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We investigate the performance of the variational quantum eigensolver (VQE) for the optimal
flight gate assignment problem. This problem is a combinatorial optimization problem that aims
at finding an optimal assignment of flights to the gates of an airport, in order to minimize the
passenger travel time. To study the problem, we adopt a qubit-efficient binary encoding with a cyclic
mapping, which is suitable for a digital quantum computer. Using this encoding in conjunction with
the Conditional Value at Risk (CVaR) as an aggregation function, we systematically explore the
performance of the approach by classically simulating the CVaR-VQE. Our results indicate that
the method allows for finding a good solution with high probability, and the method significantly
outperforms the naive VQE approach. We examine the role of entanglement for the performance, and
find that ansätze with entangling gates allow for better results than pure product states. Studying
the problem for various sizes, our numerical data show that the scaling of the number of cost function
calls for obtaining a good solution is not exponential for the regimes we investigate in this work.

I. INTRODUCTION

In recent years, variational quantum algorithms
(VQAs) [1–3] have become increasingly relevant due to
substantial progress in quantum hardware development.
Such algorithms typically do not require deep quantum
circuits that could only be faithfully executed on fully
error-corrected quantum computers. Instead, they are
amenable to noisy intermediate-scale quantum (NISQ)
devices (see, e.g., Refs. [1, 4–10] for various proof-of-
principle demonstrations). While such algorithms are
typically heuristics without proven performance guaran-
tees, there are indications that VQAs can outperform
classical algorithms for certain computationally hard
problems. Besides various applications for quantum sim-
ulations, the solution of combinatorial optimization prob-
lems are further candidates of widespread applications
that can be tackled with VQAs [11].

In order to assess the potential of VQA approaches
for real-world applications, it can be useful to investi-
gate applications beyond purely academic problems and
to focus on certain industrial use-cases, as they typically
exhibit additional complexity. One such example is the
flight-gate assignment (FGA) problem [12, 13]. The FGA
problem is a quadratic assignment problem [14] with
additional constraints, as typical for real-world applica-

tions. Previous works mainly investigated the solution
of the FGA problem [13] and related problems [15–17]
with quantum annealers. Here, the constraints are incor-
porated into an unconstrained cost function by penalty
terms. These approaches have a number of disadvan-
tages, one of which is the typically exponentially small
subspace of valid solutions in the entire Hilbert space [17].
One method for mitigating this issue is to constrain the
algorithm to only search the feasible subspace. This idea
was originally proposed for quantum annealing [18] and
later adapted to variational algorithms [10, 19]. The
applicability of the latter approach for FGA was inves-
tigated by deriving suitable algorithmic primitives for
constraint invariance [20]. Reference [10] implemented
a proof-of-principle VQE for the FGA problem using an
encoding incorporating some of the constraints on IBM’s
quantum hardware, thus demonstrating the suitability of
problem for digital quantum devices.

In this paper, we systematically assess the performance
of VQE for the FGA problem, by numerically study-
ing its performance using the Conditional Value at Risk
(CVaR) [8] as an aggregation function. We adopt an
encoding that avoids a dominant subspace of invalid so-
lutions, which is similar to the one of Ref. [10], with the
addition of a cyclic mapping. Our study demonstrates
that utilizing this encoding, the CVaR-VQE performs
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significantly better than the naive encoding used in pre-
vious works. From classically simulating the CVaR-VQE
for various problem sizes up to 18 qubits, our results in-
dicate that the number of cost function calls to obtain
a reasonably large contribution of the optimal solution
in the final state does not scale exponentially with the
problem size. Furthermore, we examine the role of en-
tangling gates in the ansatz. Our results demonstrate
that ansätze creating entanglement between qubits show
a significantly better performance than circuits preparing
only product states.

The paper is organized as follows. In Sec. II, we first in-
troduce the FGA problem, before discussing the one-hot
encoding and the binary encoding of the problem. Subse-
quently, we discuss the CVaR-VQE method and the types
of ansätze we use in our simulations in Sec. III. Section IV
shows our numerical results for classically simulating the
CVaR-VQE for various problem sizes, and a comparison
between entangling ansätze and ansätze that only pro-
duce product states. Finally, we conclude in Sec. IV.

II. THE FLIGHT-GATE ASSIGNMENT
PROBLEM AND ITS ENCODING INTO

QUANTUM STATES

In this section, we first introduce the FGA problem
and then proceed with discussing two ways of encoding
the problem into quantum states: the one-hot encoding,
which does not incorporate any of the constraints, and a
binary encoding that integrates some of the constraints.

A. The flight-gate assignment problem

The FGA problem aims at minimizing the total tran-
sit time of passengers in an airport by finding an opti-
mal gate assignment of the flights. Although there are
multiple scenarios for optimizing the gate assignment of
flights at an airport, we choose the one where we seek
to minimize the total transfer time of passengers at the
airport [12]. In this scenario, we have three kinds of pas-
sengers in an airport: arriving passengers, departing pas-
sengers, and transfer passengers. The arriving passengers
land at the airport with an inbound flight and need to
walk from the arrival gate to the baggage claim before
leaving the airport. Departing passengers enter the air-
port through the security checkpoint and leave with an
outbound flight. Transfer passengers arrive at the airport
with an inbound flight, have to walk to the gate of their
connecting flight, and leave with an outbound flight. To
model the problem mathematically given a set of flights
F and a set of gates G, we consider a set of binary de-
cision variables xiα that represent whether a flight i is

assigned to a gate α or not:

xiα =

{
1, if flight i ∈ F is assigned to gate α ∈ G,

0, otherwise.

(1)

Throughout the paper, we refer to gates with Greek in-
dices, to flights with Latin indices, and x = (xiα) ∈
{0, 1}|F |×|G| is a binary vector collecting all of the |F | ×
|G| decision variables. The total passenger travel time
can then be expressed as a function of x and is given by

T (x) = T arr(x) + T dep(x) + T trans(x), (2)

where the three parts arise from the contributions of the
different types of passengers. The time T arr/dep repre-
sents the total transit time of arriving/departing passen-
gers and is given by the partial sums

T arr/dep(x) =
∑
iα

n
arr/dep
i tarr/depα xiα, (3)

where n
arr/dep
i is the number of passengers arriv-

ing/departing with flight i, and t
arr/dep
α is the time it

takes to walk from/to gate α. The total time T trans of
the transfer passengers is given by the sum of the times
tαβ that it takes to go from gate α to gate β for each of
the ntransij passengers who transfer from flight i to flight
j (or vice versa), given that flight i is assigned to gate α
and flight j is assigned to gate β,

T trans(x) =
∑

i,j,α,β

ntransij tαβxiαxjβ . (4)

Note that T trans(x) contains a term quadratic in the deci-
sion variables. Thus, minimizing the total time in Eq. (2)
is an instance of a quadratic assignment problem, which
are in general NP-hard [21].

In addition, there are two constraints in the FGA prob-
lem. Firstly, each flight can only be assigned to one gate,
so there can only be a single non-zero decision variable
among those belonging to the same flight. This con-
straint can be enforced by imposing

∀i ∈ F
∑
α

xiα = 1. (5)

Secondly, there can be at most a single flight at a gate
at the same time, because flights departing at the same
time from the airport cannot be assigned to the same
gate. This can be expressed as

∀α ∈ G and ∀(i, j) ∈ P xiα × xjα = 0, (6)

where P is the set of forbidden flight pairs,

P = {(i, j) ∈ F × F : tini < tinj < touti + tbuf}. (7)

In the expression above, t
in/out
i is the time of ar-

rival/departure of flight i, and tbuf is a buffer time be-
tween two flights at the same gate. In the following, we



3

refer to an assignment of the decision variables fulfilling
the two constraints above as a feasible assignment.

The encoding presented above requires |G| decision
variables xi1 . . . xi|G| for each flight i ∈ F , which can
be interpreted as a bit string. The constraint in Eq. (5)
then implies that only a single entry in such a bit string
can be nonzero. Hence, we call the encoding presented
above the one-hot encoding. Since for each flight only |G|
assignments of the corresponding decision variables are
compliant with the constraint in Eq. (5), the total num-
ber of feasible assignments is upper bounded by |G||F |.

B. Hamiltonian formulation using the one-hot
encoding

In order to treat the problem on a quantum computer,
we have to formulate the problem as a (quantum) Hamil-
tonian. In order to minimize the objective function T (x)
subject to the constraints in Eqs. (5) and (6), we want
to incorporate the constraints in the objective function.
To this end, we translate them to positive semidefinite
penalty terms whose kernel corresponds to valid solutions
fulfilling the constraints. These penalty terms can then
simply be added to the objective function with a large
positive constant in front, thus ensuring that the global
minimum is the optimal solution fulfilling the constraints.

Equation (5) can be represented as a penalty term,

Cone(x) =
∑
i

(∑
α

xiα − 1

)2

, (8)

while the second constraint in Eq. (6) can be formulated
as

Cnot(x) =
∑

(i,j)∈P

∑
α

xiαxjα. (9)

Considering both the objective function and the penalty
terms, the total cost function can be formulated as a
Quadratic Unconstrained Binary Optimization (QUBO)
problem:

Q(x) = T (x) + λoneCone(x) + λnotCnot(x).

= c+
∑
iα

hiα × xiα +
∑
iαjβ

Jiαjβ × xiαxjβ . (10)

In the equation above, c, hiα, and Jiαjβ are the coef-
ficients of the corresponding terms, which depend on

t
arr/dep
α , tαβ , n

arr/dep
i , and ntransij . The explicit formulas of

these coefficients are shown in Eq. (A1) of Appendix A.
The parameters λone and λnot are constants that have
to be chosen large enough to ensure the solution of the
QUBO problem above satisfies the constraints. For prac-
tical purposes, the values of these parameters might have
to be set carefully to make the optimization procedure ef-
ficient [13].

In order to solve this problem using a quantum device,
the QUBO problem has to be mapped to a Hamiltonian

acting on qubits. This can be easily realized by replacing
the binary decision variables xiα in Q(x) with the oper-

ators (I − Ẑk)/2, where I is the identity and Ẑk is the
Pauli Z-matrix acting on the qubit that encodes the de-
cision variable xiα. Substituting this transformation into
the QUBO problem in Eq. (10), we obtain the (quantum)
Hamiltonian

Ĥ = c′Î +

N∑
p

h′pẐp +

N∑
p<q

J ′
pqẐpẐq, (11)

where N = |F | × |G| and c′, h′p, and J ′
pq are coefficients

related to the ones of the original QUBO problem (see
Eq. (A3) in Appendix A for details). The bit strings x
are now encoded by a computational basis state |x⟩, and
we call |x⟩ a feasible state if x represents a feasible assign-
ment. The optimal solution of the FGA problem subject
to the constraints corresponds to the ground state of the
Hamiltonian above. By construction, the ground state
will be a computational basis state since Ĥ is diagonal
in the Z-basis.

Note that in the encoding presented above, each deci-
sion variable is mapped to a single qubit. Hence, a total
number of |F | × |G| qubits are required to address the
problem on a quantum computer. However, only |G||F |

of the 2|G|×|F | basis states correspond to an assignment
for which Eq. (8) is zero. Hence, the fraction of states
in the Hilbert space fulfilling the first constraint, and
correspondingly the number of feasible states, will decay
exponentially with the problem size:

Rone
fea =

(
|G|
2|G|

)|F |

. (12)

As a result, searching for the optimal solution will be-
come increasingly challenging for increasing numbers of
flights and gates.

C. Hamiltonian formulation using a binary
encoding

In order to avoid this exponential decay of the feasible
subspace, we use a binary encoding for the FGA problem
and derive the corresponding Hamiltonian, which is sim-
ilar to the efficient embedding in Ref. [10]. In addition,
we use a more efficient cyclic mapping as shown below.

As we have discussed in Sec. II A, there are |G| assign-
ments compliant with the first constraint in Eq. (5) for
the decision variables corresponding to each flight. These
assignments can be represented with M = ⌈log(|G|)⌉
(qu)bits using a binary encoding. Since |G| is in gen-
eral not a power of 2, we choose to map the elements in
G to the 2M basis states |α′⟩ cyclically as

|α′⟩ ↔ gate α = α′ mod |G| ∈ G, (13)

where α′ = 0, . . . , 2M − 1. In contrast, the previous work
in Ref. [10] added a penalty term for the additional states
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{|α′⟩ : |G| ≤ α′ < 2M}, in case G is not a power of 2.
However, this will lead to an exponential decay with |F |
for the fraction of feasible states, as these are given by(
G/2M

)|F |
. The cyclic mapping used in this work can

avoid this exponential decay of feasible states and will
usually lead to many degenerate ground states (similar
to the previously introduced concept of degeneracy engi-
neering [22]), rendering it easier to find an optimal solu-
tion. All in all, for a total of |F | flights, this encoding al-
lows us to represent all possible assignments with |F |×M
qubits, a lot less than that required for the one-hot en-
coding. Moreover, by construction, all solutions in this
encoding automatically fulfill the constraint in Eq. (5).

In order to be able to solve the problem on a quantum
computer using a VQA, we have to translate the Hamilto-
nian in Eq. (11) to this encoding. To this end, we define a
set of projection operators Pi(α

′), i = 0, · · · , F − 1 given
by

P̂i(α
′) = |α′⟩⟨α′|i = |z0 · · · zM−1⟩⟨z0 · · · zM−1|i

= (|z0⟩⟨z0| ⊗ · · · ⊗ |zM−1⟩⟨zM−1|)i .
(14)

In the expression above, z0 · · · zM−1 is the bit string for
the binary representation of α′ and the index i indicates
the set of qubits related to flight i, on which the pro-
jection operators are acting on. Applying P̂i(α

′) to one
of the basis states encoding the solutions compliant with
the first constraint for flight i results in a 1, if and only
if flight i is assigned to gate α, P̂i(α

′) |β′⟩i = δα′β′ . Us-
ing these projection operators, the Hamiltonian can be
expressed as

Ĥ(Ẑ) = Ĥarr + Ĥdep + Ĥtrans + λnotĤnot, (15)

where the individual terms are given by

Ĥarr/dep =
∑
i

2M−1∑
α′=0

n
arr/dep
i tarr/depα P̂i(α

′),

Ĥtrans =
∑
ij

2M−1∑
α′β′=0

ntransij ttransαβ P̂i(α
′)P̂j(β

′),

Ĥnot =
∑

(i,j)∈P

2M−1∑
α′β′=0

δαβP̂i(α
′)P̂j(β

′).

(16)

In the expression above, α and β refer to the gate indices
after applying the mapping from Eq. (13). Note that
we no longer have to impose the first constraint from
Eq. (5) with a penalty term anymore, as it is fulfilled by
construction. Moreover, the Hamiltonian can be easily
decomposed into Pauli operators using the relation

|zk⟩⟨zk|i =
(
Î + (−1)zkZi×M+k

)
/2, (17)

where we have chosen a linear ordering of the qubits.
The binary encoding with cyclic mapping still al-

lows for unfeasible states, as the second constraint from

Eq. (6) is not automatically fulfilled. Compared to the
exponential decay observed for the one-hot encoding, the
ratio of feasible solutions for the binary encoding is a lot
larger, and it decays only very slowly with problem size,
as shown in Fig. 1. In conjunction with its reduced qubit

6 8 10 12 14 16 18
|F| × |G|

10 3

10 2

10 1

100

Ra
tio

Ratio of the feasible solutions

One-hot encoding
Binary encoding

FIG. 1. The ratio of the feasible states in the Hilbert space,
which are the states that fulfil both the first and the second
constraint, as a function of the problem size |F | × |G| for the
one-hot encoding (blue dots) and the binary encoding (orange
diamonds). As a guide for the eye, the markers are connected
with lines. The ratio of the feasible states for the one-hot
encoding decays approximately exponentially with problem
size, see Eq. (12), which is mainly caused by states violating
the first constraint. For details on instance generation, see
Sec. IV.

requirements, the binary encoding with cyclic mapping
is significantly more amenable for NISQ devices, which
provide only limited resources. The Hamiltonian corre-
sponding to the binary encoding consists of O(|F |2×|G|2)
Pauli Z-terms with order 2 × ⌈log(G)⌉ or less, meaning
that each Pauli Z-term only acts nontrivially on at most
2 × ⌈log(G)⌉ qubits. Thus, the expectation value of the
Hamiltonian can be evaluated efficiently on a quantum
computer.

III. VARIATIONAL QUANTUM EIGENSOLVER
USING THE CONDITIONAL VALUE AT RISK

The VQE is a hybrid quantum-classical algorithm for
finding an approximation to the ground state of a given
Hamiltonian Ĥ by minimzing ⟨ψ(θ)|Ĥ|ψ(θ)⟩. Here,
|ψ(θ)⟩ is a normalized ansatz state, which is parametrized
by real numbers θ. To find an optimal set of parameters,
the VQE utilizes of a feedback loop between a quantum
device and a classical computer. The former is used to
realize a variational ansatz |ψ(θ)⟩ in form of a parametric
quantum circuit, and to measure the expectation value
of the Hamiltonian. The classical computer is running
a minimization algorithm suggesting a new set of pa-
rameters θ′ based on the measurement outcome of the
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quantum device. Running the feedback loop until con-
vergence, the parametric circuit encodes an approxima-
tion of the ground state of the given Hamiltonian. Due
to its modest quantum hardware requirements, and its
partial resilience to noise, the VQE is one of the most
promising candidates for applications on NISQ devices.
While the VQE was originally proposed for finding the
ground state of a molecule [1], it can be readily applied
to many other fields (see, e.g., Refs. [5, 23–26]).

In particular, the VQE has been proposed to solve
combinatorial optimization problems [27–29]. Contrary
to strongly-correlated quantum many-body systems, for
combinatorial optimization problems the problem Hamil-
tonian is diagonal and the possible solutions correspond
to basis states. Since we are only interested in obtaining
a good candidate for the solution of the combinatorial
optimization problem, the resulting state at the end of
the VQE does not necessarily have to be dominated by
the state encoding this solution. As long as it produces
a state that has a reasonably large component of such
a solution, the projective measurements at the end will
reveal it, provided enough measurements are taken. Due
to this property, Ref. [8] argued that the CVaR is better
suited as a cost function for combinatorial optimization
problems than the expectation value of the Hamiltonian.
The CVaR for a random variable X with the cumulative
density function FX is defined as the conditional expec-
tation over the left ξ-tail of the distribution,

CVaRξ(X) = E
[
X|X ≤ F−1

X (ξ)
]
, (18)

where ξ ∈ (0, 1]. This can be applied to VQE by consid-
ering only a subset of the samples obtained during the
measurement process. Suppose we perform K measure-
ments resulting in the bit strings {z1, z2, · · · , zK} and the
corresponding energy values {E1, E2, · · · , EK}. Assum-
ing the energy values are sorted in ascending order, the
CVaR can be calculated as

CVaRξ =
1

⌈ξK⌉

⌈ξK⌉∑
i=1

Ei. (19)

Note that for ξ = 1 the CVaRξ is nothing but the usual
estimate for the expectation value with K samples. In
the opposite limit, ξ → 0, the CVaRξ corresponds to
selecting the measurement that produced the lowest en-
ergy. Moreover, the definition in Eq. (19) shows that the
CVaRξ does essentially not reward increasing the fidelity
of the VQE solution with the ground state beyond ξ, as
we only consider the subset of the ⌈ξK⌉ measurements
with the lowest energy.

In the following, we use VQE with the CVaRξ as a
cost function to address the FGA problem. In particular,
we explore the performance for various choices of ξ as a
function of problem size.

IV. SIMULATION RESULTS

In order to explore the performance of the VQE us-
ing the CVaR for the FGA problem, we perform classi-
cal simulations using the Qiskit [30] framework, assum-
ing a perfect quantum device without shot noise, which
means we evaluate the cost function exactly. For our
experiments, we use the EfficentSU2 ansatz from Qiskit
consisting of parametric RY (θ) = exp(−iθY/2) rotation
gates and linear entangling layers of CNOT gates (see
Fig. 2 for an illustration). The classical minimization is

|0⟩ RY (θ1) • RY (θ4) • RY (θ7)

|0⟩ RY (θ2) • RY (θ5) • RY (θ8)

|0⟩ RY (θ3) RY (θ6) RY (θ9)

Layer 1 Layer 2 Layer 3

FIG. 2. EfficientSU2 ansatz with linear CNOT entangling
layers shown for l = 3 layers and 3 qubits.

performed with constrained optimization by linear ap-
proximation (COBYLA) [31], whose maximum number
of function evaluations is set to 50 times the number of
qubits, in order to avoid too long optimization times.

In the following, we examine three aspects. First, we
investigate the performance of the VQE using the CVaR
for various values of ξ as a function of the problem size.
Second, we explore the effect of entanglement on the
optimization by using an ansatz that generates product
states only, and we compare the results to the ones ob-
tained with the EfficentSU2 ansatz. Finally, we explore
the scaling of the method with the problem size.

A. Performance of the VQE using the CVaR

To investigate the performance of the VQE using the
CVaR for the FGA problem, we use the CVaR-VQE
to explore various instances of the FGA problem for
both the one-hot encoding and the binary encoding with
up to 18 qubits. For the one-hot encoding, the num-
ber of qubits is equal to the problem size |F | × |G| ∈
{6, 8, 10, 12, 14, 16, 18}. For the binary encoding, we can
solve the FGA problem up to |F | × |G| = 34, due its
better resource efficiency. For each problem size, we ran-
domly generate a set of non-trivial instances with multi-
ple flights and gates, and pick the ones that are difficult
for the classical solver, meaning the ones which take the
longest time to solve. We investigate 50 random instances
of the FGA problem for each problem size, and for each
instance we run the VQE five times using random choices
for the initial parameters in the ansatz. Hence, in to-
tal, we explore 250 random instances for each problem
size. Moreover, we study the dependence of the results
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on the choice of the parameter ξ and the number of lay-
ers l in the ansatz. To this end, we run simulations with
ξ ∈ {0.01, 0.1, 0.25, 1} and l = 1, 2, 3.

First, we monitor the fraction of instances that reach
a certain fidelity threshold with the ground state as a
function of the iteration number. The fidelity is defined
as the probability of sampling a ground state from the
quantum state |ψ⟩ prepared by the VQE,

∑
z∗ |⟨z∗|ψ⟩|2,

where {|z∗⟩} is the set of the ground states that might be
degenerate because of the cyclic mapping in Eq. (13).We
choose low fidelity thresholds 1% and 10% to evaluate the
performance, because even with a fidelity 1%, the proba-
bility to get the optimal solution at least once using 1000
shots is 1 − (1 − 0.01)1000, which is more 99.99%. To be
able to combine data for different problem sizes, we follow
Ref. [8] and consider the normalized number of iterations
corresponding to the number of cost function evaluations
divided by the number of qubits. Figure 3 shows the re-
sults for the binary encoding and fidelity thresholds 1%
and 10% as a function of the normalized iterations. Com-
paring the different columns of Fig. 3, corresponding to a
different number of layers in the ansatz, we observe that
adding more layers yields in general better results. In
particular, going beyond a single rotation layer, in which
case the ansatz is able to produce entangled states, the
fraction of instances that reaches the threshold at the
end of the simulation increases noticeably. Moreover, we
observe that the CVaR-VQE is able to generate a sig-
nificant fraction of instances above the fidelity threshold
within just a few normalized iterations. The latter in-
dicates that even on NISQ hardware, where one might
be restricted to a small number of iterations, one has a
reasonable chance of finding a good solution.

Focusing on the results for a fidelity threshold of 1%
in Figs. 3(d)-(f), we see that decreasing ξ improves the
results. In particular, the conventional VQE using the
expectation value of the Hamiltonian as a cost function
shows the worst performance, and reaches the 1% fidelity
threshold for no more than 60% of all instances, even for
three layers (see Fig. 3(f)). Considering a larger fidelity
threshold of 10%, shown in Figs. 3(a)-(c), the observa-
tion is qualitatively similar, except for ξ = 0.01. The
poor performance of ξ = 0.01 in that case can be ex-
plained by the nature of the CVaR cost function. As
outlined in Sec. III, the CVaR cost function does not re-
ward increasing the fidelity with the ground state beyond
ξ. Thus, a choice of ξ = 0.01 does in general not allow
for reliably reaching a fidelity with the ground state of
10%. Interestingly, the conventional VQE (correspond-
ing to ξ = 1) only shows a slightly better performance
than the CVaR-VQE with ξ = 0.01. Increasing ξ to the
fidelity threshold, we again observe good performance,
and for three layers more than 95% of all instances reach
a fidelity of at least 10% with the exact solution. Note
that the CVaR-VQE also has a better performance in op-
timizing the QUBO Hamiltonian using one-hot encoding,
and achieves a quite high success rate up to 18 variables
(qubits) if one use ξ = 0.1 and three layers (see Fig. 8 in

Appendix B for details).

In our theoretical study, in which we evaluate the cost
function exactly, we observe a higher success rate and
faster convergence for a lower fidelity threshold and lower
values of ξ. On quantum hardware, one has to consider
that the measurement process involves taking a finite
number of samples. Smaller values for ξ imply discard-
ing a larger fraction of samples and, thus, fewer statistics
when estimating the cost function using sampling results.
Hence, for simulations on quantum hardware, ξ has to be
chosen carefully. Reference [8] suggests a choice of ξ in
the range of [0.1, 0.25] based on empirical results on quan-
tum hardware. In addition, current NISQ devices suffer
from a noticeable level of noise that might affect the re-
sults further. In this work, we focus on benchmarking the
performance of the VQE on the FGA problem in an ideal
setting, and investigating the best choice of ξ for NISQ
hardware is beyond the scope of this paper. Hence, for
simplicity we focus on two scenarios, ξ ∈ {0.1, 1} with a
fidelity threshold of 0.1, as well as ξ ∈ {0.01, 1} with a
fidelity threshold of 0.01.

Using these scenarios, we compare the performance of
both encodings utilizing the CVaR-VQE in Fig. 4. For
each problem size, we monitor the fraction of instances
whose maximal fidelity throughout the whole optimiza-
tion process reaches the fidelity threshold. For a fidelity
threshold of 10%, the binary encoding has a significantly
better performance, especially in the case of ξ = 1, which
corresponds to conventional VQE using the expectation
value as the cost function (see Figs. 4(a)-(c)). For our
largest problem size, |F | × |G| = 18, three layers of the
ansatz, and ξ = 1, the one-hot encoding only reaches the
fidelity threshold for a few percent of the instances, while
for the binary encoding around 50% of all instances still
produce a fidelity of at least 10% (see Fig. 4(c)). De-
creasing the value of ξ to 0.1, the drop in the fraction
of instances reaching the fidelity threshold with increas-
ing |F | × |G| is still more pronounced for the one-hot
encoding. This reflects the hardness of the VQE using a
hardware-efficient ansatz and a normal expectation value
as the cost function: it is almost impossible to find the
optimal solution of the FGA problem using conventional
VQE if the number of qubits is larger than 18. For-
tunately, one can use the CVaR as a cost function to
overcome this problem, which shows a quite high suc-
cess rate even for the largest problem size studied in this
work. Moreover, while the one-hot encoding can reach
the fidelity threshold of 1% with a similarly high success
rate as the binary encoding if one chooses ξ = 0.01 (see
Figs. 4(d)-(f)), the average number of function evalua-
tions to achieve the fidelity 1% is a lot less for the binary
encoding compared to the one-hot encoding for the same
problem size. As we will examine in detail in Sec. IV C,
we observe that the average number of function evalu-
ations for our largest problem size to reach the fidelity
threshold of 1% with ξ = 0.01 is about O(10) for the bi-
nary encoding and O(102) for the one-hot encoding (see
also Fig. 7(b) and Fig. 10(b)).
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FIG. 3. Fraction of instances attaining a fidelity with the exact solution state of at least 10% (upper row) and 1% (lower
row) as a function of the number of normalized iterations using the binary encoding. Different markers correspond to different
choices of ξ = 0.01 (red dots), 0.1 (dark red triangles), 0.25 (grey diamonds), and 1 (cyan squares). The columns correspond
to different numbers of layers l = 1 (first column), 2 (second column) and 3 (third column).
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FIG. 4. Fraction of instances attaining a fidelity with the exact solution state of at least 10% (upper row) and 1% (lower row)
at the end of the VQE for problems with up 18 variables, corresponding to up to 18 qubits for the one-hot encoding and up to
9 qubits for the binary encoding. Different markers represent the different choices of ξ = 0.01 (red dots), 0.1 (brown triangles),
and 1 (cyan squares). The columns correspond to different numbers of layers l = 1 (first column), 2 (second column), and
3 (third column). The results for the binary encoding are connected with solid lines, the ones for the one-hot encoding with
dashed lines.
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B. Effect of entanglement on the performance

The simulation results for both the binary encoding
and the one-hot encoding improve when using a larger
number of layers in the ansatz, as Fig. 3 and Fig. 4 (and
also Fig. 8 in Appendix B) reveal. However, it is not
clear if the improvement of the performance is due to
an increased number of entangling layers, or merely be-
cause of the presence of more parameters in the ansatz.
In order to investigate the role of entanglement in the
VQE, we perform simulations using a quantum circuit
without entangling gates by replacing the CNOT layers
with single-qubit T -gates following Ref. [28]. The corre-
sponding circuit is shown in Fig. 5.

|0⟩ RY (θ1) T RY (θ4) T RY (θ7)

|0⟩ RY (θ2) T RY (θ5) T RY (θ8)

|0⟩ RY (θ3) T RY (θ6) T RY (θ9)

Layer 1 Layer 2 Layer 3

FIG. 5. Quantum circuit without entangling gates, which
prepares a product state, illustrated for three qubits.

Figure 6 shows the results for the performance of the
CVaR-VQE as a function of the problem size with and
without entanglement, using the binary encoding for the
FGA problem. For two and three layers in the ansatz,
the VQE with entanglement shows a clear advantage for
both, ξ = 0.1 and ξ = 0.01, especially for larger problem
sizes. In contrast, the advantage of the entangling cir-
cuit is not obvious for the VQE using the conventional
expectation value, corresponding to ξ = 1. For the one-
hot encoding, we observe a similar behavior; however,
the difference between both circuits is a lot smaller than
that for the binary encoding (see Appendix B, Fig. 9).
Ideally, this comparison should be extended beyond us-
ing only product states, thus also including correlations
between qubits that can be efficiently generated by a clas-
sical computer, as we aim to address in future work.

C. Scaling of the number of cost function
evaluations

The results shown in the previous sections indicate that
CVaR-VQE in conjunction with the binary encoding is
suitable to effectively solve the FGA problem. In the
following, we examine the scaling of the number of cost
function calls with the problem size during the classical
minimization, in order to benchmark the efficiency. To
this end, we study the average number of cost function
evaluations of the successful instances that achieved the
chosen fidelity threshold for the final state, which we refer
to as N in the following. We adopt a best-case scenario

and count the number of cost function evaluations until
the quantum state generated by the VQE achieves the
desired fidelity threshold for the first time [32].

In Fig. 7, we show the scaling of N for the fidelity
thresholds 1% and 10%. For both cases, we observe a
rather similar behavior. After an initially approximately
exponential increase of the number of cost function eval-
uations, the number eventually begins to saturate around
a problem size of 14 qubits. While for a threshold of 10%
with ξ = 0.1, the value of the final plateau in the number
of cost function calls shows a slight dependence on the
number of layers, this dependence seems to be weaker for
a threshold of 1% with ξ = 0.01. Moreover, a comparison
between Fig. 7(a) and Fig. 7(b) shows that lowering the
fidelity threshold and the value of ξ by one order of mag-
nitude only slightly reduces the number of cost function
calls required until convergence. Regarding the random
instances we used here, some instances have degenerate
ground states because of the cyclic mapping in Eq. (13).
In case of a degeneracy, it can be easier to find a ground
state; however, this might influence the scaling of the
number of cost function calls to reach a certain fidelity.
In particular, we observe a slight “staircase shape” of the
data in Fig. 7. In order to examine the effect of degen-
eracies carefully, we also explore the same scaling using
a set of random instances with |G| equal to a power of
2, such that there are no degenerate ground states due
to the cyclic mapping in Eq. (13). For this case, we also
do not observe an exponential increase of the number of
cost function calls up to the problem size of 18 qubits
which we study (see Appendix C for details). While a
larger number of qubits is needed to obtain a solid con-
clusion for the scaling of N , which is beyond the scope of
this work, our results are promising as they indicate the
FGA problem can be efficiently solved on digital quan-
tum computers.

V. CONCLUSION AND OUTLOOK

In this work, we systematically explored the perfor-
mance of the CVaR-VQE for the FGA problem using
a resource-efficient binary encoding in conjunction with
a cyclic mapping, which is suitable for digital quantum
computers. Compared to the one-hot encoding used in
Refs. [13, 20], the binary encoding with cyclic mapping
requires a noticeably smaller number of qubits, and al-
lows for addressing the problem in a resource-efficient
manner on NISQ devices. In particular, the fraction of
solutions in the Hilbert space that are compatible with
the constraints is substantially larger than for the case of
the one-hot encoding.

We numerically benchmarked the performance of the
CVaR-VQE for the binary encoding, and compared it to
the previously used one-hot encoding and conventional
VQE. We find that using the CVaR [8] as an aggrega-
tion function greatly improves the performance for both
encodings compared to conventional VQE. In particular,
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FIG. 6. Comparison of the performance of quantum circuits with and without entanglement, for solving the FGA problem
using binary encoding. The circuit with entanglement is the EfficientSU2 circuit with CNOT layers (solid lines); in the circuit
without entanglement, the CNOT layers are replaced with single-qubit T -gates (dotted lines). Similar to Fig. 4, the fraction of
instances are shown that attain a fidelity with the exact solution state of at least 10% (upper rown) and 1% (lower row) at the
end of the VQE. The columns correspond to different numbers of layers l = 2 (first column) and 3 (second column). Different
markers represent different choices of ξ = 0.01 (red dots), 0.1 (brown triangles), and 1 (cyan squares).
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FIG. 7. Scaling of the average number of function evaluations N with the number of qubits for binary encoding. The simulation
results are obtained using l = 1 (red dots), 2 (brown triangles) and 3 (cyan triangles) for the EfficientSU2 circuit. The left
panel corresponds to a fidelity threshold of 10% with ξ = 0.1, the right panel to a threshold of 1% with ξ = 0.01. The y-axes
are in logarithmic scale.

using a fidelity threshold of at least 10% with the exact
solution, the CVaR-VQE is able to reach this thresh-
old for more than 80% of all instances, provided that a
large enough number of layers is chosen in the ansatz,
compared to less than 40% of all instances using con-
ventional VQE. Moreover, the binary encoding performs
significantly better than the one-hot encoding. In par-
ticular, the CVaR-VQE approach to the binary encoding
does not show a noticeable performance decrease with
the problem size for the range of parameters we study, in
contrast to the one-hot encoding.

Comparing the performance of the CVaR-VQE for

the binary encoding using the entangling EffiecientSU2
ansatz to a simple ansatz without entangling gates (thus,
producing only product states), we find that the presence
of entanglement significantly improves the results if us-
ing CVaR as a cost function. In particular, for larger
problem sizes, our results indicate that entanglement is
beneficial for efficiently exploring the energy landscape.
Using a fidelity threshold of 10% and three layers with
CVaR0.1 as a cost function, we observe that the entan-
gling ansatz is able to reach this threshold for roughly
90% of all instances for the largest problem size we study,
compared to roughly 40% of all instances for the product
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state ansatz.
Focusing on the number of cost function calls to obtain

a certain fidelity threshold with the exact ground states,
our data suggest that this number does not scale expo-
nentially with the problem size for the range of parame-
ters we study. Consequently, the FGA problem seems to
be efficiently addressable with digital quantum comput-
ers.

The encoding we used in this work can be readily im-
plemented on gate-based quantum devices, and the num-
ber of layers and cost function calls in our study seem
within reach on existing quantum hardware. In the fu-
ture, we plan to investigate the performance of the binary
encoding and the CVaR-VQE in a realistic scenario with
noise and eventually on a quantum device.
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Appendix A: Details of the Hamiltonian formulation
using one-hot encoding

In Sec. II B, the FGA problem is formulated using the
one-hot encoding with the cost function in form of a
QUBO problem, as shown in Eq. (10). The correspond-
ing Ising-type Hamiltonian is given in Eq. (11). In this
appendix, we provide the explicit formula of the coeffi-
cients for both formulations of the problem.

Considering the QUBO problem in Eq. (10), the coeffi-
cients c, hiα, and Jiαjβ depend on the number of passen-

gers, n
arr/dep
i and ntransij , and the different times, t

arr/dep
α

and tαβ , and read

c = |F | × λone,

hiα = narri tarrα + ndepi tdepα − 2λone,

Jiαjβ = ntransij tαβ + δijλ
one + δαβδ

P
ijλ

one,

(A1)

where δPij is nonzero if and only if the flights i and j are
a forbidden pair of flights,

δPij =

{
1, if (i, j) ∈ P ,

0, otherwise.
(A2)

Given a QUBO problem as in Eq. (10), one can easily
get the corresponding Ising Hamiltonian by replacing the
binary variables xiα in the QUBO with the operators

http://iaifi.org/
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(I − Ẑiα)/2,

H = c+
∑
iα

hiα
(I − Ẑiα)

2
+
∑
iαjβ

Jiαjβ
(I − Ẑiα)(I − Ẑjβ)

4

= c+
1

2

∑
iα

hiα +
1

4

∑
iαjβ

Jiαjβ +
1

4

∑
iα

Jiαiα

+
∑
iα

−1

2
hiα − 1

4

∑
jβ

(Jiαjβ + Jjβiα)

 Ẑiα

+
1

4

∑
iα̸=jβ

JiαjβẐiαẐjβ .

(A3)
The index iα can be mapped to the qubit index p by a
linear mapping, p = i×|G|+α, which allows for express-
ing the Hamiltonian as

Ĥ = c′Î +

N∑
p

h′pẐp +

N∑
p<q

J ′
pqẐpẐq, (A4)

with the coefficients

c′ = c+
1

2

∑
iα

hiα +
1

4

∑
iαjβ

Jiαjβ +
1

4

∑
iα

Jiαiα,

h′p = −1

2
hiα − 1

4

∑
jβ

(Jiαjβ + Jjβiα),

J ′
pq =

1

4
(Jiαjβ + Jjβiα) .

(A5)

In the expression above, the indices p and q correspond
to p = i× |G| + α and q = j × |G| + β.

Appendix B: Simulation results of one-hot encoding

In this appendix, we provide extended simulation re-
sults for the FGA problem using the one-hot encoding,
which results in the Ising Hamiltonian in Eq. (11). As
shown in Fig. 8, the CVaR-VQE helps to improve the
performance and to have a larger number of instances
that reach the desired fidelity threshold. In particular,
similar to the binary encoding, we observe that a smaller
ξ leads to better results.

Figure 9 shows the performance of the one-hot encod-
ing using ansatz circuits with and without entanglement.
As the figure reveals, entanglement also plays a positive
role in this case; however, the advantage of the entan-
gling circuit is not as great as in the case of the binary
encoding, as a comparison with Fig. 6 reveals.

Finally, we also explore the scaling of the number of
function evaluations of the CVaR-VQE to achieve a cer-
tain fidelity threshold in the one-hot encoding. The re-
sults for this case can be found in Fig. 10. For the one-hot
encoding, our scaling results are unfortunately inconclu-
sive, as the figure shows. After an initial exponential
increase, similar to the binary encoding, it seems that

the curve starts to flatten and goes towards a plateau.
However, the system sizes we can reach in our classical
simulations are too small to solidify this conjecture.

Appendix C: Further exploration of the scaling of
the number of cost function evaluations

In this appendix, we examine the scaling of the number
of cost function calls with instances that have four gates,
|G| = 4, which can be exactly represented by M = 2
qubits and will not have degenerate ground states caused
by the cyclic mapping in Eq. (13). Therefore, we generate
a set of random instances with the number of qubits |F |×
2 ∈ {4, 6, 8, 10, 12, 14, 16, 18}, with 50 random instances
for each problem size and study the CVaR-VQE for five
randomly chosen initial parameter sets for each instance.
As shown in Fig. 11(a) and Fig. 11(b), the fraction of
instances that achieve a certain fidelity threshold using
the relevant CVaR coefficient (ξ = 0.1 for fidelity 0.10,
ξ = 0.01 for fidelity 0.01) is still very high, and almost
all of instances up to 18 qubits can achieve the fidelity
threshold of 0.01 with CVaR0.01.

Next, we examine the average number of function calls
of the instances that achieve the fidelity threshold, which
is what we did in Sec. IV C but for different instances.
In Fig. 11(c) and Fig. 11(d), similar to the scaling of the
number of function calls shown above, the curve seems
to bend and start to flatten, so we do not observe an ex-
ponential scaling up to 18 qubits. However, more qubits
are required to get a solid conclusion about the scaling
of the number of function calls.

Appendix D: Further discussion about the effects of
entanglement on performance

In Sec. IV B, we show the results that the entangling
quantum circuit has a better performance than the non-
entangling circuit if using CVaR as a cost function. How-
ever, the non-entangling circuit can be efficiently sim-
ulated by a classical computer, thus a question arises:
whether the poor performance of the non-entangling cir-
cuit can be mitigated by the cheaper sampling? So that
we can still get the optimal solution in a state that has
lower fidelity by more sampling of the non-entangling cir-
cuit.

To clarify the situation where the advantage of entan-
gling is more possible, we calculate the necessary shots
of the failed instances with a non-entangling circuit in
binary encoding, if we want to get the optimal solution
with a probability p = 99.9%. Focus on the setup with
CVaR coefficient ξ = 0.01, 3 layers in Fig. 6(d), almost
all of the instances with the entangling ansatz can get a
fidelity larger than 0.01. For the non-entangling ansatz, if
we want to compensate it’s poor performance with more
sampling, the necessary shots for the failed instances will

be S = log(1−0.999)
log(1−p̄ov)

with p̄ov = max(pov,
1
2N

), where pov
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FIG. 8. Fraction of instances with the number of normalized iterations using one-hot encoding. There are four different CVaR
coefficients ξ ∈ {0.01, 0.1, 0.25, 1} and three different quantum layers: l ∈ {1, 2, 3} are studied in the plots. As mentioned at
Sec. IVA, the problem size of the FGA problem in one-hot encoding is from 6 variables to 18 variables, and there are 250
random instances for each problem size, so there are totally 1750 instances in the one-hot encoding for each ξ and each l. The
plots above show the fraction of instances that achieve the certain fidelity in the 1750 total instances.

is the maximal fidelity overall the iteration and N is the
qubit number. There are cases in which VQE converges
to a local minimum and the probability of the optimal so-
lution pov is almost zero, resulting in an extremely large
shot number S. Thus we set pov = max(pov,

1
2N

) to avoid
the extremely large shots in this case. From the estima-
tion in Fig. 12, the necessary sampling for the failed case
increases rapidly with the qubits, even larger than 2N

that is needed for brute-force search. In this case, the
scaling of the shots S with qubits number seems expo-
nential, but due to the finite dataset and specific setup
we used here, it is hard to get a solid and general con-
clusion about the function of the scaling. However, it is
promising that the number of samples needed to compen-
sate for the poor performance of non-entangling ansatz
increases rapidly with the qubit number, so the advan-
tage of better trainability of the entangling ansatz will
be more possible when the problem size is large.
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(b) QUBO: Fidelity larger than 0.10, layer 3
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FIG. 9. Performance comparison of the quantum circuit with and without entanglement for one-hot encoding. The dotted
lines are related to the results obtained by the quantum circuit that only has the one-qubit Ry and T gates (Fig. 5), and the
solid lines are related to the circuit with entanglement generated by the CNOT gates (Fig. 2). The circuit with entanglement
performs better in most cases, especially for the CVaR-VQE with the coefficient ξ = 0.1.

6 8 10 12 14 16 18
|F| × |G|

102

N

(a) QUBO: Fidelity larger than 0.10,  = 0.1
layer 1
layer 2
layer 3

6 8 10 12 14 16 18
|F| × |G|

101

102

N

(b) QUBO: Fidelity larger than 0.10,  = 0.01
layer 1
layer 2
layer 3

FIG. 10. Scaling of the number of the function evaluations (N) to get the fidelity 0.1 (left) or 0.01 (right) for the FGA problem
in the one-hot encoding. The results are obtained using the entangling quantum circuit with the number of layers l ∈ {1, 2, 3}.
Just as with the binary encoding (see Sec. IVC), we count the average optimal number of function evaluations of the successful
instances that got a fidelity larger than 0.1 or 0.01, respectively.
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FIG. 11. Results of the FGA instances without the degenerate instances in the binary encoding using CVaR-VQE. The upper
row shows the fraction of instances that achieve the fidelity threshold using CVaR-VQE with l = 1 (red dots), 2 (brown
triangles) and 3 (cyan triangles). The results are obtained using a CVaR coefficient of ξ = 0.1 for the fidelity threshold of 10%
and ξ = 0.01 for the fidelity threshold of 1%. The lower row shows the average number of cost function calls (N) to achieve
the fidelity threshold with different quantum layers. The y-axes in the panels (c) and (d) are in logarithmic scale.
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FIG. 12. Shots necessary to sample the optimal solution at
least once with the probability 99.9% for the failed instances
with non-entangling circuit in Fig. 6(d). The grey dashed line

is the shots needed for random sampling S = log(1−0.999)

log(1− 1
2N

)
, and

the light blue dashed line is 2N related to the brute force, with
N representing the qubit number.
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