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Abstract

Many models in mathematical epidemiology are developed with the aim to provide a frame-
work for parameter estimation and then prediction. It is well-known that parameters are not
always uniquely identifiable. In this paper we consider network-based mean-field models and ex-
plore the problem of parameter identifiability when observations about an epidemic are available.
Making use of the analytical tractability of most network-based mean-field models, e.g., explicit
analytical expressions for leading eigenvalue and final epidemic size, we set up the parameter
identifiability problem as finding the solution or solutions of a system of coupled equations.
More precisely, subject to observing/measuring growth rate and final epidemic size, we seek to
identify parameter values leading to these measurements. We are particularly concerned with
disentangling transmission rate from the network density. To do this we define strong and weak
identifiability and we find that except for the simplest model, parameters cannot be uniquely
determined, that is they are weakly identifiable. This means that there exists multiple solutions
(a manifold of infinite measure) which give rise to model output that is close to the data. Identi-
fying, formalising and analytically describing this problem should lead to a better appreciation
of the complexity involved in fitting models with many parameters to data.

Keywords: Epidemics, network, inference, identifiability

1 Introduction

Differential-equation-based models are widespread in modelling population dynamics be that in
problems arising in ecology, evolution or epidemiology [1, 2, 7, 11]. Such systems are relatively
straightforward to set up and the theory of dynamical systems offers tools to analyse them. Over
the past two decades, differential-equation-based models have gained a lot of popularity in mod-
elling epidemics on networks [12, 11]. Such models, often referred to mean-field models, aim to
approximate the expected behaviour of some quantities of interest (e.g. expected number of in-
fected individuals in time) and rely on closure assumptions which are needed to produce tractable
systems. A myriad of ODE-based epidemic models are available [11] with many providing explicit
or implicit analytical expressions for quantities such as the basic reproduction number (or leading
eigenvalue based on the linear stability analysis around the disease-free steady state), timing and/or
peak prevalence, final epidemic size etc. Hence, given a synthetic or real-epidemic and being able
to measure a number of the aforementioned quantities, it is of interest to investigate if parameters
of the epidemic model that generated the data can be inferred or determined.

Fitting epidemic models to synthetic or real-world data is of great interest as it allows us to infer
model parameters which in turn helps us to (i) learn more about the disease, (ii) implement and
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test control scenarios via simulations, and (iii) make short- or long-term predictions about the
epidemic [5, 10]. In many cases, such models can and will be used for parameter estimation and
prediction and can suffer of the well-known problem of parameter redundancy and identifiability [6,
14, 9]. This problem has also been highlighted in network-based epidemic models, for example
in [3]. This problem is not model specific. For example, in Figure 1, we show that for the pairwise
model, Eqs. (3)-(6), it is possible to find distinct sets of parameters whereby the time evolution
of prevalence and daily new cases are near indistinguishable. Of course this also implies that the
initial growth rate and final epidemic size are also close.
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Figure 1: Illustration of how distinct pairs of average degree and transmission rate, (n, τ) lead to almost
indistinguishable time evolution of the prevalence and daily new cases. Baseline values of the parameters
are: average degree n = 6, τ = γR0/((n − 1) − R0) = 0.1429, with R0 = 2.5, rate of recovery, γ = 1/7,
number of nodes N = 10000 and epidemic started with one infected individual, with the corresponding
output shown by the thick grey lines. The black and red-dashed lines correspond to (n, τ) = (8.46, 0.09) and
(n, τ) = (2.454, 1.091), respectively.

For example, in [13], the authors consider the problem of parameter identifiability in a number
of increasingly complex compartmental epidemic models. As the number of states in the model
increases so does the number of parameters. While the parameters remained identifiable, in par-
ticular the basic reproduction number, the uncertainty around the estimate increased in models
with more parameters. On the other hand in [9], the authors provide a framework to quantify
how the uncertainty in the data affects the determination of the parameters and the evolution of
the unmeasured variables of a given model. Their approach allows them to characterise different
regimes of identifiability and argue that in some cases, such as COVID-19 the lack of identifiability
may prevent reliable predictions of the epidemic dynamics. Finally, in [14], the authors argue that
structural identifiability in every model should be checked before using the model for inference.
But this is seldom done since it involves either complex analytical or numerical calculations.

In this paper we show that structural unidentifiability is present in a number of network-based
epidemic models. This is however, is not due to hidden or unmeasured variables. Moreover,
our inference is making use of available analytical formulas for leading eigenvalue, or equivalently
growth rate, and final epidemic size. While many of the previous works are concerned with local
changes; that is quantifying change in observations induced by a small local change in parameter
values, we show that in our models varying the parameters globally leads to small local changes in
measurement.

The paper is structured as follows. In section 2 we describe the general mathematical approach and
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suggest some definition and ways to formalise the identifiablility problem. In Section 3, we start
with simple models such as the well-mixed susceptible-infected-recovered (SIR) compartmental
model, followed by more complex models such as, the pairwise, Section 4, and the edge-based
compartmental model. We show that except for the simplest of models, there are clear parameter
identifiability problems which we map out and explain analytically, where possible. In models
with a larger number of parameters, it is often the case that many different combinations of the
model parameters (with many individual parameters being far from their true values) result in
output which is consistent with the true epidemic. Finally, we provide some discussion and future
directions of research.

2 General approach

We are given a system of ODEs involving some parameters:

ẋ(t) = f(x(t), µ),

where x(t) ∈ R
n is the state vector of the system and µ ∈ R

k is the vector of parameters. We
observe a derived quantity (e.g., final epidemic size, growth rate) for which data is available. This
is given by an observation function h : Rn → R

m, i.e. the observation y is

y(t) = h(x(t), µ).

The goal is to solve the inverse problem, namely, to determine the parameter µ based on the
observation y(t), note that the observation does not need to be time dependent. This is line with
the formulation of a general inverse problem, see [6].

Our question here is parameter identification, namely, to understand if it may happen that
observations y and y corresponding to different parameters µ and µ are identical or very close to
each other.

Thus we are looking for conditions on the parameters ensuring that two observations are close to
each other. This can be achieved in two different ways. The first is when the time dependence
of the observation is known for all time values, or at least for an observation time-window. The
second is when we have formulas for some characteristic quantities of the observation. For example,
the derivative of the quantity being observed at the initial instant, ẏ(0), or its limit for large time,
y(∞). These formulas typically involve the unknown parameter values and hence define a system of
equations for them. The parameters can be identified by the model, if this system can be uniquely
solved for the parameters. If the opposite holds, then we refer to it as unidentifiability. That is,
we speak about unidentifiability when clearly distinct parameter values satisfy the above system of
equations but with some small error.

This can be formulated as follows. Let the system of equations for the parameters take the form
F (µ) = 0. We call the problem unidentifiable in the strong sense if the system of equations F (µ) = 0
has more then one (typically infinitely many) solution. The problem is called unidentifiable in

the weak sense if the system |F (µ)| < ε is satisfied by a large set of µ values for any ε > 0. In
fact, we will show that in our cases the set of µ values solving |F (µ)| < ε has infinite measure. We
note that this does not exclude that the equation F (µ) = 0 has a unique solution.

This notion of unidentifiability is related but not identical to the question of sensitive dependence
on parameters, which is a notion of local nature. That is expressed in terms of the Jacobian of F
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at the solution of F (µ) = 0. The problem fits into the framework of error analysis and sensitivity
analysis that are widely studied important fields of parameter inference. We refer the interested
Reader to the books [4, 8], in which both the introduction to the topic and elaborated examples
are available.

Comparing our definition to that one in [9], the main novelty in ours is that the inequality |F (µ)| < ε
holds globally in the parameter space. The definition in [14] relates unidentifiability to Kalman’s
observability condition in an augmented system (where the phase space is extended by new artificial
variables representing the parameters). This definition is also local in the parameter space in
contrast to our global definition. Another difference between our definition and previous ones is
that both [9] and [14] infers parameters from the time dependence of the solutions while we use exact
(not numerical) formulas for some characteristic quantities (leading eigenvalue and final epidemic
size). Hence the parameter inference is done by solving a system of equations instead of fitting to
time dependent curves.

We apply this general theory to the SIR compartmental, pairwise and edge-based compartmental
models when the observations are the leading eigenvalue at the disease-free steady state and the
final epidemic size. The parameters to be determined, given these observations, are the infection
rate τ , the recovery rate γ and the average degree of the underlying network, n. We will show that
for these models (in fact for several other models as well) the leading eigenvalue can be expressed
in terms of these parameters as

λ = τ l(n)− γ,

where l(n) is a linear function depending on the model. We will derive an implicit equation for the
final epidemic size in each case. It will turn out that this implicit equation contains the parameters
τ and γ linearly and n in a non-linear way. The equation can be written in the form

τ = A(n)γ

for all cases, where A(n) is a nonlinear function.

The problem of parameter identification can be formulated as follows. Depending on the choice
of the model, i.e. the choice of the functions l(n) and A(n), can the parameters be recovered by
solving the two equations above? Since we have two equations for three parameter values, it is
obvious that one of the parameters has to be assumed to be given. The recovery rate is more
appropriate for being a known value since it depends on epidemiological characteristics. While τ
and especially n are more dependent on the behaviour of the agents and on the network, hence
these are more difficult to determine. Our goal will be to solve the above equations for τ and n with
a given value of γ and also with given initial conditions. (We note that the initial conditions could
also be considered as parameters which makes the problem even more complicated in a real-life
situation.)

These equations define two curves in the (n, τ) parameter plane. The parameter values leading to
the desired values of the final size and leading eigenvalue can be obtained as the intersection point
of the two curves. The main novelty of the paper is the observation that these curves are very
close to each other, hence relatively different parameter values may yield very similar final size and
leading eigenvalue. Thus, noisy data may preclude the correct identification of the values of these
parameters.

The above system is linear in τ and γ when n is considered to be known. Hence its solvability is
easy to check by computing the determinant. For the sake of completeness, this will also be carried
out below in each case.
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3 Identifiability in the compartmental SIR model

The well-known SIR compartmental model takes the form

Ṡ = −τnI S
N
,

İ = +τnI
S

N
− γI.

Simple differentiation at the disease-free stead state (S = N , I = 0) yields that the leading
eigenvalue is λ = τn − γ. On the other hand, the final epidemic size is given by the solution of
the following implicit equation R∞ = N − S0 exp (−τnR∞/Nγ) as it is given in (4.12) in [11]. Let
us assume, for sake of simplicity, that S0 = N , that is initially there are very few infected and
recovered nodes. Then the final size equation can be rearranged to τnr∞ = γ ln(1− r∞), where we
introduced the fraction r∞ = R∞/N .

Thus the system relating the measured characteristic quantities λ and R∞ to the parameters, τ , γ
and n takes the form

τn− γ = λ, (1)

τnr∞ − γ ln(1− r∞) = 0. (2)

This system is linear in τ and γ, hence apart from exceptional cases it has a unique solution for τ and
γ if n is known and the characteristic quantities of the epidemic, λ and R∞, are measured. That
is, knowing/measuring the leading eigenvalue and final epidemic size, it is possible to uniquely
determine τ and γ. However, the parameters τ and n cannot be obtained from this system,
since only their product is determined by the equations. That is, knowing/measuring the leading
eigenvalue and final epidemic size, it is not possible to determine the infection rate τ and average
degree n. This is the case of strong unidentifiability when the system of equations has infinitely
many solutions (if it has a solution at all).

4 Identifiability in the pairwise SIR model

The pairwise model focuses on a hierarchical construction where expected number of nodes in state
A at time t, [A](t), depends on the expected number of pairs of various types (e.g. [AB]) and then,
these in turn depend on triples such as [ABC]. Here the counting is done in all possible directions
meaning that [SS] pairs are counted twice and and that [SI] = [IS]. With this in mind the pairwise
model becomes (see e.g. in [11])

[Ṡ] = −τ [SI]; [İ] = τ [SI]− γ[I]; [Ṙ] = γ[I],

[ṠI] = −(τ + γ)[SI] + τ([SSI]− [ISI]); [ ˙SS] = −2τ [SSI].

This system is not self-consistent as pairs depend on triples and equations for these are needed. To
tackle this dependency on higher-order moments the triples in the equation above are closed using
the following relation,

[ASB] = κ
[AS][SB]

[S]
,
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where A,B ∈ {A,B}. Common choices for κ are (n−1)/n and 1. We will consider unidentifyability
here for κ = n−1

n . Applying this closure leads to

[Ṡ] = −τ [SI], (3)

[İ] = τ [SI]− γ[I], (4)

[ṠI] = −(τ + γ)[SI] + τ
n− 1

n

[SI]([SS] − [SI])

[S]
, (5)

[ ˙SS] = −2τ
n− 1

n

[SS][SI]

[S]
, (6)

which is now a self-contained system.

The leading eigenvalue, resulting from the linear stability analysis around the disease free steady
state, ([S], [I], [SS], [SI]) = (N, 0, nN, 0)), can be easily computed from equations (3)-(6) as

λ = τ(n− 2)− γ. (7)

An implicit equation for the final number of recovered and susceptible nodes can be derived as it is
shown in Section 4.3.4 in [11]. Equation (4.17) there yields the final number of susceptible nodes,
S∞ = N −R∞. Let us assume again, for sake of simplicity, that S0 = N , that is initially there are
very few infected and recovered nodes. Then dividing equation (4.17) in [11] by N and introducing
s∞ = S∞/N leads to

τ
(

s∞ − s2/n
∞

)

+ γ
(

s1/n
∞

− s2/n
∞

)

= 0.

Thus the system relating the measured characteristic quantities λ and s∞ to the parameters, τ , γ
and n takes the form

τ(n− 2)− γ = λ, (8)

τ
(

s∞ − s2/n
∞

)

+ γ
(

s1/n
∞

− s2/n
∞

)

= 0. (9)

This system is linear in τ and γ, hence apart from exceptional cases it has a unique solution for
τ and γ if n is known and the characteristic quantities of the epidemic, λ and R∞ are measured.
That is, knowing/measuring the leading eigenvalue and final epidemic size, it is possible to uniquely
determine τ and γ.

Let us turn now to the parameters τ and n. Now γ is considered to be given, and the characteristic
quantities of the epidemic, λ and s∞ are measured. We can express τ from the equations above
yielding

τ =
λ+ γ

n− 2
, (10)

τ = γ
s
1/n
∞ − s

2/n
∞

s
2/n
∞ − s∞

. (11)

In order to show unidentifiability visually, let us plot the curves given by the above equations
in the (τ, n) plane. We can see in Fig. 2 (bottom panel) that the two curves are practically
indistinguishable. In fact, they have a single intersection point, i.e. the system has a unique
solution, but any value of τ yields a value of n on the hyperbola like curve, that is an approximate
solution with high accuracy.
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In fact the experiment that we setup here, and in some of the cases that follow, is that we start with
a known set of parameters, often referred to as master set of values. These generate a particular
numerical value for the lead eigenvalue, final epidemic size and time evolution of the prevalence or
daily new cases. We then ask the questions: are there any other parameter combination (τ, n) that
give rise to daily new cases in time that are similar to that obtained by using the master values.
The top panel in Figure 2 shows the euclidean distance between the master daily cases vector and
those resulting from (τ, n) pairs chosen between the bounds seen in the figure.

There are several important features to note about the surface showing the distances. First, there is
a clear hyperbola-like valley of minimum points, where any choice of (τ, n) seem to be close enough
to the output based on the master values. Several minima are observed which indicate that any
kind of optimiser may struggle to find the global optimum. Of course in this thought experiment,
there is a unique (τ, n) pair that makes D = 0. However, given noisy observations, it is easy to
see that any values along the hyperbola-like valley may return an acceptable fit, such as the one in
Figure 2.

The empirical experiment and observations above, can be made more substantial by considering
the bottom panel in Figure 2. The contour plot is based on the same data as in the surface plot
above but with the addition of two curves: that of the leading eigenvalue and final epidemic size,
which have unique numerical values determined by the master values and fixed γ. It is clear that
these two curves are indeed close to each other and that they capture the hyperbola-like valley of
small values in distance.

Beyond this visualisation of unidentifiability, we formally prove it in terms of the definition given
in Section 2. First, we reduce system (10)-(11) to a single equation as follows:

λ+ γ = γf(n),

where

f(n) =
s
1/n
∞ − s

2/n
∞

s
2/n
∞ − s∞

(n− 2).

We can assume without loss of generality, that the two curves have a common point, i.e. there is
a value n∗ of n satisfying λ+ γ = γf(n∗). Otherwise, the measurement was so inaccurate that no
values of τ and n could lead to the measured value of λ and s∞. Thus the single equation to be
solved for the unknown n, takes the form

f(n) = f(n∗).

We will prove that this equation does not identify the value of n in the weak sense. In order to do so,
we determine the characteristic properties of function f . These properties can be easily visualized
by plotting the graph of the function for n > 2, see Figure 3. It turns out that the function is very
close to a constant, its value changes only slightly from n = 2 to infinity. For example, in the case
s∞ = 0.9, the functions grows from 1.027 (at n = 2) to 1.054 as n tends to infinity, so the function
is constant with accuracy 0.027.

Simple application of L’Hospital’s rule yields that the limits of f as n tends to 2 or to infinity exist
and their values are

lim
n→2

f(n) = 2
s∞ −√

s∞
s∞ ln s∞

:= f2

lim
n→∞

f(n) =
ln s∞
s∞ − 1

:= f∞

7
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Figure 2: Top panel: illustration of the distance profile D between the daily new infections in time for
a fixed set of values (τm, nm) = (γR0/((n − 1) − R0) = 0.1429, 6), with γ = 1/7 and R0 = 2.5, compared
to daily new cases for different choices for the values of (τ, n) pair. Distance measured using an Euclidian
norm scaled by the population size N = 10000. Bottom panel: the same as above as contour plot with
two additional curves given by the equations for the lead eigenvalue and final epidemic size Eqs. (10) and
(11), respectively, where the lead eigenvalue λ and s∞ are calculated with (τm, nm) as given above.

The next proposition expresses the fact that the measure of the range of this function is small.

Proposition 1. There exist a number 0 < a < 1 such that s∞ > a implies that f is increasing and

f2 < f(n) < f∞ for all n > 2. That is the range of f is the interval (f2, f∞).

Proof
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Figure 3: Plots of function f(n). For different values of s∞.

Introducing a = s∞, x = 1/n and the function

g(x) =
a2x − ax

a− a2x

(

1

x
− 2

)

,

we have f(n) = g(1/n), leading to f ′(n) = −g′(1/n) 1
n2 . Hence it is enough to prove that g′(x) < 0

for all x ∈ (0, 1/2).

Simple differentiation shows that g′(x) < 0 is equivalent to

(

1

x
− 2

)

[

(2a2x − ax)(a− a2x) + 2a2x(a2x − ax)
]

ln a <
1

x2
(a2x − ax)(a− a2x),

that can be rearranged to (by multiplying by x2)

(1− 2x)
[

2a2x+1 − ax+1 − a3x
]

ln ax < (a2x − ax)(a− a2x).

Introducing the new variable b = ax and returning to n instead of x, the desired inequality takes
the form (after dividing by b3)

0 < n(1− b)(1− bn−2) + (n− 2)(1 + bn−2 − 2bn−1) ln b := h(b).

This newly defined function satisfies h(1) = 0, and elementary differentiation shows that h′(1) =
0 = h′′(1). Moreover, the inequality h′′′(1) < 0 holds. Based on this inequality, it is easy to check
that h is positive in a left neighbourhood of 1, that is there exists a number b < 1, such that
h(b) > 0 holds when b < b < 1.

Let us define the desired number a as a = b
2
. Then a > a is equivalent to bn > b

2
. On the other

hand, n > 2 and b < 1 imply that b2 > bn, hence b2 > bn > b
2
, yielding b > b leading to h(b) > 0.

This is equivalent to g′(x) < 0 that we wanted to prove.

�

We note that numerical evidence shows that the number a given by the proposition is relatively
small, e.g. a < 0.1. That is, for reasonable values of s∞ the assertions of the proposition hold.

The proposition yields weak unidentifiability as follows. The value of γ is considered to be given, and
the characteristic quantities of the epidemic, λ and s∞ are measured. These determine the unique
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intersection point (n∗, τ∗) of the curves given by (10)-(11). In other words, n∗ is the trivial solution
of the reduced single equation f(n) = f(n∗). An approximate solution n satisfies |f(n)−f(n∗)| < ε
with a given positive value of ε. The proposition implies that |f(n) − f(n∗)| < ε holds for any
n > 2 if ε > f∞ − f2, which is a small number. An even smaller ε is achieved if the measured data
λ and s∞ yield a value of n∗ which is larger, i.e. f(n∗) is closer to f∞. Then the value of ε can be
chosen as ε = f∞ − f(n∗) and then |f(n)− f(n∗)| < ε holds for n values in a half line, i.e. in a set
of measure infinity. This was defined as unidentifiability in the weak sense.

0 0.5 1
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4

6

8

10
L. Eigv
FES
Master

0 0.2 0.4

2

4

6

8

10
L. Eigv
FES
Master

Figure 4: Left panel: From left to right curves correspond to solving equations (10) and (11) with the
leading eigenvalue and the final epidemic size being set to values obtained by using τ = 0.26, 0.33, 0.47,
γ = 1 and n = 6. Right panel: Curves given by equations (20) and (21) for values of the transmission
rate τ = 0.03, 0.045, 0.07 (from left to right). Other parameters are γ = 1/7 and n = 6. For both plots, the
black curve represent (τ, n) pairs where the leading value is that determined by the master values shown as
a diamond magenta. Similarly, the red star represent (τ, n) pairs where the final epidemic size is equal to
that given by the master values.

In Figure 4 we explore the dependency of the weak unidentifiability in the pairwise model on the
precise parameters used in the model. The left panel of this figure shows that this feature seem
to hold for different parameter combiantions and that we can find infinitely many (τ, n) pairs that
lead to a desired eigenvalue and final epidemic size. Moreover, we emphasise again that the two
curves do overlap to a great extent and over a large range of parameters.

Before investigating the same problem in a different model, we note that the same calculations for
the leading eigenvalue and final epidemic size can be done when the pairwise model is closed with
κ = 1. These calculations lead to

τ =
λL + γ

n− 1
, (12)

τ =
γS∞(ln(S∞)− ln([S](0))

[SS](0)
([S](0))2 (S∞)2 − S∞(ln(S∞)− ln([S](0)) −

(

[SI](0)
[S](0) + [SS](0)

[S](0)

)

S∞
. (13)

By using the disease-free initial condition, [S](0) = N , [SS](0) = nN , [SI](0) = 0 and using that
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s∞ = S∞/N , the equations above lead to

τ =
λL + γ

n− 1
, (14)

τ =
γ ln(s∞)

ns∞ − ln(s∞)− n
. (15)

It urns out that the formulas above are identical to those that we obtain later on for the edge-based
compartmental model.

5 Identifiability in the edge-based compartmental model

The edge-based compartmental model is given by

θ̇ = −τθ + τφS(0)
ψ′(θ)

ψ′(1)
+ γ(1− θ) + τφR(0) = f(θ), (16)

where θ denotes the probability that a random neighbour ν of a random, initially susceptible test
node u has not yet passed infection to u. Furthermore, φS(0) and φR(0) are the probabilities that,
at t = 0, the random neighbour ν of a random, initially susceptible test node u is susceptible and
recovered, respectively. Typical initial condition for this system are: θ(0) = 1, φR(0) = 0, θ(0) = 1
and φS(0) = 1− ε.

We now consider the case of ψ(x) = exp(n(x−1)); that is a network with Poisson degree distribution
with mean n. Linearising around θ = 1, we obtain

f ′(θ)|θ=1 = τφS(0)
ψ′′(1)

ψ′(1)
− τ − γ = τ

n2

n
− τ − γ = τ(n− 1)− γ = λEBCM

L , (17)

The final epidemic size can also be worked out by finding limt→∞ θ(t) = θ∞ and using that the
final proportion of susceptible left in the population is s∞ = ψ(θ∞). Setting the right hand side of
equation (16) to zero, an implicit equation for θ∞ follows,

(τ + γ)θ∞ − γ − τψS(0)e
n(θ∞−1) = 0. (18)

Since s∞ = exp(n(θ∞ − 1)), equation (18) can be recast in terms of s∞ and yields

τnψS(0)s∞ − (τ + γ) ln(s∞)− τn = 0. (19)

We are now in a position to write down a system of equations based on (17) and (19)

τ =
λ+ γ

n− 1
, (20)

τ =
γ ln(s∞)

nψS(0)s∞ − ln(s∞)− n
(21)

Thes curves are shown in the right panel of Figure 4. It can be seen that the two curves are close
to each other. The coincidence is more emphasised when s∞ is larger, i.e. the final epidemic size
is smaller.
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Beyond this visualization of unidentifiability, we formally prove that in terms of the definition given
in Section 2. First, we reduce the above system to a single equation as follows:

λ+ γ = γqf(n),

where

f(n) =
n− 1

n− q
, and q =

ln s∞
s∞ − 1

> 1.

We can assume without loss of generality, that the two curves have a common point, i.e. there is a
value n∗ of n satisfying λ + γ = γqf(n∗). Otherwise, the measurement was so inaccurate that no
values of τ and n could lead to the measured value of λ and s∞. Thus the single equation to be
solved for the unknown n, takes the form

f(n) = f(n∗).

This equation does not identify the value of n in the weak sense. By plotting the graph of f , it
turns out that the function is very close to a constant, its value changes only slightly from large
values of n to infinity. For example, in the case s∞ = 0.9, the functions changes from 1.006 (at
n = 10) to 1 as n tends to infinity, so the function is constant with accuracy 0.006 in the infinite
half-line n > 10. In general, one can directly see that f is decreasing and its limit is 1 as n tends
to infinity. Similarly to the case of the pairwise model, weak unidentifiability follows from the fact
that the function f is to a constant.

6 Discussion

In this paper we study the identifiability of parameters in network-based epidemic models. We find
that network density and the transmission rate cannot be disentangled. More formally this means
that when considering these parameters, the model is structurally not identifiable. Preliminary
analysis suggests that combinations of n and τ and other parameters are better behaved, for
example when packaged into the expression for R0; this is in line with how to deal with identifiability
problems [14].

In an ideal situation the leading eigenvalue and final epidemic size can be measured to any desired
accuracy. Assuming that this is the case, an exhaustive search in the parameter space, again
to arbitrary precision, would be able to identify the precise parameters which generated the data.
However, real-life observations are noisy and even a small measurement error can lead to a significant
shift in the values of the inferred parameters. This leads to what we call weak unidentifiability.

Contact patterns and the transmission of the disease across a link are strongly related and often
are difficult to disentangle. Intuitively, it is known that dense networks with low transmission
rate and spare networks with high transmission rate can produce similar epidemics. In fact, our
hyperbolas trace out and connect these regimes. Of course, in this case a Bayesian approach may
alleviate the problem. With more and more mobility data becoming available as well as data from
contact surveys means that contact networks can be characterised sufficiently in order to produce
meaningful estimates from complex models.

In terms of future work, we believe that there is value in carrying out a systematic search over the
parameter space to identify areas where the unidentifiability is the most significant. Our preliminary
analysis shows that this is both model and parameter dependent. We also note that unidentifiability
seems to be more marked for less severe epidemics. For larger epidemics, the overlap between the
two hyperbolas decreases, meaning that parameters are easier to identify.
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