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A B S T R A C T

We predict the future course of ongoing susceptible–infected–susceptible (SIS) epidemics on regular, Erdős–
Rényi and Barabási–Albert networks. It is known that the contact network influences the spread of an epidemic
within a population. Therefore, observations of an epidemic, in this case at the population-level, contain
information about the underlying network. This information, in turn, is useful for predicting the future course
of an ongoing epidemic. To exploit this in a prediction framework, the exact high-dimensional stochastic model
of an SIS epidemic on a network is approximated by a lower-dimensional surrogate model. The surrogate model
is based on a birth-and-death process; the effect of the underlying network is described by a parametric model
for the birth rates. We demonstrate empirically that the surrogate model captures the intrinsic stochasticity of
the epidemic once it reaches a point from which it will not die out. Bayesian parameter inference allows for
uncertainty about the model parameters and the class of the underlying network to be incorporated directly
into probabilistic predictions. An evaluation of a number of scenarios shows that in most cases the resulting
prediction intervals adequately quantify the prediction uncertainty. As long as the population-level data is
available over a long-enough period, even if not sampled frequently, the model leads to excellent predictions
where the underlying network is correctly identified and prediction uncertainty mainly reflects the intrinsic
stochasticity of the spreading epidemic. For predictions inferred from shorter observational periods, uncertainty
about parameters and network class dominate prediction uncertainty. The proposed method relies on minimal
data at population-level, which is always likely to be available. This, combined with its numerical efficiency,
makes the proposed method attractive to be used either as a standalone inference and prediction scheme or
in conjunction with other inference and/or predictive models.
1. Introduction

Mathematical models of the dynamics of directly transmitted in-
fectious diseases can provide predictions about the future course of
an ongoing epidemic and hence aid in decision making and epidemic
control [e.g. 1]. Statistical time series methods are utilised predom-
inantly for epidemic nowcasting, i.e., shortest-term predictions and
current state assessment under not yet complete data [e.g. 2,3] and epi-
demic surveillance, i.e., early identification of emerging epidemics [4].
Mechanistic/state–space models, which are based on a mathematical
description of the spreading process, allow one to make predictions
about the future course of an epidemic [5–7] as well as simulating
intervention strategies [8–11]. Many such models rely on a compart-
mentalisation of a population of 𝑁 individuals according to the indi-
vidual’s disease status. In diseases for which there is no immunity upon
recovery, each individual is either susceptible (S) or infected/infectious
(I) at any given time.

∗ Corresponding author.
E-mail addresses: t.zerenner@sussex.ac.uk (T. Zerenner), i.z.kiss@sussex.ac.uk (I.Z. Kiss).

One assumption common to many compartmental models is that
of random mixing of individuals, or of/within subgroups of a popu-
lation [e.g., 12,13]. While this assumption can be adequate in some
instances [e.g., within households; 14], it is known that populations do
not mix at random in general. Rather individuals have a finite set of
contacts to whom they can pass on an infection. It is well-established
that the contact network of a population significantly impacts epi-
demic dynamics [e.g., 15,16]. The importance of contact structure for
epidemic dynamics has led to a close interaction between network
science and mathematical epidemiology [17–20] whereby the spread
of an epidemic within a population is understood and modelled as a
stochastic process on a network. In such a model, each individual in
the population corresponds to a node in the network, and a contact
that represents a potential route for disease transmission between two
individuals is a link in the network. Drawbacks of network epidemi-
ological models typically include their high dimensionality and the
inaccessibility of the exact contact network of a population.
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Consider an SIS-epidemic on an undirected, unweighted network
ith 𝑁 nodes. At any given time, each node is either susceptible or

nfected/infectious. If the exact contact network is static and known,
complete description of the SIS dynamics is given by a continuous-

ime Markov-chain of dimension 2𝑁 [one equation for each possible
etwork state; e.g., 21]. Such a Markov-chain model is exact, but also
igh-dimensional even for modest values 𝑁 . Hence, the numerical inte-
ration of the system of equations becomes unfeasible for most real-life
etworks. Consequently, analytical results based on the exact system
re mostly out of reach, and existing results typically rely on mean-field
pproximations [e.g., 22,23]. Further, the exact contact network of a
opulation is rarely accessible, but usually needs to be approximated
ither from limited observations and/or based on theoretical network
odels [e.g., 24,25].

In this study, we explore the suitability of a computationally inex-
ensive model to describe the stochastic process of an SIS epidemic
preading on Regular (Reg), Erdős–Rényi (ER) and Barábasi–Albert
BA) networks. The surrogate model utilised in this study was first
ntroduced in [26] and further expanded to include more network
lasses and consider the large 𝑁 limit in [27]. The core idea of the
pproach is a dimension reduction of the state space. In the surrogate
odel, the state of the epidemic at any given time is defined by the

otal number of infected nodes in the population. The effect of the
ontact structure on the spreading of the epidemic is accounted for by
he model parameters. The continuous-time Markov-chain describing
he SIS dynamics on the reduced state space takes the form of a Birth-
nd-Death (BD) process and is of dimension 𝑁 + 1; that is, it is linear
n 𝑁 and thus feasible also for large 𝑁 . The parameters of the BD
odel correspond to recovery and infections rates. The recovery rate

s network-independent and here assumed to be known. The rate at
hich new infections occur depends on the network, but for particular
etwork classes it can be well described by a three-parameter model,
educing the number of free parameters of the BD model from 2(𝑁 +1)

to only three. Di Lauro et al. [26] utilised the finding that different
types of networks are associated with distinct regions in the space
spanned by the three parameters to infer the type of network from
population-level observations. To solve this inverse problem Di Lauro
et al. [26] set up a Bayesian inference procedure and built network
class specific prior distributions which then allow to identify the most
likely network class from the posterior.

Here, we utilise the BD model to forecast the evolution of an
ongoing epidemic. We address the following questions:

• How well does the BD model capture the intrinsic stochasticity of
an epidemic spreading on a network?

• How uncertain are model parameters when inferred from the kind
of time-censored observations typically available in a realistic
prediction scenario, and how does this uncertainty translate into
prediction uncertainty?

• Can we use the BD model and Bayesian inference to provide
epidemic forecasts with meaningful uncertainty information?

The manuscript is structured as follows: Section 2 introduces the
BD model and Bayesian inference. We then outline the generation
and evaluation of predictions using the BD model. We consider nine
different combinations of networks and epidemic parameters: a small,
a medium and a large epidemic on a network from each of the three
aforementioned network classes (Section 3). An empirical validation of
the BD model based on these nine cases is provided in Section 4.1. In
Section 4.2, we evaluate the predictions obtained with the BD model
for all nine cases. In particular, we study the sensitivity of network class
and parameter inference on the number and timing of observations
in realistic prediction scenarios and how uncertainty about network
class and model parameters translates into prediction uncertainty. We
conclude with a discussion including limitations of this work and future

directions.

2

2. Methods

2.1. SIS epidemics on networks

We consider the standard SIS epidemic on a population of 𝑁 in-
dividuals whose contact structure is described by an undirected and
unweighted network defined by its adjacency matrix 𝐺 = (𝑔𝑖𝑗 ) with
𝑖, 𝑗 = 1, 2,…𝑁 and 𝑔𝑖𝑗 = 1 if individuals (nodes) 𝑖 and 𝑗 are connected
and 𝑔𝑖𝑗 = 0 otherwise. If two nodes 𝑖 and 𝑗 are connected, the disease
can be transmitted from one to the other. In an SIS epidemic, each
node is, at any given time, either susceptible (S) or infected/infectious
(I). Thus, the epidemic state of the network at time 𝑡 is described by
a Boolean vector 𝑋(𝑡) = (𝑥𝑖(𝑡)) with 𝑖 = 1, 2,…𝑁 where 𝑥𝑖(𝑡) = 0
if node 𝑖 is susceptible and 𝑥𝑖(𝑡) = 1 if node 𝑖 is infected at time 𝑡.
Hence, there exists a total of 2𝑁 distinct network states. The state of
the network changes through two types of events: the recovery or the
infection of a node. Infection and recovery are Markovian and act as
homogeneous Poisson point processes with constant per-link infection
rate 𝜏 and constant recovery rate 𝛾. An infectious node can spread the
infection only to neighbouring susceptible nodes. Infection dynamics
thus depends on the network structure, while recovery is network-
independent. A complete description of the SIS-dynamics on a given
network corresponds to a Markov-chain over a state–space of dimen-
sion 2𝑁 for which numerical integration becomes intractable even for
modest values of 𝑁 . However, given network adjacency 𝐺, epidemic
parameters 𝜏 and 𝛾, and initial conditions 𝑋0 = 𝑋(𝑡0), realisations of the
stochastic process can be readily obtained using the Gillespie algorithm,
also known as the Doob–Gillespie algorithm or the stochastic simula-
tion algorithm [e.g., 20,28,29]. This is computationally comparatively
inexpensive and provides us with i.i.d. samples of the true stochastic
process. Such samples serve as a reference for the validation of the
BD model and for the evaluation of predictions. More precisely, we
make use of the aggregated number of infected nodes in the network,
i.e., 𝐼(𝑡) = ∑𝑁

𝑖=1 𝑥𝑖(𝑡), which describes the epidemic at population level.

.2. BD model

Birth-and-death processes are intuitively linked to the population-
evel dynamics of SIS epidemics [e.g., 30–32]. In this view, an increase
n the number of infected individuals (𝐼 → 𝐼 + 1) corresponds to the

’birth of an infection’; a decrease (𝐼 → 𝐼 − 1) to the ’death of an
infection’. Accordingly, the epidemic state is defined by the number
of infected nodes 𝐼 ∈ {0,… , 𝑁} in the network. The resulting model
is, like the exact formulation (Section 2.1), a continuous-time Markov
chain, but on a state space of dimension 𝑁 + 1 only.

The Kolmogorov (or Master) equation of a standard BD process is
given by

∀𝑘 ∈ {0,… , 𝑁}, 𝑝̇𝑘(𝑡) = 𝑎𝑘−1 𝑝𝑘−1(𝑡) − (𝑎𝑘 + 𝑐𝑘) 𝑝𝑘(𝑡) + 𝑐𝑘+1 𝑝𝑘+1(𝑡), (1)

here 𝑝𝑘(𝑡) denotes the probability of observing 𝑘 infected nodes at
ime 𝑡, and 𝑎𝑘 and 𝑐𝑘 denote population-level infection and recovery
ate, respectively. We note that 𝑎−1 = 𝑐𝑁+1 = 0. The population-level
ecovery rate 𝑐𝑘 can be directly obtained from the node recovery rate 𝛾
s 𝑐𝑘 = 𝛾𝑘. The population-level infection rate 𝑎𝑘 however depends on
he number of links between susceptible and infected nodes (S–I links)
resent in the network in its current state and is thus a random variable
epending on the precise network. Following Di Lauro et al. [26], 𝑎𝑘
s represented in the BD model by its expectation 𝑎̂𝑘 = 𝜏 × the time-
veraged number of S–I links over the network states with 𝑘 infected nodes.

As demonstrated by Nagy et al. [31], the average number of S–I links at
𝑘 infected nodes follows a parabola-like shape for various classic types
of networks. Location of maximum and flatness of the curve depend
on the structure of the network. This has led Di Lauro et al. [26] to
introduce the following three-parameter model for the infection rates
𝑎𝑘

∀𝑘 ∈ {0,… , 𝑁}, 𝑎 (𝐶, 𝛼, 𝑝) = 𝐶 𝑘𝑝 (𝑁 − 𝑘)𝑝
(

𝛼
(

𝑘 − 𝑁 )

+𝑁
)

. (2)
𝑘 2
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Fig. 1. Parametric 𝑎𝑘(𝐶, 𝛼, 𝑝) model fitted to 𝑎̂𝑘 from Gillespie simulations of large (l), medium (m) and small (s) epidemics on the different networks. In the top panels, the
dots indicate 𝑎̂𝑘 and the lines correspond to 𝑎𝑘(𝐶, 𝛼, 𝑝) with parameters (𝐶, 𝛼, 𝑝) obtained from a least-squares fit of Eq. (2) to 𝑎̂𝑘. The bottom panels show the relative error
𝛥𝑎𝑘 = (𝑎𝑘(𝐶, 𝛼, 𝑝) − 𝑎̂𝑘)∕(𝑎̂𝑘 + 1) × 100. (Adding one in the denominator allows to also include the values at and in the vicinity of 𝑘 = 0 and 𝑘 = 1000.).
w
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Here, 𝐶 serves as a general scaling parameter (absorbing the per-
ink infection rate 𝜏), 𝛼 allows to shift the peak of the curve with respect
o 𝑘 = 𝑁∕2 and 𝑝 adjusts the flatness of the curve. For Regular, Erdős–
ényi and Barabási–Albert networks, 𝑎̂𝑘 can be well represented by the

hree-parameter model (Fig. 1). For Erdős–Rényi networks, the peak is
ocated near the centre (𝑘 = 𝑁∕2). For Barabási–Albert networks, the
eak is shifted to the left. For Regular networks with ⟨𝑘⟩ ≲ 15 (for
= 1000), the peak is shifted to the right. With increasing density,

𝑘 curves for Regular and ER networks converge and exhibit a central
eak. Accordingly, the (𝐶, 𝛼, 𝑝)-triplets for the different network types
luster in different regions in the three-dimensional parameter space.
his observation is central to the network class inference of Di Lauro
t al. [26].

For a given recovery rate 𝛾, a given (𝐶, 𝛼, 𝑝)-triplet, and initial
onditions 𝑝𝑘(𝑡0) = 1 if 𝑘 = 𝐼(𝑡0) and 𝑝𝑘(𝑡0) = 0 otherwise, where
(𝑡0) ∈ {0,… , 𝑁} denotes the number of infected nodes at 𝑡0, we can
umerically integrate Eq. (1) to obtain predictions 𝑝𝑘(𝑡). In our experi-

ments, we assume that the recovery rate 𝛾 is known. Initial conditions
are provided by the last observation available. Thus, the remaining task
is the inference of (𝐶, 𝛼, 𝑝) from the available observational data, here,
the number of infected nodes at a set of discrete times. We use Bayesian
inference to estimate the posterior distribution over the parameters
(𝐶, 𝛼, 𝑝) given observations. The required priors were derived from
extensive Gillespie simulations on different networks and with different
epidemic parameters. The particular challenge for making predictions
lies in the limited observational period available for inference in a
realistic prediction scenario, in which observations exist only up to the
current state of the epidemic.

2.2.1. Bayesian inference
The detail of the inference framework can be found in Di Lauro et al.

[26]. Here, we only recall the main ideas and steps of the inference
procedure. We denote the population level observations by (𝑦, 𝑠) where
𝑦 = (𝑘1,… ., 𝑘𝑛) with 𝑘𝑗 ∈ {0,… , 𝑁} denotes the number of infected
individuals at times 𝑠 = (𝑡1,… ., 𝑡𝑛). For brevity, we use 𝑢 to denote
(𝐶, 𝛼, 𝑝). We further denote the set of candidate network classes as
𝛩 = {Reg, ER, BA}.

In order to make predictions, we require the posterior over 𝑢 given
the observations, i.e., 𝜋(𝑢|𝑦, 𝑠), which we can write as

𝜋(𝑢|𝑦, 𝑠) =
∑

𝛩
𝜋𝜃(𝑢|𝑦, 𝑠) 𝜋(𝜃|𝑦, 𝑠).

In Di Lauro et al. [26], the goal was network class inference,
.e., obtaining the posterior over 𝛩 given observations (𝑦, 𝑠), 𝜋(𝜃|𝑦, 𝑠).
3

To this end, Di Lauro et al. [26] generated network class specific
priors 𝜋0,𝜃(𝑢). Precisely, they carried out a large number of Gillespie
simulations during which they kept track of the number of infected
nodes 𝑘, the number of S–I links in the respective network states as well
as the time spent in the various states. The parametric 𝑎𝑘(𝐶, 𝛼, 𝑝) model
from Eq. (2) was then fitted to the (𝑘, 𝑎̂𝑘) curves from the Gillespie
simulations by a least-squares fit using a particle swarm algorithm [33].
The resulting (𝐶, 𝛼, 𝑝) triplets were used to infer Gaussian kernel density
estimators [34] for the priors 𝜋0,𝜃(𝑢). Assuming a non informative,
uniform prior for network class 𝜃, the prior distribution over 𝜃 and 𝑢 is
given by

𝜋0(𝑢, 𝜃) =
1
3
𝜋0,𝜃(𝑢).

Employing Bayes’ rule we obtain the network class specific poste-
rior(s) over the parameter space as

𝜋𝜃(𝑢|𝑦, 𝑠) ∝ 𝑢(𝑦, 𝑠) 𝜋0,𝜃(𝑢). (3)

and the posterior over the network classes as

𝜋(𝜃|𝑦, 𝑠) = ∫ 𝜋(𝑢, 𝜃|𝑦, 𝑠)𝑑𝑢

∝ ∫ 𝑢(𝑦, 𝑠)𝜋0,𝜃(𝑢)𝑑𝑢,

here 𝑢(𝑦, 𝑠) denotes the likelihood of the observations under the
orward model from Eq. (1) which is given by

𝑢(𝑦, 𝑠) =
𝑛−1
∏

𝑖=1
𝑝𝑢𝑘𝑖 ,𝑘𝑖+1 (𝑡𝑖+1 − 𝑡𝑖). (4)

Following Di Lauro et al. [26], the terms 𝑝𝑢𝑘𝑖 ,𝑘𝑖+1 are computed using
he algorithm from Crawford et al. [35]. The Python implementation
outine estimating 𝜋(𝜃|𝑦, 𝑠) is available at https://github.com/BayIAnet
NetworkInferenceFromPopulationLevelData. To estimate 𝜋𝜃(𝑢|𝑦, 𝑠), we

draw samples from 𝜋𝜃(𝑢|𝑦, 𝑠) using the Metropolis–Hastings algorithm,
making use of Eqs. (3) and (4).

2.2.2. Prediction and uncertainty
To obtain predictions one needs to integrate Eq. (1) with the param-

eters 𝑢 = (𝐶, 𝛼, 𝑝) obtained from the posterior 𝜋𝜃(𝑢|𝑦, 𝑠). We generate
and evaluate two different types of predictions. The first variant in-
corporates information on prediction uncertainty as encoded in 𝜋(𝜃)
and 𝜋𝜃(𝑢). The second variant is based on a point estimate of 𝑢. The
Python routine for generating the predictions is available at https:
//github.com/tanja-z/EpidemicPredictionsFromPopulationLevelData.
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Fig. 2. Illustration of the possible types of predictions for a single point in time during the growth phase of the epidemic. Panel (a) shows the conditional mean 𝑚𝜃
𝑘 of the

ushforward measures 𝜈𝜃,𝑘 (Eq. (5)) together with the pushforward of the mode of 𝜋𝜃 for 𝜃 ∈ 𝛩. The grey lines indicate the pushforward of the samples drawn from 𝜋𝜃 . Panel (b)
hows the resulting predictions 𝑚𝑘 (Eqs. (6), (7)) and 𝑝𝑀𝐴𝑃 ,𝑘 (Eq. (9)). The example shown here is a medium epidemic on an ER network (see Table 1) with inference based on
0 observations 𝑦 = (𝑘1 ,… , 𝑘10) approximately equally spaced in time between 𝑘1 = 50 and 𝑘10 = 160.
𝑝

For brevity, in the following, we neglect the dependence on 𝑡 and
nstead consider some fixed point in time. We denote by 𝜈𝜃,𝑘 the
ushforward measure of 𝜋𝜃 under the forward solution operator 𝐺𝑘 ∶
↦ 𝑝𝑘 defined by Eq. (1). The density of 𝜈𝜃,𝑘 is then related to that of
𝜃 through 𝜈𝜃,𝑘(𝑝𝑘) = 𝜋𝜃(𝐺−1

𝑘 (𝑝𝑘)). The conditional mean of 𝜈𝜃,𝑘 is given
y

𝜃
𝑘 = ∫ 𝑝𝑘 𝜈𝜃,𝑘(𝑝𝑘) 𝑑𝑝𝑘 = ∫ 𝐺𝑘(𝑢) 𝜋𝜃(𝑢) 𝑑𝑢. (5)

When additionally integrating over all network classes 𝛩, we can
urther obtain the conditional mean of 𝜈𝑘, the pushforward measure of
, as

𝑘 = ∫ 𝑝𝑘

(

∑

𝜃∈𝛩
𝜋(𝜃) 𝜈𝜃,𝑘(𝑝𝑘)

)

𝑑𝑝𝑘 = ∫ 𝐺𝑘(𝑢)

(

∑

𝜃∈𝛩
𝜋(𝜃)𝜋𝜃(𝑢)

)

𝑑𝑢.

(6)

We estimate 𝑚𝑘 from samples (𝐶, 𝛼, 𝑝)𝑖,1≤𝑖≤𝑛 which we draw from the
osterior distributions 𝜋𝜃(𝐶, 𝛼, 𝑝), 𝜃 ∈ 𝛩, using the Metropolis–Hastings
lgorithm. Since integrating the Master equation with a large number
f parameter combinations is computationally demanding, we thin the
amples by including only every 𝑖th draw, such that the auto-correlation
etween subsequent draws is < 0.1. To choose an appropriate size 𝑛 of
he (thinned) sample, we consider its multivariate effective sample size
mESS), which is estimated by

ÊSS = 𝑛
(

det(𝛬𝑛)
det(𝛴𝑛)

)1∕3
,

where 𝛬𝑛 denotes the sample covariance and 𝛴𝑛 denotes the multivari-
te batch mean estimator of the covariance matrix in the Markov chain
entral limit theorem [36,37]. The sample size 𝑛 is chosen to be the
inimum 𝑛 such that m̂ESS ≥ 260 which ensures a confidence level of
= 0.1 and a tolerance level of 𝜖 = 0.25 for the expectation in the three
arameter (𝐶, 𝛼, 𝑝)-space [38]. To compute the mESS and the threshold
or the desired confidence and tolerance levels, we used the Python
mplementation available at https://github.com/Gabriel-p/multiESS.

We then proceed to integrate the Master equation with each (𝐶, 𝛼, 𝑝)-
riplet to obtain 𝑝𝜃𝑖,𝑘 and finally approximate the conditional mean by

𝑘 =
∑

𝜃∈𝛩

(

𝜋(𝜃)
∑

𝑖

𝑝𝜃𝑖,𝑘
𝑛

)

, (7)

as well as the respective cumulative density over 𝑘 by

𝑀𝑘 =
∑

𝑥≤𝑘
𝑚𝑥.

From the latter we obtain equal-tailed credible intervals for the
predicted number of infected nodes. Equal-tailed intervals are defined
such that the probability of being below the interval is as high as being
above the interval and thus can be directly obtained from the quantiles
of the cumulative density as

𝑄(𝑥) = inf{𝑘 ∈ {0,… , 1000} ∶ 𝑥 ≤ 𝑀 }.
𝑘

4

The interval [𝑄(0.05), 𝑄(0.95)] for example corresponds to the 90%
equal-tailed credible interval. When obtained from 𝑚𝑘 (Eq. (6)), such
intervals incorporate both prediction uncertainty arising from uncer-
tainty about parameters and network class as encoded in 𝜋𝜃(𝑢) and 𝜋(𝜃),
respectively, as well as prediction uncertainty arising from the intrinsic
stochasticity of the epidemic spreading.

The second prediction variant is based on a point estimate, i.e., a
single 𝑢 = (𝐶, 𝛼, 𝑝) inferred from the posterior 𝜋. We first identify the
most likely network class, i.e, the mode of 𝜋(𝜃),

𝜃̂𝑀𝐴𝑃 = argmax𝜃{𝜋(𝜃|𝑦, 𝑠)},

where MAP stands for maximum a-posteriori, and then estimate the
mode of 𝜋𝜃̂ ,

𝑢̂𝜃̂,𝑀𝐴𝑃 = argmax𝑢{𝜋𝜃̂(𝑢|𝑦, 𝑠)}, (8)

using a combination of global and local optimisation routines [26].
The predictions 𝑝𝑀𝐴𝑃 ,𝑘 are obtained by integrating the Master equation
with 𝑢̂𝜃̂,𝑀𝐴𝑃 , i.e.,

𝑀𝐴𝑃 ,𝑘 = 𝐺𝑘(𝑢̂𝜃̂,𝑀𝐴𝑃 ). (9)

Again, we compute the respective cumulative density over 𝑘 as

𝑃𝑀𝐴𝑃 ,𝑘 =
∑

𝑥≤𝑘
𝑝𝑀𝐴𝑃 ,𝑥,

from which we can obtain quantiles and equal-tailed prediction inter-
vals. Such intervals are not credible intervals in the Bayesian sense,
but solely represent the intrinsic stochasticity of the epidemic spread-
ing. They are thus systematically narrower than the credible intervals
discussed above. An illustration of the two prediction variants for one
single point in time is provided in Fig. 2.

To compare uncertainty in the 𝑝𝑘-space for the two prediction
variants we further consider the covariance of the pushforward 𝐺 ∶ 𝑢 ↦
(𝑝0, 𝑝1,… 𝑝𝑘,… 𝑝𝑁 )𝑇 , 𝐺(𝑢) = (𝐺1(𝑢), 𝐺2(𝑢),…𝐺𝑘(𝑢),…𝐺𝑁 (𝑢))𝑇 ∈ R(𝑁+1).
We denote the mean of the pushforward of 𝜋𝜃(𝑢) under the forward
solution operator 𝐺 by 𝑚 = (𝑚0, 𝑚1,…𝑚𝑘,…𝑚𝑁 )𝑇 ∈ R(𝑁+1) (Eq. (6)).
Its covariance  =

(

𝑘𝑙
)

∈ R(𝑁+1)×(𝑁+1) is given by the outer product

 = ∫ (𝐺(𝑢) − 𝑚)(𝐺(𝑢) − 𝑚)𝑇 𝜋𝜃(𝑢) 𝑑𝑢.

We estimate  from the discrete samples (Eq. (7)) as

𝑘𝑙 =
∑

𝜃∈𝛩

(

1
𝑛 − 1

𝑛
∑

𝑖=1
(𝑝𝑘,𝑖 − 𝑚𝑘)(𝑝𝑙,𝑖 − 𝑚𝑙) 𝜋(𝜃)

)

, 𝑘 = 0,…𝑁, 𝑙 = 0…𝑁.

(10)

We can then evaluate || where | ⋅ | denotes the Euclidean norm in
R(𝑁+1)×(𝑁+1). To accordingly evaluate the uncertainty of the predictions
based on the point estimator from Eq. (8), we further evaluate

|𝑀𝐴𝑃 | =
|

|

|

|

∫ (𝐺(𝑢) − 𝑝𝑀𝐴𝑃 )(𝐺(𝑢) − 𝑝𝑀𝐴𝑃 )𝑇 𝜋𝜃(𝑢) 𝑑𝑢
|

|

|

|

, (11)

where 𝑝𝑀𝐴𝑃 = (𝑝𝑀𝐴𝑃 ,0, 𝑝𝑀𝐴𝑃 ,1,…𝑚𝑀𝐴𝑃 ,𝑘,…𝑚𝑀𝐴𝑃 ,𝑁 )𝑇 ∈ R(𝑁+1) are

the predictions from Eq. (9).

https://github.com/Gabriel-p/multiESS
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2.3. Performance assessment

We generate a reference for evaluating the BD model by carrying
out a set of Gillespie simulations which provides us with an i.i.d.
sample of the stochastic spreading of an SIS epidemic on a given
network. We chose a sample size of 𝑁𝑠𝑖𝑚 = 1000 and denote the set of
epidemic trajectories obtained from the sample as {𝐼𝑟,𝑖(𝑡)}1≤𝑖≤𝑁𝑠𝑖𝑚

. To
mpirically validate the BD model, we compare the 𝑝𝑘(𝑡) obtained from

the numerical integration of Eq. (1) against the reference. We evaluate
the difference in expectation, i.e.,

𝛥𝐼(𝑡) = 𝐼𝑠(𝑡) − 𝐼𝑟(𝑡) =
𝑁
∑

𝑘=0
𝑘 𝑝𝑘(𝑡) −

𝑁𝑠𝑖𝑚
∑

𝑖=1

𝐼𝑟,𝑖(𝑡)
𝑁𝑠𝑖𝑚

, (12)

here 𝐼𝑟(𝑡) denotes the mean over the reference at time 𝑡 and 𝐼𝑠(𝑡)
denotes the mean number of infected nodes at time 𝑡 predicted by the
BD model. We further evaluate the cumulative densities from the BD
model in comparison to our reference using the integrated quadratic
distance (IQD) which is given by

IQD(𝑡) = ∫

∞

−∞

(

𝐹𝑠,𝑡(𝑥) − 𝐹𝑟,𝑡(𝑥)
)2 𝑑𝑥. (13)

Here 𝐹𝑠,𝑡(𝑥) denotes the cumulative density at time 𝑡 predicted by
the BD model,

𝐹𝑠,𝑡(𝑥) =
∑

𝑘≤𝑥
𝑝𝑘(𝑡),

and 𝐹𝑟,𝑡(𝑥) denotes the reference empirical cumulative density,

𝐹𝑒,𝑡(𝑥) =
1

𝑁𝑠𝑖𝑚

𝑁𝑠𝑖𝑚
∑

𝑖=1
𝟏𝐼𝑟,𝑖(𝑡)≤𝑥,

here 𝟏 is an indicator function equal to 1 if condition 𝐼𝑟,𝑖(𝑡) ≤ 𝑥 is true
nd 0 otherwise. A small IQD is obtained when not only the mean but
lso the intrinsic stochasticity of the epidemic spreading is adequately
epresented by the BD model. The goodness of fit between the cumu-
ative densities is further illustrated by quantile–quantile plots. The
uantile function is the inverse of the cumulative density, i.e., 𝑄𝑠∕𝑟,𝑡 =

𝐹−1
𝑠∕𝑟,𝑡, and hence given by

𝑄𝑠∕𝑟,𝑡(𝑃 ) = inf{𝑥 ∈ {1,… , 𝑁𝑠𝑖𝑚} ∶ 𝑃 ≤ 𝐹𝑠∕𝑟,𝑡(𝑥)},

for the BD model (s), and the reference (r), respectively.

3. Data

We consider networks of 𝑁 = 1000 nodes and investigate nine
different network and epidemic parameter combinations. The network
parameters, network class and mean degree ⟨𝑘⟩, and the epidemic pa-
rameters, per link infection rate 𝜏 and recovery rate 𝛾, are summarised
in Table 1. The average degree was chosen such that it is very unlikely
that the resulting networks are not connected. For the network realisa-
tions used in the Gillespie simulations, connectedness has been tested
and confirmed apriori. Gillespie simulations were initialised with five
infected nodes selected at random. The time 𝑇 is an approximate value
of the time span between initialising the simulation and reaching a
quasi-steady state in which the expected number of infected individuals
no longer changes. In the following, 𝑇 serves as a universal time scale
which allows to plot the different cases onto the same time axis. Time
is unit-free here. The simulated data can be re-scaled to physically-
meaningful time scales by applying an appropriate multiplicative factor
to the simulation time 𝑡. The parameters for the nine cases were chosen
such that we obtained one large epidemic with > 70% of the population
infected at quasi-steady state, one medium epidemic with 40% to 60%
of the population infected at quasi-steady state, and one small epidemic
with < 40% of the population infected at quasi-steady state for each
network class.

In this study, we consider the epidemics at population-level, that
is, we aim to predict the future course of the number of infected
nodes. Network class and parameters of the BD model are inferred from
population-level observations of the number of infected nodes at a set

of discrete points in time.

5

Table 1
Parameters of the simulated SIS epidemics on networks of 𝑁 = 1000 nodes. Listed are
the names of the different cases, which consist of the respective network class (Regular
(Reg), Erdős–Rényi (ER) or Barabási–Albert (BA)) and epidemic size (large (l), medium
(m), small (s)), mean node degree ⟨𝑘⟩, per-link infection rate 𝜏, recovery rate 𝛾 and
he approximate time 𝑇 between initialisation and quasi-steady state in simulations
nitialised with five infected nodes selected at random.
Case ⟨𝑘⟩ 𝜏 𝛾 𝑇

Reg l 5 4.251 2.969 0.75
Reg m 10 1.265 5.773 1.5
Reg s 7 0.762 3.356 8

ER l 8.124 1.251 0.969 1.25
ER m 15.868 0.859 6.338 1.25
ER s 12.042 1.143 9.579 2

BA l 13.902 3.123 6.969 0.25
BA m 9.95 2.19 8.948 0.5
BA s 7.968 0.612 3.803 2.5

Table 2
(𝐶, 𝛼, 𝑝)-triples from a least-squares fit of the parametric 𝑎𝑘 model (Eq. (2)) to 𝑎̂𝑘
rom Gillespie simulations (Eq. (14)) for all nine cases (see Table 1). The right
olumn shows the root mean square error between empirical 𝑎̂𝑘 and parametric model
MSE(𝑎̂𝑘 , 𝑎𝑘(𝐶, 𝛼, 𝑝)).
Case 𝐶 × 104 𝛼 𝑝 RMSE

Reg l 0.469 0.475 0.915 85.10
Reg m 0.110 0.182 1.007 6.90
Reg s 0.039 0.224 1.019 6.41

ER l 0.116 −0.085 0.977 36.48
ER m 0.162 0.020 0.984 18.07
ER s 0.169 0.016 0.983 20.01

BA l 4.872 −0.726 0.799 208.09
BA m 3.229 −0.551 0.778 241.24
BA s 0.765 −0.494 0.776 56.07

4. Results

4.1. Validation of the BD model

We carry out a set of Gillespie simulations during which we keep
track of the number of infected nodes 𝑘, the number of S–I links over
time and the time spent in the observed states. For each case, we
carry out in total 200 simulations half of which are initialised with
five infected nodes and half with 1000 infected nodes. With this choice
of initial conditions, we obtain realisations of the random variable 𝑎𝑘
𝜏 × #S-I links) for each 𝑘 = 0,… , 𝑁 , from which we compute the

expectations 𝑎̂𝑘 following Di Lauro et al. [26] as

𝑎̂𝑘 = 𝜏
∑

𝑖 𝑖 𝑡𝑖𝑘
∑

𝑖 𝑡𝑖𝑘
, 𝑘 = 1,… , 𝑁, (14)

where 𝑡𝑖𝑘 denotes the total lifetime of all network states with 𝑘 infected
nodes and 𝑖 S–I links.

We then proceed to fit the parameters (𝐶, 𝛼, 𝑝) of the parametric
𝑎𝑘 model from Eq. (2) to the (𝑘, 𝑎̂𝑘) curves by a least-squares fit using
a particle swarm algorithm. Table 2 lists the resulting (𝐶, 𝛼, 𝑝)-triples
for each case along with the root mean square error (RMSE) between
parametric 𝑎𝑘 curves and 𝑎̂𝑘.

Fig. 1 shows the empirical 𝑎̂𝑘 curves as well as the fitted 𝑎𝑘(𝐶, 𝛼, 𝑝)
curves for the nine cases. The top panels illustrate the good agreement
between the parametric model and 𝑎̂𝑘. The bottom panels of Fig. 1 show
relative errors. It is not surprising that the relative error is largest for 𝑘
close to zero or close to 𝑁 , i.e., when the number of S–I links is small
either because only very few nodes are infected or because almost the
entire population is infected. The relative errors are lowest for the ER
network class followed by the Regular networks. For the BA network
class, we obtain larger errors.

We simulate each case by integrating the Master equation (Eq. (1))
with the empirical 𝑎̂𝑘 as well as the parametric 𝑎𝑘(𝐶, 𝛼, 𝑝). We ini-
tialise simulations with 𝐼(𝑡 ) = 5, 20 and 80 infected nodes at time
0
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Fig. 3. Difference in expected number of infected nodes between BD model and reference vs. time (Eq. (12)). The bottom panels show the BD model with the empirical 𝑎̂𝑘. The
top panels show the BD model with parametric 𝑎𝑘(𝐶, 𝛼, 𝑝). From left to right, three different initial conditions are shown: 𝐼(𝑡0) = 5, 20, 80 at 𝑡0 = 0. The different colours and line
styles indicate the nine different cases (see Table 1).
Fig. 4. Integrated quadratic distance between the cumulative density from the BD model and the reference vs. time (Eq. (13)). The bottom panels show the BD model with the
empirical 𝑎̂𝑘. The top panels show the BD model with parametric 𝑎𝑘(𝐶, 𝛼, 𝑝). From left to right, three different initial conditions are shown: 𝐼(𝑡0) = 5, 20, 80 at 𝑡0 = 0. The different
colours and line styles indicate the nine different cases (see Table 1).
𝑡0 = 0, the latter two values corresponding to two and four cycles of
doubling from the initially five infected nodes. A set of 𝑁𝑠𝑖𝑚 = 1000
Gillespie simulations of each case serves as a reference. Fig. 3 shows
the difference in the expected number of infected nodes between BD
model and reference. Fig. 4 shows the integrated quadratic distance
(IQD) between the cumulative densities from BD model and reference.
The errors remain small throughout the simulations with the empirical
𝑎̂𝑘 (bottom panels), which confirms the suitability of the BD model
to describe population-level infection rates in SIS epidemics on Reg,
ER and BA networks. Not only is the expectation well captured by
simulations with 𝑎̂𝑘, but also the intrinsic stochasticity of the epidemic
despite the mean-field approximation. We observe the largest errors for
the BA network class and during the growth phase when simulations
are initialised with 𝐼(𝑡0) = 5 (Fig. 4d). The BA network class exhibits a
higher degree of heterogeneity than Regular and ER networks. Hence,
a larger variance in the number of S–I links at a given 𝑘 is expected.
Therefore, the mean-field approximation might be less well suited for
that type of network than for Regular and ER networks.

The simulations with the BD model with the parametric 𝑎𝑘(𝐶, 𝛼, 𝑝)
(top panels) exhibit larger errors compared to the simulations with
𝑎̂𝑘. Ranking the different cases studied, the BD model achieves the
lowest errors for the ER network class, followed by Regular networks
and the BA networks. Again, errors are largest when the simulations
are initialised with 𝐼(0) = 5 which appears to be caused by the
6

larger relative errors of the parametric 𝑎𝑘-model for small 𝑘. The
overestimation of 𝑎𝑘 at small 𝑘 by the parametric model for the BA
network class (Fig. 1c) causes the number of infected nodes to increase
too fast in the BD simulations, which leads to an over-estimation of
the number of infected nodes during the growth phase (Figs. 3a, 5h).
Conversely, the underestimation of 𝑎𝑘 for small 𝑘 for the Regular
networks (Fig. 1b) causes the number of infected nodes to increase too
slowly in the BD model simulations, and hence an under-estimation of
the number of infected nodes during the growth phase (Figs. 3a, 5a).
The errors peak during the growth phase and then decay until reaching
an approximately constant value in the quasi-steady state.

For the majority of the cases, the quasi-steady state is well captured
in both mean and variation around the mean, with the only exception
being the small epidemics on Regular and BA networks. When the BD
model is initialised at 𝐼(0) = 5, it starts from with a state from which
some of the small epidemics will eventually die out and only some
will eventually converge to the quasi-steady state. Due to the over-
estimation of 𝑎𝑘 for small 𝑘 for the BA networks in the parametric
model, the probability of an epidemic to proceed to the quasi-steady
state from 𝐼(0) = 5 is over-estimated in the BD model. Hence, the
expected number of infected nodes in the BD model is too large. For
Regular networks, the opposite holds and the expected number of
infected nodes is too small. When initialised with 𝐼(0) = 20 the errors

are smaller, but the temporal pattern of the errors persists, i.e., errors



T. Zerenner, F. Di Lauro, M. Dashti et al. Mathematical Biosciences 350 (2022) 108854
Fig. 5. Quantile–quantile plots comparing BD model predictions (s) and reference (r). The circles indicate the quantiles 𝑄(0.05), 𝑄(0.06),…𝑄(0.95) at time 𝑡 = 𝑡0 + 1
3
𝑇 after

initialisation with 𝐼(𝑡0) = 5, 20, 80 infected nodes at time 𝑡0 = 0.
peak during the growth phase and then decay until the quasi-steady
state is reached (Figs. 3b, 4b). When initialised with 𝐼(0) = 80, we find
that both the growth phase as well as the quasi-steady state is well
captured by the BD model (Figs. 3c, 4fc 5c,g,j).

4.2. Predictions

4.2.1. Network class inference
Di Lauro et al. [26] demonstrated that one can reliably recover

the class of the underlying network from population-level observations,
when observations of the full epidemic trajectory from an early stage up
to quasi-steady state are available. When aiming to predict the future
evolution of an ongoing epidemic, the inference of network class and
parameters (𝐶, 𝛼, 𝑝) can only utilise observations of the epidemic up
to its current state. Therefore, the question arises as to when one has
sufficient information during an epidemic to reliably predict its further
course. We therefore carry out a sensitivity analysis by inferring the
posterior distribution 𝜋(𝜃), 𝜃 ∈ 𝛩 = {Reg,ER,BA} from observation
data sets covering different time windows during the evolution of the
epidemic and incorporating different numbers of observations. For this
analysis, we consider the medium epidemics (Table 1).

The results are summarised in Fig. 6. As expected, in general, the
longer the observational period, the higher the (average) posterior
probability of the true underlying network class is. When the obser-
vational period ranges from an early stage of the epidemic up to
quasi-steady state (50 to quasi-steady state), ten out of ten realisations
on the BA network and seven out of ten realisations on Regular and
7

ER networks are classified correctly. While BA networks can be clearly
separated when sufficient data is available, distinguishing between
Regular and ER networks appears challenging. For some realisations,
the respective trajectories largely overlap (Fig. 7a).

When the observation time span is shortened, the rate of correct
classifications decreases (Fig. 6). As demonstrated in Fig. 7b, epidemics
spreading on networks from the different classes may exhibit a similar
shape during the earlier stage and only diverge later on. Thus, inferring
the underlying network classes from population-level observations of
a single realisation requires a sufficient observational time span. In-
creasing the number of observations from 10 to 100 does not have any
visible effect on the classification. Ten observations provide a sufficient
description of the epidemic trajectory.

We note that for the BA networks, classification accuracy increases
when the very early stage of the epidemic up to 𝐼 ≈ 50 is excluded from
the observational data set. In Fig. 6e,f, this is most obvious when com-
paring the posterior probabilities obtained for the observation intervals
[5, 400], [5, 500] and [5, 𝑞𝑠𝑠] with those obtained for [50, 400], [50, 500]
and [50, 𝑞𝑠𝑠], respectively. We believe this to be caused by the relatively
large error of the parametric 𝑎𝑘-model for small 𝑘 for the BA network
class (Fig. 1c). For small 𝑘, the average number of S–I links and hence
𝑎𝑘 are over-estimated by the model. Hence, the initial spreading of the
epidemic on the network is expected to proceed significantly slower
than the BD model with optimal (𝐶, 𝛼, 𝑝)-triplet would suggest. Further,
we note that because Regular and ER networks are comparably close
in the (𝐶, 𝛼, 𝑝)-space, confusion between Regular and ER networks is
comparably likely, but predictions are also expected to be comparably
robust to confusion between Regular and ER network classes.
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Fig. 6. Sensitivity of network class inference on observational time span and number of observations. The bars indicate the average posterior probability 𝜋(𝜃), 𝜃 ∈ 𝛩 = {Reg,ER,BA}
over ten realisations of the medium epidemic on Regular, ER or BA network (Table 1). For each case, 27 different observation intervals have been evaluated. The ten (or 100)
observations are spaced approximately equidistantly in time throughout the observational period.
Fig. 7. Examples of epidemic trajectories from Gillespie simulations on Regular, ER and BA networks. In panel (a), the epidemic parameters 𝜏 = 1.265, 𝛾 = 5.773 and average node
degree 𝑘 ≈ 10 (ER m, Table 1) are (approximately) the same for all three networks. In panel (b), epidemic parameters and average node degree are distinct for the three different
networks and chosen such that trajectories exhibit a similar course during the early stage of the epidemic: 𝜏𝐸𝑅 = 3.5, 𝛾𝐸𝑅 = 2.969, 𝑘𝐸𝑅 = 5.046; 𝜏𝑅𝑒𝑔 = 4.251, 𝛾𝑅𝑒𝑔 = 2.969, 𝑘𝑅𝑒𝑔 = 5
(Reg l, Table 1); 𝜏𝐵𝐴 = 3.2, 𝛾𝐵𝐴 = 2.969, 𝑘𝐵𝐴 = 3.992. Eight realisations are shown for each network class and parameter combination.
4.2.2. Epidemic trajectories
Fig. 8 shows the predictions incorporating the uncertainty encoded

in the posterior distribution(s). Shown are three realisations of the
medium epidemics on Regular, ER and BA networks. Additional Figures
for all ten realisations of the nine cases from Table 1 are provided in
the Supplementary Material. The dots indicate the observations (𝑦, 𝑠).
The grey-shaded areas indicate the predictions. Trajectories of 100
realisations of Gillespie simulations initialised at the network state
associated with the last observational data point serve as reference.

For the majority of cases and realisations, the 90%-credible interval
(CI) contains the reference. For some cases/realisations, the reference
lies just outside 90%-CI (e.g., Fig. 8c realisation 9). For predictions of
the medium epidemics initialised after five cycles of doubling (𝑘 =
10

8

160), we find the reference to lie just outside the 90%-CI for one out of
ten realisations for the ER network, while for the Reg and BA networks,
it lies partly outside of the 90%-CI for 3 out of 10 realisations each. The
90%-CI spans a range of up to ≈ 300 and tends to be larger for the small
and medium epidemics than for the large epidemics.

When parameters and network class are inferred from observations
up to five cycles of doubling (𝑘10 = 160), prediction uncertainty is dom-
inated by uncertainty about model parameters and network class. When
inference is based on observations up to and including the quasi-steady
state, uncertainty on parameters and network class is negligible and
the uncertainty on the future course of the epidemic is dominated by
the intrinsic stochasticity of the process (dotted brown lines in Fig. 8).
Hence, the magnitude of the prediction uncertainty is sensitive to the
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Fig. 8. Predictions incorporating uncertainty for three example realisations of the medium epidemics on Regular, ER and BA networks. The grey shaded areas indicate 70%-
nd 90%-equal tailed credible intervals of the predictions initialised at the last observation 𝐼(𝑡10) = 𝑘10. The dots indicate the ten observations (𝑦, 𝑠) used for inference where
= (𝑘1 ≈ 50𝑘10). The coloured lines show 100 realisations of Gillespie simulations initialised at the last observation. The dotted brown lines indicate the 90%-equal tailed credible

ntervals for predictions with inference from 10 observation up to (and including) quasi-steady state.
Fig. 9. Point estimate-based predictions for three example realisations of medium epidemics on Regular, ER and BA networks. The grey shaded areas indicate 70%- and 90%-equal
ailed prediction intervals of the predictions initialised at the last observation 𝐼(𝑡10) = 𝑘10. The dots indicate the ten observations (𝑦, 𝑠) used for inference where 𝑦 = (𝑘1 ≈ 50𝑘10).
he coloured lines show 100 realisations of Gillespie simulations initialised at the last observation. The dotted brown lines indicate the 90%-equal tailed credible intervals for
redictions with inference from 10 observation up to (and including) quasi-steady state.
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bservational time span available for inference. In any realistic setting,
bservations are of course not available beyond the point from which
ne aims to predict the future course of an epidemic. As illustrated
n Fig. 8b,d and f, parameter and network class uncertainty is, as
xpected, reduced when a longer observational time span is available.
or predictions initialised at 6 cycles of doubling (𝑘10 = 320), prediction
ncertainty due to intrinsic stochasticity and parameter/network class
ncertainty is similar in magnitude and it depends on the particular
ase and realisation if prediction uncertainty is dominated by either
ne.
 o

9

For the predictions of epidemics on BA networks, the reference
ends to lie in the lower half of the 90%-CI whereas for Regular
etworks, it tends to lie in the upper half of the 90%-CI. Relatively
arge credible intervals are associated with relatively large uncertainty
bout the network class. As illustrated in Fig. 7b, epidemics on different
etworks with a similar trajectory during the early stage eventually
iverge, with the epidemics on the BA networks converging to the
owest level of infection during quasi-steady state followed by ER and
egular networks. Thus, credible intervals obtained from observations

f the beginning of one of the BA trajectories from Fig. 7b are expected
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Fig. 10. Uncertainty in the 𝑝𝑘-space. The solid blue lines show the Euclidean norm of the covariance  of the pushforward over time 𝑡 (Eq. (10)). The grey dotted lines show
the norm of the covariance around 𝑝𝑘,𝑀𝐴𝑃 (Eq. (11)). Shown are all ten realisations of the medium epidemic on an ER network with predictions initialised at and inferred from
observations up to 𝐼(𝑡10) = 𝑘10.
to contain the true BA trajectories at their lower end. This behaviour
can also be understood from the corresponding 𝑎𝑘 curves. Curves for
networks from different classes that are similar for small 𝑘 will diverge
for larger 𝑘, with the curve corresponding to the BA network having the
smallest peak, typically followed by ER and finally the Regular network
with the highest peak.

Fig. 9 shows the point estimate-based predictions. The prediction
intervals here do not account for network class and parameter uncer-
tainty, but only represent the intrinsic stochasticity of the epidemic
spreading. Accordingly, the prediction intervals are systematically nar-
rower than the credible intervals. The width of the prediction intervals
is consistent with the spread of the trajectories from the Gillespie
simulations. For some cases and realisations, the point estimate-based
predictions provide a near perfect fit to the reference (e.g., Fig. 9a
realisation 2, e realisation 1). However for some cases/realisations
prediction and reference differ by up to ≈ 300 (e.g., Fig. 9a realisation
6). For epidemics on BA networks, the number of infected nodes is
over-estimated in the point estimate-based predictions if the network
is falsely identified as ER or Regular network. For epidemics on Reg-
ular networks, the number of infected nodes is under-estimated if the
network is falsely identified as ER or BA. The reason for this is the
same as for the tendencies of the reference to occur in different parts
of the credible intervals for the different network classes discussed in
the above paragraph. When inference is based on observations up to six
cycles of doubling (𝑘10 = 320), the errors of the point estimate-based
prediction are visibly reduced (see also the Supplementary Material).
Hence, when longer observation time spans are available also point
estimate-based predictions are potentially useful.

Finally, in Fig. 10 we consider the uncertainty in the 𝑝𝑘-space as de-
scribed by the covariance of the pushforward measure around the two
different predictions 𝑚𝑘 and 𝑝𝑘,𝑀𝐴𝑃 . Shown is the medium epidemic on
the ER network. As the predictions based on the conditional mean 𝑚𝑘
incorporate the uncertainty about the predicted 𝐼(𝑡) that stems from un-
certainty about network class and model parameters it is systematically
wider (Fig. 2). This width reflects the width of the pushforward and
thus leads to lower values of || compared to the point-estimate based
predictions. Further, the predictions incorporating uncertainty exhibit
less variation of || among the different realisations than the point
estimate-based predictions. As already discussed alongside Figs. 8 and
9, we find the uncertainty to be systematically lower when predictions
are based on longer observational periods. The longer the available
observation period, the narrower the posterior and the smaller the
difference between the two types of predictions and their respective
uncertainty in the 𝑝𝑘-space.

5. Discussion

We have explored a modelling and inference framework for fore-
casting SIS epidemics spreading on networks. The surrogate model is
based on a BD process. The effect of the contact structure has been
condensed into a birth-rate parameter, which is proportional to the

average number of SI-links for a given number of infected nodes. Our

10
empirical validation has confirmed that the BD model is well suited to
describe the evolution of an SIS epidemic on a network (Figs. 3 d–f, 4 d–
f). Both the expectation and the intrinsic stochasticity of the epidemic
trajectories are well reproduced even though our model formulation
contains a mean-field approximation. The parametric model for the
number of SI-links, which has been introduced to enable the inference
of network class and model parameters, is suitable for the range 50 ⪅
𝑘 ⪅ 950 (Fig. 1). Hence, simulations with the BD model with the
parametric 𝑎𝑘(𝐶, 𝛼, 𝑝) should not be initialised with fewer than 50
infected nodes (Fig. 3 a–c, 4 a–c).

Network class and epidemic parameters can be reliably inferred
when observations are available from an early stage of the epidemic
up to the quasi-steady state. However, in realistic prediction scenarios,
observations are only available up to the current state of the epidemic.
The accuracy of the network class inference is sensitive to the ob-
servational time span (Fig. 6). Uncertainty increases as observational
time span is reduced. This is because epidemics, though spreading on
networks from distinct classes, can exhibit very similar trajectories
through their earlier stages and only diverge when approaching the
quasi-steady state (Fig. 7). As discussed in Allen et al. [39] for instance,
the uncertainty of the future course of an emerging epidemic during
its early stages is dominated by the intrinsic stochasticity of disease
transmission. It is thus no surprise that observations from an early stage
of the epidemic appear not to contain sufficient information about the
network class.

In predictions based on observations up to and initialised at 𝐼 =
160, the prediction uncertainty is dominated by the uncertainty of
the parameters/network classes. In predictions based on observations
up to and initialised at 𝐼 = 320, the prediction uncertainty stems
in about equal proportions from parameter/network class uncertainty
and intrinsic stochasticity of the epidemic spreading (Fig. 8). Thus,
and especially for shorter observational periods and hence predictions
initialised early during the epidemic, considering parameter uncer-
tainty is crucial for providing meaningful information about prediction
uncertainty [see also 40,41]. The results suggest that for most cases the
credible intervals obtained provide reliable uncertainty information for
the epidemic forecasts (see also the Supplementary Material). If longer
observational time spans are available, point estimate-based predictions
are potentially useful as well (Fig. 9).

Our study differs from other approaches in network inference in
so far as our aim here is not to infer the existence, or otherwise, of
links but rather to infer the most likely network class that led to the
observed population-level data resulting from an epidemic spreading on
it. As a result, the data needed for inference does not contain node- or
link-level information. There are both advantages and disadvantages to
such an approach. On the one hand, the computation of the likelihood
in our case is more straightforward and the data needed for inference
is modest. On the other hand, if more detailed data is available, the
proposed model will not be able to capture it nor benefit from it.
However, more complex models will need large quantities of detailed
data (i.e., in the case of cascades, the data needs to contain cascades
starting from, or involving, as many nodes as possible [42]) to produce
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acceptable results with large computational burden. The choice of
model and inference will depend on the context.

There are many directions in which the current model and inference
scheme can be developed. First, we only explored three network classes
where the key difference was degree heterogeneity. However, networks
displaying degree-degree correlations, clustering, spatial structure or
some type of meso-scale structure, such as communities, may be of in-
terest as they are more representative of real-world scenarios. Equally,
from a theoretical viewpoint, lattices could be considered. This is a non-
trivial task and depending on which network property or combination
of properties we choose to model, it may turn out that the birth-rates
of the BD process will no longer be parabola-like and the proposed
parametric 𝑎𝑘-model may no longer provide a satisfactory fit. However,
we expect that more complex models will be able to capture the birth-
rates in the BD process resulting from such more exotic networks.
Another natural extension would be to consider more complex epidemic
models, such as SIR, where the corresponding BD model will now have
𝑂(𝑁2) equations and the birth-rates of the BD process will define a
urface rather than a curve. However, and perhaps more interestingly,
he excellent agreement between the exact and surrogate model, leads
s to believe that a rigorous proof that quantifies the error between the
xact and BD models may be possible. For example, it is clear that as a
egular network becomes more densely connected, and in the limit of
umber of links going to 𝑁 − 1, the BD model becomes exact.
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