the level set requires finding the pro-
portion of susceptibles of each group, sk, which would ensure
that the reproduction number (top eigenvalue of G) is equal to
one. In equation (2.8), the final sizes, rk(∞), can be replaced by
the optimal final sizes, r�k , to find the optimal contact matrix.
Comparing the original contact matrix with the optimal one
tells us how the contact structure of a population must be
changed in order to obtain the optimal outcome.

A crucial point to note here is that unlike with the homo-
geneous population, it is possible for certain elements of B and
for certain final sizes to increase, r�k . rkð1Þ, in order to minimize
the cost function. In other words, the optimal intervention corre-
sponds to an increase in transmission within certain groups or
among pairs of groups. In such cases, the change in reproduction
number cannot be a measure of the economic or social cost.
Nonetheless, this leads to some interesting results which are
presented in the next section.

A weighted cost function which is a weighted sum of the
final sizes in each group is useful when we are interested in
minimizing a certain outcome of infections rather than the
number of infections, for example, deaths or hospitalizations.
The optimization problem of finding the state of the population
which minimizes a general objective function and fulfils the
herd immunity condition can be solved semi-analytically for
the case of two groups and is presented in the electronic sup-
plementary material. For more than two groups, we solve the
optimization problem numerically.
A schematic diagram of the optimization procedure for both
homogeneous and heterogeneous populations is shown in
electronic supplementary material, figure S6.

2.3. Real-world contact matrix
We used a contact matrix calculated using surveys from a sample
population stratified into six age groups in the Netherlands [20].
The contact matrix scaled by a disease-specific parameter gives
the next generation matrix. Using the next generation matrix
and the age distribution, the optimal intervention for a given
cost function can be obtained. We calculated the optimal inter-
vention using this contact matrix for a range of R0 values and
four different cost function weightings (an unbiased cost function
and three from observed case fatality rates (CFRs) of 2009 pan-
demic in Mexico, 1918 pandemic in the USA and COVID-19
pandemic) [21–23]. The age groups, their population sizes and
CFRs are shown in table 1. Note that the age stratification used
in the CFR study for the 1918 pandemic do not match exactly
with the age groups of the contact matrix and furthermore the
estimates were extracted from figures. For the 2009 pandemic
and COVID-19, CFR was reported with a high age resolution
but the size of the age groups was not immediately available.
Due to lack of data on infection fatality rates, we are using the
CFRs as a proxy for the probability that an infected individual
dies. Thus the CFR values and the results relying on them are
meant to be for illustration purposes only.

The severity of the dilemma in the optimal intervention can
be quantified through the number of infections (or deaths)
caused due to the intervention per infection (or death) prevented.
It can be calculated using

severity of dilemma (for infections)

¼ sum of all increases in final sizes
sum of all the decreases in final size

ð2:9Þ

and

severity of dilemma (for deaths)

¼ sum of all increases in deaths
sum of all decreases in deaths

: ð2:10Þ

2.4. Delayed intervention in a homogeneous population
In the above sections, we have assumed that the basic
reproduction number (or the next generation matrix) is a
known entity and therefore an intervention is implemented
right at the start of the epidemic. Calculating the strength of
the optimal intervention requires knowledge of the reproduction
number, the intervention would have to start after the epidemic
has been established and enough observational data have been
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size, (ii) weak intervention—reduces the final size, (iii) strong intervention—reduces final size during the intervention, but leads to a resurgence in infections once
the intervention is removed, (iv) moderate intervention but optimal—final size during the intervention is same as the herd immunity threshold. (b) The global
minimum for the final size shows that an optimal intervention strength exists. The resurgence of infections under a strong sub-optimal intervention is subject to
certain assumptions which are discussed in the text. (c) The final size without any intervention (equation (2.2)) and the final size with optimal intervention (same as
the herd immunity threshold for recovered state) is shown against the basic reproduction number.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

21:20230612

4

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

27
 J

an
ua

ry
 2

02
5 
collected to calculate the reproduction number. While the basic
principle would still hold, a delay could change the strength of
the optimal intervention. To find the optimal strength for a
delayed intervention, we use the final size relation with the
final state s ¼ 1=R0, i = 0 and an initial arbitrary state sL, iL at a
time instant tL when the intervention begins. We replace basic
reproduction number in equation (2.1) with R0ð1� cÞ and
solve for

c ¼ 1� ln sLR0

R0 sL þ iL � 1
R0

� � : ð2:11Þ

Using a numerical solution of the SIR equations, sL and iL can be
found and the above equation can be solved for c. Equation (2.11)
reduces to equation (2.3) when sL = 1, iL = 0 and c = 1 when
sL ¼ 1=R0 and iL > 0. If sL , 1=R0, then c > 1 which is biologically
meaningless and reflects the fact that the population is already
below the herd immunity threshold.

2.5. Model assumptions
The homogeneous model assumes that all individuals in the
population are identical and every individual is equally likely to
come in contact with every other individual. To introduce some
complexity in this model, we use the heterogeneous model
where individuals are stratified into homogeneous groups. We
are using deterministic differential equation models with continu-
ous variables to simulate the dynamics. This means that the
number of active infections can decay exponentially but can
never reach zero. Thus, the models used here cannot simulate a
scenario in which an intervention eliminates a disease before
reaching herd immunity threshold, as was the case in Australia,
New Zealand, Hong Kong, mainland China, Singapore and sev-
eral other jurisdictions (broadly known as the zero-COVID
strategy). Throughout the paper, we use the SIR disease pro-
gression. Therefore, our analysis applies to diseases that induce
long-term immunity or for which re-infection is not possible.
3. Results
3.1. Homogeneous population
Simulation of the SIR model differential equations confirms
our assertion in equation (2.3). As shown in figure 1, a
‘weak’ intervention reduces the final size but does not
reduce the overshoot to zero. A strong intervention, on the
other hand, reduces the final size during the intervention but
a resurgence occurs as soon as the intervention ends. The
final health outcome under the strong intervention is worse
than (or at least comparable to) the weak intervention, while
incurring a higher social and economic cost during the inter-
vention. The resurgence occurs because the small number of
infections and sufficient number of susceptibles remaining in
the population lead to new infections after the intervention
is lifted. An intervention that is strong enough to minimize
the final number of infections, while avoiding a resurgence,
is the one whose final size (during the intervention) matches
the herd immunity threshold of the unmitigated epidemic.
This is the optimal intervention.
3.2. Heterogeneous population
Introducing heterogeneity in the model opens up a space of
interventions that is not seen in the homogeneous case. In
the homogeneous case, the herd immunity threshold is
defined by a single point, but in the case of a structured
population, the threshold is given by a collection of points.
This can be seen by considering the following: the condition
required for reaching herd immunity is that the typical
infected individual must not infect more than one individual.
In the homogeneous case, one can randomly choose a suffi-
cient number of individuals and immunize them to ensure
that the number of infectious contacts is less than one. If
the population is structured, the typical infected individual
must not infect more than one individual, on an average.
As long as the average number of infectious contacts is less
than one, herd immunity is achieved, irrespective of how
the immunization has been distributed among the various
groups in the population. Thus there are infinitely many
interventions that lead to herd immunity and prevent resur-
gence. Out of all these possibilities, we define the optimal
intervention to be the one that minimizes the final size.

When the population can be described using two sub-
populations or groups, the optimal intervention belongs to
one of the following types: the first group is fully infected,
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the second group is fully infected, or none of the groups are
fully infected. This creates the possibility that under the opti-
mal intervention, the number of infections in one of the
groups is larger than what would have occurred in the unmi-
tigated epidemic, subject to the structure of the population. In
figure 2, we show an example in which this occurs. This leads
to an ethical dilemma wherein a certain group in the popu-
lation incurs a higher cost (due to an increased number of
infections) than would have happened without the interven-
tion in order to minimize the cost for the whole population.
Thus, the nonlinearity of the infectious disease dynamics,
combined with population structure, lead to an ethical
dilemma for policy/decision-makers which is analogous to
the well-known trolley problem [11,12] (figure 2). The trolley
problem involves a set-up in which a train is going to hit
a group of people who are lying on the tracks. The train
cannot be stopped, but a lever can be pulled to switch the
train onto a different track on which fewer people are lying.
The dilemma that is posed by this situation is whether it
is ethical to save more lives by ending a lesser number of
different lives?

Diseases often lead to a worse health outcome (mortality
rate, hospitalization rate, chance of leading to chronic con-
ditions, etc.) in certain groups of the population (the elderly



0.35

0.30

0.25

0.20

0.15

0.10

0.05

0

0.005
deaths (no intervention) relative change in deaths (%) change in deaths (%) severity of dilemma (deaths)

(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

epidemic size (no intervention)

children (0.0010) pre-adolescents (0.0003) adolescents (0.0009) young adults (0.0068) middle adults (0.0572) elderly (0.9339)

relative change in
epidemic size (%) change in epidemic size severity of dilemma (infections)

0.004

0

–0.001

0.0020

0.0015

0.0010

0.0005

0

–0.002

–0.003

–0.004

–0.005

0.003

0.002

0.001

0

2 4
0

6 2 4
0

6 2 4
0

6 2 4
0

6

2 4
0

6 2 4
0

6 2 4
0

6 2 4
0

6

400

300

200

100

0

–100

400

300

200

100

0

–100

0.05

0

–0.05

–0.10

–0.15

–0.20

0.5

0.4

0.3

0.2

0.1

0

Figure 3. COVID-19 pandemic: a real-world contact matrix from a sample of the Dutch population is used to determine the effect of optimal intervention on
different age groups for a range of R0 values. Estimates of case fatality rates for the COVID-19 pandemic in Mexico have been used to weight the cost function
(for minimizing total deaths in the population) [23]. Rows (1) and (2) show the plots for infections and deaths, respectively. Column (a) shows the epidemic size
and deaths if no intervention was performed. Column (b) shows the relative change in epidemic size and deaths under optimal intervention. Column (c) shows the
magnitude of change in epidemic size and deaths under optimal intervention. Column (d ) shows the severity of the ethical dilemma (see main text for definition)
with R0. The legend for columns (a–c) shows age groups and the number in parentheses shows the weight assigned to it in the cost function. These weights are
proportional to the case fatality rates.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

21:20230612

6

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

27
 J

an
ua

ry
 2

02
5 
age groups for instance). Instead of minimizing the final size
of the epidemic (which is the sum of final sizes in each
group), it may be more prudent to minimize a cost function,
which is a linear combination of the final sizes in the groups,
such that a group with a worse outcome of infection is given
a higher weight in the cost function. As changing the cost
function would change the optimal solution, the cost function
plays a role in determining the ethical dilemma. For the
example shown in figure 2, the ethical dilemma is no
longer present under the given weighted cost function; the
infections are reduced in both groups.
3.3. Real-world contact matrix
When the basic reproduction number is close to one, at least
one of the age groups is required to endure a higher final size
for all the cost functions we used (figure 3; electronic
supplementary material, figures S3–5). The cost functions
are weighted using estimates of CFRs of the 2009 influenza
pandemic, the 1918 influenza pandemic, and COVID-19 pan-
demic [21–23]. In addition to looking at the final sizes and
how they change in various age groups, we can use the
CFRs to estimate the deaths in each of the age groups and
how they change with the optimal intervention.
For the COVID-19 pandemic, pre-adolescents have the
lowest CFR, and it increases for higher age groups (figure 3
and table 1). Figure 3b1,b2,c1,c2 shows that asR0 is increased,
the age groups start to experience an increase in infections
(relative to no intervention case) in the following order—
pre-adolescents, adolescents, children and finally young
adults, which is also the order in which the CFR increases.
Thus, the CFR may explain the nature of the ethical dilemma.
At R0 � 1:3, the severity of the ethical dilemma is highest,
with 0.55 new infections for every infection prevented and
0.0025 new deaths for every death prevented (figure 3d1,
d2). The severity for deaths is quite low compared to other
pandemics because of the large disparity in the CFR across
age for COVID-19.

For the 2009 flu pandemic (electronic supplementary
material, figure S4), pre-adolescents have the lowest CFR,
and it increases with age (electronic supplementary material,
figure S4 and table 1). Electronic supplementary material,
figure S4 (columns B and C) shows that as R0 is increased,
the age groups start to experience an increase in infections
(relative to no intervention case) in the following order—
adolescents, pre-adolescents and finally young adults,
which is not in the increasing order of CFRs. Thus, the CFR
does not explain the nature of the ethical dilemma. For infec-
tions, the severity of dilemma is highest at about R0 ¼ 1:3,
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where 0.44 new infections are created for every infection pre-
vented. For deaths, the dilemma is the most severe at both
R0 ¼ 1:3 and 2:25, where 0.045 new deaths are caused for
every death prevented.

For the 1918 flu, the CFR with age is often described as a
‘W’ shaped curve (electronic supplementary material,
figure S5 and table 1). Electronic supplementary material,
figure 5 (columns B and C) shows that as R0 is increased,
the age groups start to experience an increase in infections
(relative to no intervention case) in the following order—
adolescents, pre-adolescents, and finally middle adults,
which is also the order in which the CFR increases. Thus,
the CFR may explain the nature of the ethical dilemma.
At the peak of severity (R0 � 1:3), 0.47 new infections are
created for each infection prevented and 0.12 new deaths
for every death prevented.

For realistic CFRs, the dilemma in terms of infections is
quite severe at its worst, with almost one person getting
infected for protecting two individuals from getting infected.
Some features of the ethical dilemma are common to all three
pandemics. As R0 is increased, the severity of dilemma never
quite reaches zero but seems to approach zero in a non-mono-
tonic manner and pre-adolescents and adolescents always
endure an increase in infections. The nature of the ethical
dilemma may be explained by the CFRs of the age-groups
in the 1918 and COVID-19 case, but not in the case of the
2009 pandemic.

For an unbiased cost function (electronic supplementary
material, figure S3), we see very different results. The severity
of dilemma is zero for most of the R0 range. In the space
where the dilemma does occur, only the young adults and
adolescents experience an increase in final size. At the most
severe ethical dilemma, 0.175 new infections are created for
every infection prevented.
3.4. Delayed intervention
We calculate the optimal strength of the intervention and
simulate the model to confirm the mathematical analysis in
§2.4. Using equation (2.11), we observe that the strength of
optimal intervention increases in a super-linear manner
with the duration of delay. The results are presented in
figure 4. As the population approaches the herd-immunity
threshold, the strength of intervention approaches one,
corresponding to the one-shot intervention [1].
4. Discussion
In this work, we have examined a strategy of optimal inter-
vention which allows the epidemic to cause just enough
infections to induce herd immunity, eliminate the overshoot,
and prevent future introductions from becoming epidemics.
In addition to minimizing the final size, this intervention
would also slow down the growth of the epidemic and
reduce the peak, which allows time to develop treatments
and increase healthcare capacity. For a homogeneous popu-
lation, the results are straightforward: decrease the
transmission by a pre-determined amount so that the final
size reaches the herd immunity threshold and no more. A
sensitivity analysis of the homogeneous model and interven-
tion strategy was performed where the optimal strength of
intervention and the resulting final size were computed for
both the actual value of R0 and a ‘measured’ value of R0

with four different error rates (see electronic supplementary
material, figure S2). We find that in both underestimation
and overestimation of R0, the epidemic size is larger, but it
is better to overestimate R0.

In the case of heterogeneous transmission, our results
indicate that the optimal strategy may require increasing
infection in some of the groups and decreasing it in others,
in order to minimize the final size for the whole population.
This is analogous to the trolley problem, and it calls for a dis-
cussion around the ethics of subjecting certain groups to a
higher rate of disease incidence, and the feasibility of this
policy. If increasing transmission in certain groups is not
viable either due to operational reasons or ethical consider-
ations, herd immunity can still be achieved (and resurgence
prevented) by reducing transmission in all groups. We have
also explored the role of the cost function in determining
the ethical dilemma by weighting the final sizes of different
age groups using CFRs of the 1918, 2009 and COVID-19 pan-
demics and shown that the ethical dilemma happens in all
three cases. Our work shows that even without an explicit
consideration of economic and social costs of an intervention,
there are challenging ethical questions to be answered for the
first-order problem of minimizing the final size.

The optimal interventions shown for the 1918, 2009 and
COVID-19 pandemics are not meant to be policy advice
because the estimates of CFR were approximate and also
because influenza and COVID-19 can be described by an
SIR-like model only when new variants of the pathogen do
not emerge. They are meant to show that the ethical dilemma
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we have discussed in this paper is not merely a theoretical
observation in the parameter space of the mathematical
model but a possibility that one should be aware of for
future epidemics and pandemics.

Ethical dilemmas in public health are well known, and
there have been debates on prioritization based on age for
vaccination during the COVID-19 pandemic [24]. Prioritizing
one age group means that another group receives less protec-
tion, but under no circumstances does a discriminatory
vaccine distribution policy increase the chances of infection
in a group compared to the no vaccine scenario. Thus the
dilemma presented in our paper is fundamentally different
to a vaccine allocation dilemma and is equivalent to the trol-
ley problem. We have used mathematical modelling to show
that optimal interventions may require a policymaker to con-
tend with a trolley-problem-like situation where the epidemic
under an optimal intervention will infect someone who
would not have been affected if there was no intervention.
We found two works that use an intervention similar to
ours, but they did not consider increase in transmission as
a strategy for optimal outcomes [14] or did not discuss the
ethical implications [13]. Therefore, we believe that our
paper contributes to an important point of discussion with
regards to optimality of NPIs.

In addition to the ethical dilemma shown through our
modelling here, interventions that require increasing trans-
mission prompt an ethical discussion in relation to
disadvantaged groups. Cultural, economic and social con-
ditions factor into the contact structure of any human
population—a high number of contacts due to living in
close spaces, a high susceptibility to infection due to preexist-
ing health conditions or poor access to healthcare facilities,
etc. Mathematical models of epidemics can throw light on
possible choices of policy and may even help us pick the
ones that lead to optimal outcomes. But the decisions made
by policymakers are intertwined with political will, their
popularity and social attitudes. These eventually determine
whether a particular intervention is favoured by a decision-
making body [25,26]. Disadvantaged groups, across the
world, do not exercise sufficient political power to represent
their interests in decision-making bodies. In such a case, a
decision-making body may find it convenient to subject a dis-
advantaged group to a higher final size in order to decrease
the net final size for the whole population and achieve herd
immunity. The intervention strategy presented here, always
carries such risks with it; and representation of disadvan-
taged groups thus becomes essential, especially for a policy
such as this one.

There are also some practical limitations to the strategy
presented here. There would be a natural tendency for indi-
viduals to protect themselves from getting infected even if
interventions are not in place, so asking individuals to
increase their transmission may not be a feasible strategy
[27]. The optimal interventions could require a group of indi-
viduals to fully isolate themselves from the rest of the
population. Such interventions are difficult to implement,
as there would always be a small possibility for infections
to be introduced into the isolated group [27]. If the trans-
mission in other groups is increased, it would imply a
larger chance of introduction into the isolated group.

We have assumed an SIR structure for disease progression
in an individual. But, as long as the disease can be reasonably
described by a model in which individuals do not become sus-
ceptible after getting infected, we would expect our results to
be valid. A crucial detail that we have ignored is the stochastic
and discrete nature of disease spread since it can capture the
elimination behaviour of outbreaks, i.e. it can incorporate
the difference between existence and absence of infections.
The deterministic assumption and the use of continuous vari-
ables in our model means that after an intervention is over, the
small number of infections present in the population will lead
to another epidemic if herd immunity is not achieved (shown
in figure 1, strong intervention). This however, is one of the
possible outcomes. It is possible that the intervention comple-
tely eliminates all infections in the population, in which case a
new epidemic does not result from any residual infections.
However, even in this case, the population remains vulnerable
to an epidemic due to lack of herd immunity. Thus, a new epi-
demic can occur if new infectious individuals are introduced
into the population. Another possibility is that the epidemic
may get established with a delay due to the stochastic
dynamics. Factors around contact-tracing and surveillance
capacity (to eliminate the disease) and travel restrictions (to
prevent introduction of new infections) are important for the
selecting the optimal policy response, in addition to the results
presented here.
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