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Abstract
Modelling epidemics on networks represents an important departure from classical
compartmental models which assume random mixing. However, the resulting models
are high-dimensional and their analysis is often out of reach. It turns out that mean-
field models, low-dimensional systems of differential equations, whose variables are
carefully chosen expected quantities from the exact model provide a good approx-
imation and incorporate explicitly some network properties. Despite the emergence
of such mean-field models, there has been limited work on investigating whether
these can be used for inference purposes. In this paper, we consider network-based
mean-field models and explore the problem of parameter identifiability when obser-
vations about an epidemic are available. Making use of the analytical tractability of
most network-basedmean-fieldmodels, e.g. explicit analytical expressions for leading
eigenvalue and final epidemic size, we set up the parameter identifiability problem as
finding the solution or solutions of a system of coupled equations. More precisely,
subject to observing/measuring growth rate and final epidemic size, we seek to iden-
tify parameter values leading to these measurements. We are particularly concerned
with disentangling transmission rate from the network density. To do this, we give a
condition for practical identifiability and we find that except for the simplest model,
parameters cannot be uniquely determined, that is, they are practically unidentifiable.
This means that there exist multiple solutions (a manifold of infinite measure) which
give rise to model output that is close to the data. Identifying, formalising and analyt-
ically describing this problem should lead to a better appreciation of the complexity
involved in fitting models with many parameters to data.
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1 Introduction

Differential-equation-basedmodels are widespread inmodelling population dynamics
be that in problems arising in ecology, evolution or epidemiology (Anderson and May
1992; Blasius et al. 2007; Diekmann and Heesterbeek 2000; Kiss et al. 2017). Such
systems are relatively straightforward to set up and the theory of dynamical systems
offers tools to analyse them. Over the past two decades, differential-equation-based
models have gained a lot of popularity inmodelling epidemics on networks (Porter and
Gleeson 2016; Kiss et al. 2017). Suchmodels, often referred tomean-fieldmodels, aim
to approximate the expected behaviour of some quantities of interest (e.g. expected
number of infected individuals in time) and rely on closure assumptions which are
needed to produce tractable systems.

Themajor difference betweenmean-fieldmodels arising frommodelling epidemics
on networks and classic compartmental models is that in the former the assumption
of homogeneous random mixing between individuals can be relaxed. This sometimes
comes at the expense of having to keep track of multiple variables, such as the number
of nodes with different number of contacts (Pastor-Satorras and Vespignani 2001) and
different disease status or write down differential equations for all nodes in the network
(VanMieghem et al. 2008). The complexity of such network-based mean-field models
is highly dependent on the heterogeneity in the contact network and how themodelling
is performed. For example, the edge-based compartmental model (Miller et al. 2012)
is able to retain all the information about the distribution of contacts in the form of
the corresponding probability generating function and the resulting system consists
of one single differential equation. While such models have been studied extensively
and have provided the means to understand the impact of contact heterogeneity on the
epidemic threshold, final epidemic size and other epidemic characteristics, there has
been relatively little work on using such models for inference purposes. For example,
often information about the network of contacts is not available or patchy. Hence, plac-
ing such models in an inference framework where network parameters are inferred
along disease dynamic parameters may reveal important information about the under-
lying contact network which can be used for the design and implementation of control
measures.

Manyof the network-basedmean-fieldmodels provide explicit or implicit analytical
expressions for quantities such as the basic reproduction number (or leading eigenvalue
basedon the linear stability analysis around the disease-free steady state), timing and/or
peak prevalence, final epidemic size etc. Hence, given a synthetic or real epidemic and
being able to measure a number of the aforementioned quantities, it is of interest to
investigate whether parameters of the epidemic model, including that of the contact
network, that generated the data can be inferred or determined. In this paper, we focus
on the pairwise (Keeling 1999) and the edge-based compartmental model (Miller et al.
2012). These choices are motivated by the popularity and wide use of the pairwise
model and the compact nature of the edge-based compartmental model.

Fitting epidemic models to synthetic or real-world data is of great interest as it
allows us to infer model parameters which in turn helps us to (i) learn more about the
disease, (ii) implement and test control scenarios via simulations, and (iii) make short-
or long-term predictions about the epidemic (Chowell 2017; King et al. 2015). Inmany
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Fig. 1 (Color Figure Online) Illustration of how distinct pairs of average degree and transmission rate,
(n, τ ), lead to almost indistinguishable time evolution of the prevalence and daily new cases. Baseline
values of the parameters are: average degree n = 6, τ = γ R0/((n − 1) − R0) = 0.1429, with R0 = 2.5,
rate of recovery, γ = 1/7, number of nodes N = 10000 and epidemic started with one infected individual,
with the corresponding output shown by the thick grey lines. The black and red-dashed lines correspond to
(n, τ ) = (8.46, 0.09) and (n, τ ) = (2.454, 1.091), respectively

cases, such models can and will be used for parameter estimation and prediction and
can suffer of the well-known problem of parameter redundancy and unidentifiability
(Cole 2019; Villaverde et al. 2016; Gallo et al. 2022). This problem has also been
highlighted in network-based epidemic models, for example in Britton and O’Neill
(2002). This problem is not model specific. For example, in Fig. 1, we show that for the
pairwise model, Eqs. (3)–(6), it is possible to find distinct sets of parameters whereby
the time evolution of prevalence and daily new cases are near indistinguishable. Of
course this also implies that the initial growth rate and final epidemic size are also
close. We note that this figure is for illustration purposes only. The pairwise model is
discussed in the main body of the paper, and its full understanding in the context of
the figure is not necessary.

Parameter identifiability can be considered in two different ways. On the one hand,
different parameter values may lead to identical observations, which is called struc-
tural, or a priori unidentifiability (Anstett-Collin et al. 2020; Villaverde et al. 2016). On
the other hand, the observations belonging to two sets of parameters can be very close to
eachother, referred to as practical unidentifiability, see e.g. (Wieland et al. 2021). Struc-
tural identifiability has been studied in several epidemicmodels. For example, inRoosa
and Chowell (2019), the authors consider the problem of parameter identifiability in
a number of increasingly complex compartmental epidemic models. As the number
of states in the model increases so does the number of parameters. While the parame-
ters remained identifiable, in particular the basic reproduction number, the uncertainty
around the estimate increased in models with more parameters. The paper (Massonis
et al. 2021) relates the identifiability problem to observability in a higher dimensional
augmented system, and investigates structural identifiability in more than fifty com-
partmental epidemic models by using the formalism of observability-identifiability
conditions. On the other hand in Gallo et al. (2022), the authors provide a framework
to quantify how the uncertainty in the data affects the determination of the parame-
ters and the evolution of the unmeasured variables of a given model. Their approach
allows them to characterise different regimes of identifiability and argue that in some
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cases, such as COVID-19 the lack of identifiability may prevent reliable predictions
of the epidemic dynamics. Finally, in Villaverde et al. (2016), the authors argue that
structural identifiability in every model should be checked before using the model
for inference. But this is seldom done since it involves either complex analytical or
numerical calculations.

In this paper, we show that practical unidentifiability is present in a number of
network-based epidemic models. This is, however, not due to hidden or unmeasured
variables. Moreover, our inference is making use of available analytical formulas for
leading eigenvalue, or equivalently growth rate, and final epidemic size. While many
of the previous works are concerned with local changes, that is, quantifying change in
observations induced by a small local change in parameter values, we show that in our
models varying the parameters globally leads to small local changes in measurement.

The paper is structured as follows. In Sect. 2, we describe the general mathematical
approach and suggest somedefinition andways to formalise the identifiability problem.
In Sect. 3, we start with simple models such as the well-mixed susceptible-infected-
recovered (SIR) compartmental model, followed bymore complexmodels such as, the
pairwise (Sect. 4), and the edge-based compartmental model (Sect. 5). We show that
except for the simplest of models, there are clear parameter identifiability problems
which we map out and explain analytically, where possible. In models with a larger
number of parameters, it is often the case that many different combinations of the
model parameters (with many individual parameters being far from their true values)
result in output which is consistent with the true epidemic. Finally, we provide some
discussion and future directions of research.

2 General Approach

We are given a system of ODEs involving some parameters:

ẋ(t) = f (x(t), μ),

where x(t) ∈ R
n is the state vector of the system and μ ∈ R

k is the vector of
parameters. We observe a derived quantity (e.g. final epidemic size, growth rate) for
which data is available. This is given by an observation function h : Rn → R

m , i.e.
the observation y is

y(t) = h(x(t), μ).

The goal is to solve the inverse problem, namely to determine the parameter μ based
on the observation y(t); note that the observation does not need to be time dependent.
This is line with the formulation of a general inverse problem, see (Cole 2019).

Our question here is parameter identification, namely to understand whether it may
happen that the observations y and y corresponding to different parameters μ and μ

are identical or very close to each other. The first one is called structural (or a priori)
unidentifiability, while the second one is referred to as practical unidentifiability, see
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e.g. (Wieland et al. 2021). Our main focus here is practical identifiability, and hence
we deal with structural identifiability only briefly.

The main idea of investigating structural identifiability can be explained as follows.
Since the observation y(t) is known for all time values in an interval, its derivatives
are also known (measured). Differentiating the equation of the observation function
and substituting t = 0 yields

ẏ(0) = h′(x(0), μ) f (x(0), μ)

that is an equation for the n + k unknowns: the coordinates of x(0) and those of μ.
Hence we need further equations to determine the parameters. Differentiating y(t)
n+k−1 times leads to n+k equations for the n+k unknowns. (Note that the zeroth-
order derivative can also be used.) These derivatives are called the Lie derivatives of
the output along the trajectories of the governing dynamical system. This system of
equations is nonlinear, and hence its unique solvability is determined by the Jaco-
bian matrix containing the partial derivatives with respect to the coordinates of x(0)
and those of μ. This matrix is called the Observability-identifiability Matrix, see e.g.
(Massonis et al. 2021). The application of the implicit function theorem yields that
the parameters can be locally uniquely determined if this matrix has full rank, i.e. the
Observability-identifiability Condition (OIC) holds. More detailed approaches lead to
slightly different definitions, the relationships of which are studied in Anstett-Collin
et al. (2020). The OIC condition has been studied in the case of many compartmental
epidemic models. An exhaustive summary is presented in Massonis et al. (2021). As
an illustration of the results derived there, we mention that the traditional SIR model
is structurally identifiable when the observation is the number of infected individuals,
I (t). However, in the more realistic case when one can observe only an unknown
proportion of the infected individuals, q I (t), the parameter q is not structurally iden-
tifiable. It is important to note that the definition of structural identifiability is related
to Kalman’s observability condition in an augmented system (where the phase space is
extended by new artificial variables representing the parameters), see e.g. (Villaverde
et al. 2016).

Let us turn now to the main focus of our study, practical identifiability, when
significantly different parameter values yield observation which are almost identical.
Generally speaking, defining practical identifiability, we use some ε accuracy of the
observation. The accuracy of the observation can be measured in two different ways.
The first is when the time dependence of the observation is known for all time values,
or at least for an observation time-window and accuracy is defined as some norm
of the difference of the two functions, see e.g. (Gallo et al. 2022; Wieland et al.
2021). The second is when we have formulas for some characteristic quantities of
the observation. For example, the derivative of the quantity being observed at the
initial instant, ẏ(0), or its limit for large time, y(∞). These formulas typically involve
the unknown parameter values and hence define a system of equations for them.
We note that structural identifiability can be defined in this case as well, namely the
parameters can be identified by themodel, if this system can be uniquely solved for the
parameters. We speak about practical unidentifiability when clearly distinct parameter
values satisfy the above system of equations but with some small error.
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This can be formulated as follows. Let the system of equations for the parameters
take the form F(μ) = 0. We call the problem structurally unidentifiable if the system
of equations F(μ) = 0 has more than one (typically infinitely many) solution. The
problem is called practically unidentifiable if the system |F(μ)| < ε is satisfied by a
large set of μ values for any ε > 0. In fact, we will show that in our cases the set of
μ values solving |F(μ)| < ε has infinite measure. We note that this does not exclude
that the equation F(μ) = 0 has a unique solution.

This notion of unidentifiability is related but not identical to the question of sensitive
dependence on parameters, which is a notion of local nature. That is expressed in terms
of the Jacobian of F at the solution of F(μ) = 0. The problem fits into the framework
of error analysis and sensitivity analysis that are widely studied important fields of
parameter inference. We refer the interested reader to Stigter and Molenaar (2015)
and to the books (Cacuci et al. 2005; Einarsson 2005), in which both the introduction
to the topic and elaborated examples are available.

Comparing our definition to those in Gallo et al. (2022), Wieland et al. (2021),
the main novelty in ours is that the inequality |F(μ)| < ε holds globally in the
parameter space. Another difference between our definition and previous ones is that
both (Gallo et al. 2022;Wieland et al. 2021) infer parameters from the time dependence
of the solutions, while we use exact (not numerical) formulas for some characteristic
quantities (leading eigenvalue and final epidemic size). Hence, the parameter inference
is done by solving a system of equations instead of fitting to time-dependent curves.

We apply this general theory to the SIR compartmental, pairwise and edge-based
compartmentalmodelswhen the observations are the leading eigenvalue at the disease-
free steady state and the final epidemic size. We note that the leading eigenvalue of
the disease-free steady state results from the linear stability analysis around it. The
largest eigenvalue of the resulting Jacobian is the leading eigenvalue. For the three
different models analysed in this paper, these are given in Eqs. (1), (7) and (18). The
parameters to be determined, given these observations, are the infection rate τ , the
recovery rate γ and the average degree of the underlying network, n. We will show
that for these models (in fact for several other models as well) the leading eigenvalue
can be expressed in terms of these parameters as

λ = τ l(n) − γ,

where l(n) is a linear function depending on the model. We will derive an implicit
equation for the final epidemic size in each case. It will turn out that this implicit
equation contains the parameters τ and γ linearly and n in a nonlinear way. The
equation can be written in the form

τ = A(n)γ

for all cases, where A(n) is a nonlinear function.
The problem of parameter identification can be formulated as follows. Depending

on the choice of the model, i.e. the choice of the functions l(n) and A(n), can the
parameters be recovered by solving the two equations above? Since we have two
equations for three parameter values, it is obvious that one of the parameters has to be
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assumed to be given. The recovery rate is more appropriate for being a known value
since it depends on epidemiological characteristics. While τ and especially n are more
dependent on the behaviour of the agents and on the network, these aremore difficult to
determine. Our goal will be to solve the above equations for τ and n with a given value
of γ and also with given initial conditions. (We note that the initial conditions could
also be considered as parameters which makes the problem even more complicated in
a real-life situation.)

These equations define two curves in the (n, τ ) parameter plane. The parameter
values leading to the desired values of the final size and leading eigenvalue can be
obtained as the intersection point of the two curves. Themain novelty of the paper is the
observation that these curves are very close to each other, and hence relatively different
parameter values may yield very similar final size and leading eigenvalue. Thus, noisy
data may preclude the correct identification of the values of these parameters.

The above system is linear in τ and γ when n is considered to be known. Hence its
solvability is easy to check by computing the determinant. For the sake of complete-
ness, this will also be carried out below in each case.

3 Identifiability in the Compartmental SIR Model

The well-known SIR compartmental model takes the form

Ṡ = −τnI
S

N
,

İ = +τnI
S

N
− γ I .

Simple differentiation at the disease-free steady state (S = N , I = 0) yields that the
leading eigenvalue is λ = τn − γ . On the other hand, the final epidemic size is given
by the solution of the following implicit equation R∞ = N − S0 exp (−τnR∞/Nγ )

as it is given in (4.12) in Kiss et al. (2017). Let us assume, for sake of simplicity, that
S0 = N , that is, initially there are very few infected and recovered nodes. Then the
final size equation can be rearranged to -τnr∞ = γ ln(1− r∞), where we introduced
the fraction r∞ = R∞/N .

Thus the system relating the measured characteristic quantities λ and R∞ to the
parameters, τ , γ and n takes the form

τn − γ = λ, (1)

τnr∞ + γ ln(1 − r∞) = 0. (2)

This system is linear in τ and γ , and hence apart from exceptional cases it has a unique
solution for τ and γ if n is known and the characteristic quantities of the epidemic, λ
and R∞, are measured. That is, knowing/measuring the leading eigenvalue and final
epidemic size, it is possible to uniquely determine τ and γ . However, the parameters
τ and n cannot be obtained from this system, since only their product is determined by
the equations. That is, knowing/measuring the leading eigenvalue and final epidemic
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size, it is not possible to determine the infection rate τ and average degree n. This
is the case of structural unidentifiability when the system of equations has infinitely
many solutions (if it has a solution at all).

4 Identifiability in the Pairwise SIR Model

The pairwise model focuses on a hierarchical construction where expected number of
nodes in state A at time t , [A](t), depends on the expected number of pairs of various
types (e.g. [AB]) and then, these in turn depend on triples such as [ABC]. Here the
counting is done in all possible directions meaning that [SS] pairs are counted twice
and and that [SI] = [I S]. With this in mind, the pairwise model becomes (see e.g. in
Kiss et al. (2017))

[Ṡ] = −τ [SI]; [ İ ] = τ [SI] − γ [I ]; [Ṙ] = γ [I ],
[Ṡ I ] = −(τ + γ )[SI] + τ([SSI] − −[ISI]); [ṠS] = −2τ [SSI].

This system is not self-consistent as pairs depend on triples and equations for these
are needed. To tackle this dependency on higher-order moments, the triples in the
equation above are closed using the following relation:

[ASB] = κ
[AS][SB]

[S] ,

where A, B ∈ {S, I }. Common choices for κ are (n−1)/n and 1. In Kiss et al. (2022),
it was shown that both these closures are exact in the limit of large networks when
the contact distribution is binomial and Poisson, respectively. We use the former as
the average degree appears explicitly and is subject to inference. Applying κ = n−1

n
leads to

[Ṡ] = −τ [SI], (3)

[ İ ] = τ [SI] − γ [I ], (4)

[Ṡ I ] = −(τ + γ )[SI] + τ
n − 1

n

[SI]([SS] − [SI])
[S] , (5)

[ṠS] = −2τ
n − 1

n

[SS][SI]
[S] , (6)

which is now a self-contained system.
The leading eigenvalue, resulting from the linear stability analysis around the

disease-free steady state, ([S], [I ], [SS], [SI]) = (N , 0, nN , 0)), can be easily com-
puted from Eq. (3)-(6) as

λ = τ(n − 2) − γ. (7)

An implicit equation for the final number of recovered and susceptible nodes can
be derived as it is shown in Section 4.3.4 in Kiss et al. (2017), see also below
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N (τ + γ ) (S∞)
2
n = Nγ S

1
n
0 (S∞)

1
n + τ S∞S

2
n
0 . (8)

Equation (8) there yields the final number of susceptible nodes, S∞ = N − R∞. Let
us assume again, for sake of simplicity, that S0 = N , that is, initially there are very
few infected and recovered nodes. Then introducing s∞ = S∞/N in Eq. (8) leads to

τ
(
s∞ − s2/n∞

)
+ γ

(
s1/n∞ − s2/n∞

)
= 0.

Thus the system relating the measured characteristic quantities λ and s∞ to the param-
eters, τ , γ and n takes the form

τ(n − 2) − γ = λ, (9)

τ
(
s∞ − s2/n∞

)
+ γ

(
s1/n∞ − s2/n∞

)
= 0. (10)

This system is linear in τ and γ , and hence apart from exceptional cases it has a unique
solution for τ and γ if n is known and the characteristic quantities of the epidemic, λ
and R∞, are measured. That is, knowing/measuring the leading eigenvalue and final
epidemic size, it is possible to uniquely determine τ and γ .

Let us turn now to the parameters τ and n. Now γ is considered to be given, and
the characteristic quantities of the epidemic, λ and s∞ are measured. We can express
τ from the equations above yielding

τ = λ + γ

n − 2
, (11)

τ = γ
s1/n∞ − s2/n∞
s2/n∞ − s∞

. (12)

In order to show unidentifiability visually, let us plot the curves given by the above
equations in the (τ, n) plane. We can see in Fig. 2 (bottom panel) that the two curves
are practically indistinguishable. In fact, they have a single intersection point, i.e. the
system has a unique solution, but any value of τ yields a value of n on the hyperbola-
like curve, that is an approximate solution with high accuracy.

In fact the experiment that we setup here, and in some of the cases that follow, is
that we start with a known set of parameters, often referred to as master set of values.
These generate a particular numerical value for the lead eigenvalue, final epidemic size
and time evolution of the prevalence or daily new cases. We then ask the questions:
are there any other parameter combination (τ, n) that give rise to daily new cases in
time that are similar to that obtained by using the master values? The top panel in
Fig. 2 shows the Euclidean distance between the master daily cases vector and those
resulting from (τ, n) pairs chosen between the bounds seen in the figure.

There are several important features to note about the surface showing the distances.
First, there is a clear hyperbola-like valley of minimum points, where any choice of
(τ, n) seems to be close enough to the output based on the master values. Several
minima are observed which indicate that any kind of optimiser may struggle to find
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Fig. 2 (Color Figure Online) Top panel: illustration of the distance profile D between the daily new
infections in time for a fixed set of values (τm , nm ) = (γ R0/((n − 1) − R0) = 0.1429, 6) (magenta
diamond), with γ = 1/7 and R0 = 2.5, compared to daily new cases for different choices for the values
of (τ, n) pair. Distance measured using an Euclidian norm scaled by the population size N = 10000.
Bottom panel: the same as above as contour plot with two additional curves given by the equations for the
lead eigenvalue (denoted as L. Eigv in the legend) and final epidemic size (denoted as FES in the legend)
Eqs. (11) and (12), respectively, where the lead eigenvalue λ and s∞ are calculated with (τm , nm ) as given
above

the global optimum. Of course in this thought experiment, there is a unique (τ, n) pair
that makes D = 0. However, given noisy observations, it is easy to see that any values
along the hyperbola-like valley may return an acceptable fit, such as the one in Fig. 2.

The empirical experiment and observations above can be made more substantial
by considering the bottom panel in Fig. 2. The contour plot is based on the same data
as in the surface plot above but with the addition of two curves: that of the leading
eigenvalue and final epidemic size, which have unique numerical values determined
by the master values and fixed γ . It is clear that these two curves are indeed close to
each other and that they capture the hyperbola-like valley of small values in distance.

Beyond this visualisation of unidentifiability, we formally prove it in terms of the
definition given in Sect. 2. First, we reduce system (11)–(12) to a single equation as
follows:
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Fig. 3 (Color Figure Online)
Plots of function f (n). For
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λ + γ = γ f (n),

where

f (n) = s1/n∞ − s2/n∞
s2/n∞ − s∞

(n − 2).

We can assume without loss of generality that the two curves have a common point,
i.e. there is a value n∗ of n satisfying λ + γ = γ f (n∗). Otherwise, the measurement
was so inaccurate that no values of τ and n could lead to the measured value of λ and
s∞. Thus the single equation to be solved for the unknown n takes the form

f (n) = f (n∗).

We will prove that this equation does not identify the value of n in the practical sense.
In order to do so, we determine the characteristic properties of function f . These
properties can be easily visualised by plotting the graph of the function for n > 2, see
Fig. 3. It turns out that the function is very close to a constant and its value changes
only slightly from n = 2 to infinity. For example, in the case s∞ = 0.9, the functions
grow from 1.027 (at n = 2) to 1.054 as n tends to infinity, so the function is constant
with accuracy 0.027.

Simple application of L’Hospital’s rule yields that the limits of f as n tends to 2 or
to infinity exist and their values are

lim
n→2

f (n) = 2
s∞ − √

s∞
s∞ ln s∞

:= f2

lim
n→∞ f (n) = ln s∞

s∞ − 1
:= f∞

The next proposition expresses the fact that the measure of the range of this function
is small.

Proposition 1 There exists a number 0 < a < 1 such that s∞ > a implies that f is
increasing and f2 < f (n) < f∞ for all n > 2. That is, the range of f is the interval
( f2, f∞).
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Proof Introducing a = s∞, x = 1/n and the function

g(x) = a2x − ax

a − a2x

(
1

x
− 2

)
,

we have f (n) = g(1/n), leading to f ′(n) = −g′(1/n) 1
n2
. Hence it is enough to prove

that g′(x) < 0 for all x ∈ (0, 1/2).
Simple differentiation shows that g′(x) < 0 is equivalent to

(
1

x
− 2

) [
(2a2x − ax )(a − a2x ) + 2a2x (a2x − ax )

]
ln a <

1

x2
(a2x − ax )(a − a2x ),

that can be rearranged to (by multiplying by x2)

(1 − 2x)
[
2a2x+1 − ax+1 − a3x

]
ln ax < (a2x − ax )(a − a2x ).

Introducing the new variable b = ax and returning to n instead of x , the desired
inequality takes the form (after dividing by b3)

0 < n(1 − b)(1 − bn−2) + (n − 2)(1 + bn−2 − 2bn−1) ln b := h(b).

This newly defined function satisfies h(1) = 0, and elementary differentiation shows
that h′(1) = 0 = h′′(1). Moreover, the inequality h′′′(1) < 0 holds. Based on this
inequality, it is easy to check that h is positive in a left neighbourhood of 1, that is,
there exists a number b < 1, such that h(b) > 0 holds when b < b < 1.

Let us define the desired number a as a = b
2
. Then a > a is equivalent to bn > b

2
.

On the other hand, n > 2 and b < 1 imply that b2 > bn , hence b2 > bn > b
2
, yielding

b > b leading to h(b) > 0. This is equivalent to g′(x) < 0 that we wanted to prove.
�	

We note that numerical evidence shows that the number a given by the proposition
is relatively small, e.g. a < 0.1. That is, for reasonable values of s∞ the assertions of
the proposition hold.

The proposition yields practical unidentifiability as follows. The value of γ is
considered to be given, and the characteristic quantities of the epidemic, λ and s∞ are
measured. These determine the unique intersection point (n∗, τ ∗) of the curves given
by (11)–(12). In other words, n∗ is the trivial solution of the reduced single equation
f (n) = f (n∗). An approximate solution n satisfies | f (n) − f (n∗)| < ε with a given
positive value of ε. The proposition implies that | f (n) − f (n∗)| < ε holds for any
n > 2 if ε > f∞ − f2, which is a small number. An even smaller ε is achieved if the
measured data λ and s∞ yield a value of n∗ which is larger, i.e. f (n∗) is closer to f∞.
Then the value of ε can be chosen as ε = f∞ − f (n∗) and then | f (n) − f (n∗)| < ε

holds for n values in a half-line, i.e. in a set of measure infinity. This was defined as
practical unidentifiability.
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Fig. 4 (Color Figure Online) Left panel: From left to right curves correspond to solving Eq. (11)
and (12) with the leading eigenvalue and the final epidemic size being set to values obtained by using
τ = 0.26, 0.33, 0.47, γ = 1 and n = 6. Right panel: Curves given by Eqs. (21) and (22) for values of the
transmission rate τ = 0.03, 0.045, 0.07 (from left to right). Other parameters are γ = 1/7 and n = 6. For
both plots, the black curve represent (τ, n) pairs where the leading value is that determined by the master
values shown as a diamond magenta. Similarly, the red star represent (τ, n) pairs where the final epidemic
size is equal to that given by the master values

In Fig. 4, we explore the dependency of the practical unidentifiability in the pairwise
model on the precise parameters used in the model. The left panel of this figure shows
that this feature seems to hold for different parameter combinations and that we can
find infinitely many (τ, n) pairs that lead to a desired eigenvalue and final epidemic
size. Moreover, we emphasise again that the two curves do overlap to a great extent
and over a large range of parameters.

Before investigating the same problem in a different model, we note that the same
calculations for the leading eigenvalue and final epidemic size can be done when the
pairwise model is closed with κ = 1. These calculations lead to

τ = λL + γ

n − 1
, (13)

τ = γ S∞(ln(S∞) − ln([S](0))
[SS](0)

([S](0))2 (S∞)2 − S∞(ln(S∞) − ln([S](0)) −
( [SI](0)

[S](0) + [SS](0)
[S](0)

)
S∞

. (14)

By using the disease-free initial condition, [S](0) = N , [SS](0) = nN , [SI](0) = 0
and using that s∞ = S∞/N , the equations above lead to

τ = λL + γ

n − 1
, (15)

τ = γ ln(s∞)

ns∞ − ln(s∞) − n
. (16)

It turns out that the formulas above are identical to those that we obtain later on for
the edge-based compartmental model.
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5 Identifiability in the Edge-Based Compartmental Model

The edge-based compartmental model is given by

θ̇ = −τθ + τφS(0)
ψ ′(θ)

ψ ′(1)
+ γ (1 − θ) + τφR(0) = f (θ), (17)

where θ denotes the probability that a random neighbour ν of a random, initially
susceptible test node u has not yet passed infection to u. Furthermore, φS(0) and φR(0)
are the probabilities that, at t = 0, the random neighbour ν of a random, initially
susceptible test node u is susceptible and recovered, respectively. The disease-free
steady state is given by θ(0) = 1, φR(0) = 0, θ(0) = 1 and φS(0) = 1. However, in
order to generate an epidemic curve, when the system is above the epidemic threshold,
one can perturb the steady state above by setting φS(0) = 1 − ε.

We now consider the case ofψ(x) = exp(n(x−1)), that is, a network with Poisson
degree distribution with mean n. Linearising around θ = 1, we obtain

f ′(θ)|θ=1 = τφS(0)
ψ ′′(1)
ψ ′(1)

− τ − γ = τ
n2

n
− τ − γ = τ(n − 1) − γ = λ, (18)

The final epidemic size can also be worked out by finding limt→∞ θ(t) = θ∞ and
using that the final proportion of susceptible left in the population is s∞ = ψ(θ∞).
Setting the right-hand side of Eq. (17) to zero, an implicit equation for θ∞ follows:

(τ + γ )θ∞ − γ − τψS(0)e
n(θ∞−1) = 0. (19)

Since s∞ = exp(n(θ∞ − 1)), Eq. (19) can be recast in terms of s∞ and yields

τnψS(0)s∞ − (τ + γ ) ln(s∞) − τn = 0. (20)

We are now in a position to write down a system of equations based on (18) and (20)

τ = λ + γ

n − 1
, (21)

τ = γ ln(s∞)

nψS(0)s∞ − ln(s∞) − n
(22)

These curves are shown in the right panel of Fig. 4. It can be seen that the two
curves are close to each other. The coincidence is more emphasised when s∞ is larger,
i.e. the final epidemic size is smaller.

Beyond this visualisation of unidentifiability, we formally prove that in terms of
the definition given in Sect. 2. First, we reduce the above system to a single equation
as follows:

λ + γ = γ q f (n),
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where

f (n) = n − 1

n − q
, and q = ln s∞

s∞ − 1
> 1.

We can assume without loss of generality that the two curves have a common point,
i.e. there is a value n∗ of n satisfying λ + γ = γ q f (n∗). Otherwise, the measurement
was so inaccurate that no values of τ and n could lead to the measured value of λ and
s∞. Thus the single equation to be solved for the unknown n takes the form

f (n) = f (n∗).

This equation does not identify the value of n in the practical sense. By plotting the
graph of f , it turns out that the function is very close to a constant, its value changes
only slightly from large values of n to infinity. For example, in the case s∞ = 0.9, the
functions change from 1.006 (at n = 10) to 1 as n tends to infinity, so the function
is constant with accuracy 0.006 in the infinite half-line n > 10. In general, one can
directly see that f is decreasing and its limit is 1 as n tends to infinity. Similarly to the
case of the pairwise model, practical unidentifiability follows from the fact that the
function f is to a constant.

6 Discussion

In this paper, we study the identifiability of parameters in network-based epidemic
models. We find that network density and the transmission rate cannot be disentan-
gled. More formally this means that when considering these parameters, the model is
structurally not identifiable. Preliminary analysis suggests that combinations of n and
τ and other parameters are better behaved, for examplewhen packaged into the expres-
sion for R0; this is in line with how to deal with identifiability problems (Villaverde
et al. 2016).

In an ideal situation, the leading eigenvalue and final epidemic size can bemeasured
to any desired accuracy. Assuming that this is the case, an exhaustive search in the
parameter space, again to arbitrary precision, would be able to identify the precise
parameters which generated the data. However, real-life observations are noisy and
even a small measurement error can lead to a significant shift in the values of the
inferred parameters. This leads to practical unidentifiability.

Contact patterns and the transmission of the disease across a link are strongly related
and often are difficult to disentangle. Intuitively, it is known that dense networks with
low transmission rate and spare networks with high transmission rate can produce
similar epidemics. In fact, our hyperbolas trace out and connect these regimes. Of
course, in this case a Bayesian approach may alleviate the problem in the sense that
good informative priors are likely to reduce the dimensionality of the parameter space
or at least the range of parameters. With more and more mobility data becoming
available as well as data from contact surveys, contact networks can be characterised
sufficiently in order to produce meaningful estimates from complex models.
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In terms of future work, we believe that there is value in carrying out a systematic
search over the parameter space to identify areas, both in terms of parameter subsets
and ranges in parameter values, where the unidentifiability is the most significant.
Our preliminary analysis shows that this is both model and parameter dependent. We
also note that unidentifiability seems to be more marked for less severe epidemics.
For larger epidemics, the overlap between the two hyperbolas decreases, meaning that
parameters are easier to identify. Furthermore, similar analysis can be extended to
different disease dynamics such the susceptible-exposed-infected-recovered (SEIR)
model or alternative network-based mean-field models.
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