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Abstract
We prove that it is possible to obtain the exact closure of SIR pairwise epidemic
equations on a configuration model network if and only if the degree distribution
follows a Poisson, binomial, or negative binomial distribution. The proof relies on
establishing the equivalence, for these specific degree distributions, between the closed
pairwise model and a dynamical survival analysis (DSA) model that was previously
shown to be exact. Specifically, we demonstrate that theDSAmodel is equivalent to the
well-knownedge-basedVolzmodel.Using this result,we also provide reductions of the
closed pairwise and Volz models to a single equation that involves only susceptibles.
This equation has a useful statistical interpretation in terms of times to infection. We
provide some numerical examples to illustrate our results.

Keywords Epidemics · Networks · Inference · Pairwise models · Survival analysis

Mathematics Subject Classification 00A71 · 37N25 · 92D25

1 Introduction

Manymodels of the transmission dynamics of infectious diseases (e.g., Khuda Bukhsh
et al. 2022; Kiss et al. 2017; Gross et al. 2006; Ball et al. 2019; Risau-Gusmán
and Zanette 2009; Jacobsen et al. 2018) represent contacts as a random graph of
N individuals (nodes) formed using the configuration model (Molloy and Reed 1995;
Bollobás 2001). Node degrees are typically assumed to be independent and identically
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distributed, as in the Newman–Strogatz–Watts (NSW) random graph construction
Newman et al. (2001). Unfortunately, the systems of equations required to fully
describe the stochastic dynamics of epidemics on such networks are often too large to
handle, even formoderate values of N . A common simplification is to average stochas-
tic quantities, but this still often leads to infinite-sized systems of equations. To address
this challenge, some authors have employed a “closure” technique to create a reduced
and closed (finite) system of equations by expressing terms corresponding to larger
structures in terms of smaller structures. In most cases, this representation involves
an approximation, but it can be exact in the case of SIR dynamics on configuration
model networks, as demonstrated in Kiss et al. (2017).

Approximating stochastic epidemics on networks is an important problem that has
received significant attention, leading to the development of several mean-fieldmodels
that are represented in terms of systems of ordinary differential equations. The pairwise
model Rand (1999a); Keeling (1999) is based on a set of equations for the expected
number of susceptible ([S]) and infected ([I ]) nodes and the expected number of S–I
([SI ]) and S–S ([SS]) pairs. It relies on a closure that approximates expected number
of triples in terms of singles and pairs, which breaks the dependence on ever-higher
moments. The Volz model Volz (2008) is based on a system of differential equations
that relies on the probability generating function (PGF) of the degree distribution
as well as edge-centric quantities (such as the number of edges with nodes in certain
states) rather than node-centric quantities (such as the number of infected or susceptible
nodes). This model gave excellent agreement with simulations, and it was formally
proven to be the large-N limit of a stochastic SIR epidemic on a configuration model
network by Decreusefond and colleagues Decreusefond et al. (2012) More recently,
Jacobsen and colleagues Jacobsen et al. (2018) provided an alternative method to
derive the mean-field limit of a stochastic SIR model on a multi-layer network that we
refer to as dynamical survival analysis (DSA). This approach results in a mean-field
model over variables different from those in Volz’s approach, but it also shows the
exactness of the Volz model in the large-network limit. The DSA formulation allows
us to reinterpret the epidemic from a statistical viewpoint (e.g., by approximating the
probability that a typical node who was susceptible at time t = 0 is still susceptible
at time t > 0).

In this paper, we show that the pairwise model closure is exact if and only if
the contact network has a degree distribution that is Poisson, binomial, or negative
binomial (which we call Poisson-type distributions). Once this condition is satisfied,
the limiting pairwise model closure is equivalent to the edge-based model proposed
by Volz (2008) and extended by Miller (2011) as well as to the network-based DSA
model KhudaBukhsh et al. (2020). We also show that the equivalence between the
Volz–Miller and DSA models holds for any degree distribution with finite variance
and that it allows statistical inference for epidemic model, as applied recently to early
COVID-19 pandemic modelling Di Lauro et al. (2022); KhudaBukhsh et al. (2023).

The rest of the paper is organised as follows: In Sect. 2,we brieflydescribe stochastic
epidemic dynamics on a configuration model network along with limiting approxima-
tions based on the pairwise, Volz, and DSA approaches. In Sect. 3, we introduce and
characterise the class of Poisson-type distributions and then present our main result
on the necessary and sufficient condition for the exact closure of the pairwise network
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model. This result is more precise than that obtained in Jacobsen et al. (2018), but it
is less general as it only covers single-layer networks. In Sects. 4 and 5, we provide
additional details on DSAmodel’s connection with statistical inference and offer con-
cluding remarks. Additional calculations on the DSA and Volz models are presented
in the Appendix.

2 Network epidemic models

We describe the underlying dynamics of the stochastic SIR epidemic process on a
network of size N as follows: At the start of an epidemic, we pickm initially infectious
individuals at random from the population. An infectious individual remains so for an
infectious period that is sampled from an exponential distribution with rate γ . During
this period, s/he makes contact with his or her immediate neighbours according to a
Poisson processwith intensityβ. If a contacted individual is still susceptible at the time
of the contact, s/he will immediately become infectious. After the infectious period,
the infectious individual recovers and is immune to further infections. All infectious
periods and Poisson processes are assumed to be independent of each other.

The epidemic is assumed to evolve on a configuration model network that is con-
structed as follows: Each node is given a random number of half edges according to a
specified degree distribution (pk), and all half edges are matched uniformly at random
to form proper edges.1 Although the exact behaviour of this SIR epidemic process
is quite complicated, there exist several approximations that rely on aggregated or
averaged quantities. To describe them, generating functions are useful.

2.1 Probability generating function

If pk is the probability that a randomly chosen node has degree k, then the probability
generating function (PGF) of the degree distribution is

ψ(u) =
∞∑

k=0

pku
k .

The PGF ψ contains a tremendous amount of information about epidemic dynamics
on configuration model networks. Let θ be the probability that an initially susceptible
node of degree one remains uninfected at time t in an infinite network. Then, assuming
no variation in infectiousness or susceptibility to infection among nodes except for
their degree, the probability that a node with degree k remains uninfected equals
the probability θk that infection has not crossed any of its edges (see Volz (2008)).
Summing over all possible k shows that ψ(θ) is the probability that a randomly
chosen node remains susceptible in an infinite network. The degree distribution of the
remaining susceptible nodes has the PGF

1 The construction technically permits the inclusion of self-loops and unmatched edges, but in practice,
these cases are infrequent and can be disregarded as N → ∞, provided that the degree distribution has a
finite variance. This has been discussed in detail in Section 7 of Van Der Hofstad (2016).
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u �→
∑∞

k=0(pkθ
k)uk∑∞

k=0 pkθ
k

= ψ(θu)

ψ(θ)
, (1)

which equals ψ(u) when θ = 1. Via (1), ψ tells us about the properties of a node
chosen uniformly at random from the set of susceptible nodes.

The first derivative of ψ tells us about the mean degree of susceptible nodes and
about the properties of a node reached by crossing an edge. At a given value of θ , the
mean degree of the remaining susceptible nodes is

d

du

ψ(θu)

ψ(θ)

∣∣∣∣
u=1

= θψ ′(θ)

ψ(θ)
, (2)

which equals ψ ′(1) when θ = 1. If we cross an edge, the probability that we end up
at a node with degree k is proportional to k. If we start at a node chosen uniformly at
random and cross an edge to reach a neighbour, the number of edges we can use to
reach a third node has the PGF

u �→
∑∞

k=1(kpk)u
k−1

∑∞
k=1 kpk

= ψ ′(u)

ψ ′(1)
.

If you are a susceptible node with a neighbour of degree k, this neighbour remains
susceptible as long as infection has not crossed any of the k − 1 edges that lead to
a third node. Thus, the probability that a neighbour of a susceptible node remains
susceptible is ψ ′(θ)/ψ ′(1). If we cross an edge to reach a susceptible neighbour, the
number of edges we can cross to reach a third node has the PGF

u �→
∑∞

k=1

(
kpkθk

)
uk−1

∑∞
k=1 kpkθ

k
= ψ ′(θu)

ψ ′(θ)
.

This distribution is often called the excess degree distribution (at the time t correspond-
ing to θ ), and it plays an important role in the dynamics of epidemics on networks. At
a given value of θ , the mean excess degree of susceptible nodes is

d

du

ψ ′(θu)

ψ ′(θ)

∣∣∣∣
u=1

= θψ ′′(θ)

ψ ′(θ)
, (3)

where ψ ′′ represents the second derivative of ψ .

2.2 Pairwisemodel

The pairwise model provides an intuitive way of describing the dynamics of an SIR
epidemic on a configuration model graph. The pairwise model equations, as proposed
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for instance in Rand (1999a), are:

[Ṡ] = −β[SI ],
[ İ ] = β[SI ] − γ [I ],
[Ṙ] = γ [I ],

[Ṡ I ] = −γ [SI ] + β
([SSI ] − [I S I ]) − β[SI ],

[ṠS] = −2β[SSI ],

(4)

where [A], [AB], [ABC] with A, B,C ∈ {S, I , R} stand for the number of singles,
doubles and triples in the entire network with the given sequence of states when each
group is counted in all possible ways. More formally,

[ABC] =
N∑

i=1

N∑

j=1

N∑

k=1

ai j a jk Ii (A)I j (B)Ik(C), (5)

where (ai j )i, j=1,2,...,N is the adjacency matrix of the network with entries either zero
or one and Ii (A), Ii (B), and Ii (C) are binary variables that equal one when the status
of i-th individual is A, B, and C , respectively, and equal zero otherwise. The singles
[A] and doubles [AB] are similarly defined. We consider undirected networks with
no self-loops, so aii = 0 and ai j = a ji .

To completely describe themodel, additional equations for triples are needed. These
will depend on quadruples, which will depend on quintuples, and so on. To make the
model tractable in the face of an ever-increasing number of variables and equations,
one often introduces the notion of a “closure” in which larger structures (e.g., triples)
are represented by smaller ones (e.g. pairs). The model (4) can be closed using the
methods described in Sect. 3.

The two models that we describe next do not require closure and are known to be
exact in the large network limit (i.e., as N → ∞) Decreusefond et al. (2012); Bohman
and Picollelli (2012); Barbour and Reinert (2013); Janson et al. (2014). However, they
are less straightforward to interpret.

2.3 Volz’s model

In addition to the limiting (N → ∞) probability θ defined in Sect. 2.1, let us also
introduce the limiting probabilities pI and pS that a randomly selected edge with one
susceptible vertex is of type SI and SS, respectively. In this notation, Volz’smean-field
equations Volz (2008) are:

θ̇ = −β pI θ,

ṗI = β pS pI θ
ψ ′′(θ)

ψ ′(θ)
− β pI (1 − pI ) − γ pI ,

ṗS = β pS pI

(
1 − θ

ψ ′′(θ)

ψ ′(θ)

)
,
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xS = ψ(θ),

ẋ I = β pI θψ ′(θ) − γ xI , (6)

where the derivative with respect to time is marked with a dot and the derivative with
respect to θ is marked with a prime. Here xS and xI denote the limiting (N → ∞)
proportions of susceptibles and infected, respectively.Note that the first three equations
are decoupled from the remaining two and that the proportion of recovered may be
obtained from the conservation relationship. The initial conditions are

xS(0) = θ(0) = pS(0) = 1,

xI (0) = pI (0) = ρ,
(7)

where 0 < ρ � 1.

2.4 DSAmodel

An alternative description of the limiting dynamics of a large configuration model net-
work under an SIR epidemic was given in Jacobsen et al. (2018). Although originally
considered in the context of multi-layer networks, its single layer version has been
applied recently to statistical inference problems under the name “dynamical survival
analysis” (DSA) KhudaBukhsh et al. (2023). In this approach, the limiting equations
are derived in terms of the limiting (N → ∞) proportions xSI of SI -type and xSS of
SS-type edges and the additional quantity xθ . In Appendix B, we show that the latter
coincides with the probability θ defined in Sect. 2.1. The equations are:

ẋθ = −β
xSI

ψ ′ (xθ )
,

ẋSS = −2βxSI xSS
ψ ′′ (xθ )

ψ ′ (xθ )
2 ,

ẋS I = xSI

[
β
(
xSS − xSI

) ψ ′′ (xθ )

ψ ′ (xθ )
2 − (β + γ )

]
,

ẋS = −βxSI ,

ẋ I = βxSI − γ xI .

(8)

As in Volz’s system, the first three equations do not depend explicitly on the dynamics
of xS and xI and therefore may be decoupled from the remaining two equations. The
initial conditions are:

xS(0) = xθ (0) = 1,

xI (0) = ρ,

xSS(0) = μ,

xSI (0) = μρ,

(9)

where 0 < ρ � 1 and μ > 0.
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3 Closing the pairwise model

In practice, one needs to define the time dynamics of the triples [SSI ] and [I S I ] to use
the system (4). Typically, these equations are closed by approximating the dynamics
of triples using pairs. This method is referred to as the “triples closure” in House and
Keeling (2011) and the “pair approximation” or “pairwise closure” in Jacobsen et al.
(2018).

3.1 Exact closure condition

While various justifications of closures have been proposed before Kiss et al. (2009),
we present a slightly different justification that is focused on the PGF of the degree
distribution. The form of the degree distribution plays a key role in obtaining necessary
and sufficient conditions on the network to ensure that pairwise closures are exact.

Let [A j BkC�] indicate the number of connected triplets ABC as defined in Eq. (5)
such that the node in state A has degree j , the node in state B has degree k, and the
node in state C has degree �. Then

[ABC] =
∑

j,k,l

[A j BkC�] (10)

and similarly for [A] and [AB]. Let us also define [S•] := [SS] + [SI ]. We derive a
closure condition starting from the finest resolution, where we account for the degree
of each node. Let state A belowdenote either S or I .We are interested in approximating
[ASI ]. Note that we may approximate, in two stages, as follows:

[A j Sk I�] � (k − 1)[A j Sk] [Sk I�]
k[Sk] � (k − 1)[A j Sk] [SI�][S•] , (11)

wherewe assume that a degree k susceptible node’s neighbour is as likely to be infected
as any other susceptible node’s neighbour. Intuitively, the first approximation is valid
because we start with an A j Sk pair and each of the k−1 additional edges connected to
the Sk node leads to an I� node with probability [Sk I�]/(k[Sk]). The second approxi-
mation follows from the configuration model. These will be used repeatedly in what
follows. Summing over the � index alone we get:

[A j Sk I ] =
∑

�

[A j Sk I�] �
∑

�

(k − 1)[A j Sk] [SI�][S•] � (k − 1)[A j Sk] [SI ][S•] . (12)

A similar approximation to [A j Sk] and summation over j leads to [ASk] � [AS] ×
(k[Sk]/[S•]). This, in turn, leads to:

[ASk I ] =
∑

j

[A j Sk I ] =
∑

j

(k − 1)[A j Sk] [SI ][S•] � (k − 1)[ASk] [SI ][S•]
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� (k − 1)k[Sk] [AS][SI ]
[S•]2 . (13)

Finally, summing over k leads to:

[ASI ] =
∑

k

[ASk I ] =
∑

k

(k − 1)k[Sk] [AS][SI ]
[S•]2 � [AS][SI ]

[S•]2
∑

k

(k − 1)k[Sk].

(14)

It remains to handle
∑

k k(k − 1)[Sk].
Recall that the variable θ (xθ in the DSA model) is the probability that infection

has not crossed a randomly chosen edge, and it decreases over time. At a given value
of θ , a node of degree k remains susceptible with probability θk , so [Sk] � Npkθk

where pk is the probability mass on k in the degree distribution. In terms of the degree
distribution PGF ψ , for large N we have approximately (see, for instance, House and
Keeling (2011); Jacobsen et al. (2018)):

[S] � Nψ(θ),

[S•] �
∑

k

kNpkθ
k = Nθψ ′(θ),

∑

k

(k − 1)k[Sk] � Nθ2ψ ′′(θ).

(15)

Using these and (14) leads to:

[ASI ] � ψ ′′(θ)ψ(θ)

ψ ′(θ)2

[AS][SI ]
[S] . (16)

Because θ is a new dynamic variable, an equation for it is needed. However, we need
no more equations as long as

ψ ′′(θ)ψ(θ)

ψ ′(θ)2
= κ = constant, (17)

in which case the dependency on θ is curtailed. If θ is the probability that disease has
not crossed a randomly chosen edge, then it follows from Eqs. (2) and (3) that the left-
hand side of Eq. (17) is the mean excess degree of susceptible nodes divided by their
mean degree. Therefore, the condition above simply implies that this ratio remains
constant as the susceptible nodes are depleted over time. Below, we show that the
networks for which this property holds can be explicitly characterized. Remarkably,
for such networks, (17) is equivalent to the exact closure—that is to the asymptotic
(N → ∞) equality in (16).
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3.2 Poisson-type distributions

Assuming that ψ(0), ψ ′(0) > 0, it follows that ψ,ψ ′ > 0 on the domain [0, 1] and
the condition (17) can be rewritten as

ψ ′′(u)

ψ ′(u)
= κ

ψ ′(u)

ψ(u)
. (18)

for any u ∈ [0, 1]. Upon integrating, we get the first-order differential equation

ψ ′(u) = α ψ(u)κ (19)

for arbitrary constants α > 0 and κ > 0. Because ψ is analytic, the equation above is
defined beyond the original domain—in particular in the small right-side neighbour-
hood of the natural initial condition ψ(1) = 1.

Table 1 below presents a family consisting of three distributionswhose PGFs satisfy
theODE (19).We refer to these distributions asPoisson-type (PT) distributions. It turns
out that being the PGF of a PT distribution is necessary and sufficient for (19) to hold:

Theorem 1 (Characterization of the Poisson-type distributions). The PGF of a random
variable satisfies (19) if and only if the random variable belongs to the PT family listed
in Table 1.

Proof If κ = 1, the ODE given by (19) and the PGF condition ψ(1) = 1 imply that
ψ(u) = eu(α−1), which is the PGF of the Poisson random variable POI(α) in Table 1.
If κ 	= 1, separating variables and integrating gives us

ψ(u)1−κ

1 − κ
= αu + c, (20)

for some constant c. Taking into account the condition ψ(1) = 1, we get

ψ(u) = [α(1 − κ)(u − 1) + 1] 1
1−κ . (21)

Now, consider separately the cases κ < 1 and κ > 1.

• Case κ ∈ (0, 1) Because ψ(s)(0) ≥ 0 for each integer s ≥ 0, we must have
n = (1 − κ)−1 is a positive integer and α(1 − κ) ≤ 1. Writing

ψ(u) = [
1 − α(1 − κ) + α(1 − κ)u

]n
, (22)

we recognise ψ(u) as the PGF of the binomial random variable BINOM(n, p)
with p = α(1 − κ). Note that we allow here for a degenerate distribution with
p = 1, which corresponds to ψ(u) = un , that is, an n-regular degree distribution.
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Table 1 The PT random variables whose PGFs satisfy (19)

Condition Family Parameters

κ ∈ (0, 1) Binomial: BINOM(n, p) n = 1
1−κ

, p = α(1 − κ)

κ = 1 Poisson: POI(λ) λ = α

κ > 1 Negative binomial: NB(r , p) r = 1
κ−1 , p = α(κ−1)

α(κ−1)+1

• Case κ > 1 Writing

ψ(u) =
[ 1

α(κ−1)+1

1 − α(k−1)
α(κ−1)+1u

] 1
κ−1

, (23)

we recogniseψ(u) as the PGF of the negative binomial distribution NB(r , p)with
r = 1

κ−1 and p = α(κ−1)
α(κ−1)+1 . Note that here necessarily p < 1.

Thus by considering all possible values of κ , it follows that there are only three PGF
solutions toEq. (19) corresponding to the families of randomvariables listed inTable 1.

�

Note that although the distributions in Table 1 describe all possible solutions to

(19), the equivalence of (17), (18), and (19) holds only under the conditions ψ(0) >

0, ψ ′(0) > 0. This excludes the special case p = 1 in the family BINOM(n, p)
corresponding to an n-regular degree distribution. However, for that particular case,
we have ψ(u) = un , which also satisfies (17) (but not 18).

3.3 Closure theorem andmodels equivalence

Weare now in a position to state themain result on the exactness of the pairwise closure.
Here, we use “exactness” in the sense defined in Jacobsen et al. (2018), or, equivalently,
in Janson et al. (2014). In both cases, the notion implies that the appropriately scaled
stochastic vector of susceptibles, infecteds, and recovereds tends in an appropriate
sense to a deterministic vector whose components are described by the system of
ordinary differential equations given by (6) or (8). Yet another equivalent definition of
the exact closure is that the equality in the triple approximation condition (24) holds
upon dividing both its sides by N and taking the limit N → ∞.

Theorem 2 (Exact pairwise closure). Assume that either ψ(0) > 0, ψ ′(0) > 0, and
ψ ′′(1) < ∞, or that ψ(u) = un. The closure condition

[ASI ] � κ
[AS][SI ]

[S] (24)

for A ∈ {S, I } in the pairwise model given by system (4) is exact (that is, equality
in (24) with both sides multiplied by N−1 holds asymptotically as N → ∞) if and
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Table 2 Resolving the ψ ′′ (xθ ) /ψ ′ (xθ )2 term in the DSA equations for binomial, Poisson, and negative
binomial distributions

Binomial Poisson Negative binomial

Parameter(s) (n, p) λ (r , p)

ψ(x) (1 − p + px)n eλ(x−1) ( 1−p
1−px

)r

ψ ′(x) np(1 − p + px)n−1 λeλ(x−1) rp(1−p)r

(1−px)r+1

ψ ′′(x) n(n − 1)p2(1 − p + px)n−2 λ2eλ(x−1) r(r+1)p2(1−p)r

(1−px)r+2

ψ ′′(xθ )

ψ ′(xθ )2
n−1
n × 1

xS
1 × 1

xS
r+1
r × 1

xS

κ n−1
n 1 r+1

r

Note that ψ(xθ ) = xS

only if the underlying configuration model network has a Poisson-type (PT) degree
distribution. Furthermore, κ = (n − 1)/n < 1, κ = 1, or κ = (r + 1)/r > 1 if the
degree distribution is BINOM(n, p), POI(λ), or NB(r , p), respectively.

Proof Consider first evaluation of the termψ ′′ (xθ ) /ψ ′ (xθ )
2. In Table 2, we show that

this term is equivalent to κ/xS for all PT distributions. With this in mind, we are ready
to show the equivalence between the limiting pairwise model and the DSA models
under (24). In view of Theorem 1, this suffices to establish the current result.

Let us show equivalence between the evolution equations for [SI ] and xSI . Recall
that xA = limN→∞[A]/N and xAB = limN→∞[AB]/N and that these limits exist
uniformly in probability over any finite time interval Jacobsen et al. (2018). From the
equation for SI in the pairwise model and (24)

˙[SI ] = β
([SSI ] − [I S I ]) − [SI ](β + γ )

= [SI ]
[
β
([SS] − [SI ]) κ

[S] − (β + γ )

]
.

(25)

Dividing both sides of the last equation by N , taking the limit N → ∞ [which can be
done in view of the appropriate LLN, see Jacobsen et al. (2018)], and using the fact
that ψ ′′ (xθ ) /ψ ′ (xθ )

2 = κ/xS , we arrive at:

ẋS I = xSI

[
β (xSS − xSI )

κ

xS
− (β + γ )

]

= xSI

[
β (xSS − xSI )

ψ ′′ (xθ )

ψ ′ (xθ )
2 − (β + γ )

] (26)

which is identical to the equation for xSI in the DSA model. We note that, when the
degree distribution is PT, the equation for xθ is no longer needed and the equivalences of
the remaining equations follow similarly as above. For instance, from (24) and ˙[SS] =
−2β[SSI ] it follows that ẋSS = −2βκxSSxSI /xS = −2βxSSxSIψ ′′ (xθ ) /ψ ′ (xθ )

2.
The exactness of theDSAmodel Jacobsen et al. (2018) as the limit of the stochastic SIR
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Fig. 1 Summary of model equivalence results. The top is the pairwise model, the bottom left is the DSA
model, and the bottom right is the Volz model

model on a configuration network, implies thus the exactness of the scaled pairwise
model (and (24)) as N → ∞. �


Figure 1 summarises the equivalences between models. The equivalence of the
Volz model and the DSA model for an arbitrary degree distribution is shown in the
Appendix.

The top row of Fig. 2 shows numerical evidence of the exactness of the closure in
the pairwise model for PT networks. For PT networks, the agreement between the
pairwise model and the expected value of explicit stochastic simulations is excellent.
The DSA model continues to work well for non-PT networks (see bottom row of
Fig. 2), and it is clear that κ is not constant in time in this case. As expected, this
means that none of the three possible closures work. In the left panel of the bottom
row we plot the output from the pairwise model for κ = (n − 1)/n (dashed line) and
κ = 1 (dotted line). Both underestimate prevalence which in this case is driven by the
20% of highly connected nodes. This is captured poorly by both closures.

4 Survival analysis perspective

The exact closure condition implies that, under the assumption of a PT degree dis-
tribution, the pairwise and DSA models are equivalent. One of the benefits of this
equivalence is that the pairwise model shares the statistical interpretation of the DSA
model. Indeed, as shown inKhudaBukhsh et al. (2020) [see also discussionwith exam-
ples in Choi et al. (2019); Bastian and Rempala (2020); Di Lauro et al. (2022); Vossler
et al. (2022)), we can interpret the system of Eq. (8] in terms of a statistical model
for times to infection. To this end, as in KhudaBukhsh et al. (2020), we may consider
St := xS(t) as the survival probability of a typical node (i.e., the probability that a
typical node who was susceptible at time t = 0 remains susceptible at time t > 0).
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Fig. 2 Top row: From left to right, epidemics on networks with regular (each node has n = 6 links), Poisson
(λ = 10) and negative binomial (r = 10 and p = 1/2) degree distributions are plotted, respectively.
Individual stochastic realisations are plotted with thin grey lines, their mean with the thick red line, and the
solution of the corresponding pairwise model with a solid black line. Bottom left: Epidemics on a network
where 80% of nodes have degree 4 and the rest have degree 34. The DSA model (solid black line) is used
to match the average epidemics. The pairwise model closures with κ = (n − 1)/n (dashed line) and κ = 1
(dotted line) are also plotted. Bottom right: Plot showing that, for a non-PT network (like the network
with two distinct value for the degree of nodes), κ is not constant in time. The value of κ at time t = 0
(solid constant line) is short lived as shown κ(t) (dashed line) as given in Eq. (17). Other parameters are:
N = 10,000 nodes, recovery rate γ = 1, and per-contact transmission rate β = 0.4 for the regular network
and β = 0.2 for the networks with Poisson, negative binomial, and mixed degree distributions. Epidemics
start with 250 infected nodes chosen at random and only epidemics reaching 500 infected individuals are
retained. We average over 15 network realisations and 15 epidemics on each network (colour figure online)

Note that S0 = 1 follows from the assumed initial conditions (9) and that S∞ > 0,
so St is an improper survival function. In this section, we show how to derive a sin-
gle autonomous differential equation for St (or xS) that allows numerical calculation
of the survival probability for any t ∈ [0,∞) solely in terms of the network model
parameters. We achieve this in several steps: First, we derive an integral that relates
xSS and xS . Because ψ ′′ (xθ ) /ψ ′ (xθ )

2 = κ/xS under the pairwise closure condition,
we obtain:

ẋSS
ẋS

= 2κ
xSS
xS

. (27)

Integrating this and using the initial conditions xS(0) = 1 and xSS(0) = μ leads to:

xSS(t) = μxS(t)
2κ . (28)
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Second, the equations for xS can be rewritten as:

ẋS = −β
xSI
xS

xS = −βxDxS, (29)

where xD = xSI /xS is considered a new variable for which an evolution equation is
needed. Considering the derivative of xD , and plugging in the expressions for ẋS I and
ẋS , we obtain:

ẋD = ẋS I xs − xSI ẋS
x2S

= βκxSSxSI − βκxSI xSI − (β + γ )xSI xS + βx2SI
x2S

= βκμx2κ−1
s

(
xSI
xS

)
− βκ

(
xSI
xS

)2

− (β + γ )

(
xSI
xS

)
+ β

(
xSI
xS

)2

= β(1 − κ)x2D +
(
βκμx2κ−1

S − (β + γ )
)
xD.

(30)

Given that the equations for xSI and xSS no longer depend on xθ , the system now
simplifies to three key equations:

ẋS = −βxDxS,

ẋ I = βxDxS − γ xI ,

ẋD = β(1 − κ)x2D +
(
βκμx2κ−1

S − (β + γ )
)
xD.

(31)

Finally, we can manipulate these equations further. In particular, looking at

ẋD
ẋS

+ (1 − κ)
xD
xS

= −κμx2κ−2
S + β + γ

β

1

xS
, (32)

and considering xD as a function of xS , we can use an integrating factor. This leads
to:

− Ṡt =
{

β̃(1 − Sκ
t )Sκ

t + γ̃
1−κ

St (1 − Sκ−1
t ) + ρ̃Sκ

t if κ 	= 1,

β̃(St − S2t ) + γ̃ St log St + ρ̃St if κ = 1,
(33)

where we now replaced xS(t) by St and set ρ̃ = βμρ, γ̃ = β + γ , and β̃ = μβ. As
already noted, the initial condition inherited from (9) is S0 = 1. Because necessarily
Ṡ∞ = 0, Eq. (33) implies that the limiting value S∞ > 0 has to satisfy

β̃(1 − Sκ∞) + ρ̃ = γ̃

1 − κ
(1 − S1−κ∞ ) if κ 	= 1, (34)

β̃(1 − S∞) + ρ̃ = − γ̃ log S∞ if κ = 1. (35)
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It is of interest to note that when the degree distribution is Poisson (κ = 1), then
Eqs. (33) and (35) are identical to the ones known from themass-action SIR dynamics.

This analysis shows that the dynamics of an SIR epidemic on a configuration model
network with a PT degree distribution can be summarised with a single self-contained
survival equation describing the evolution of survival probability St . This leads to the
following interesting statistical consideration that was already noted for mass-action
SIRmodels in KhudaBukhsh et al. (2020); Di Lauro et al. (2022); Vossler et al. (2022).
Assuming that, over a time interval [0, T ] where T ≤ ∞, we observe the times of
infection (t1, . . . , tk) of a randomly selected set of k initially susceptible nodes of our
network, we may write the approximate log-likelihood function as

�(β̃, γ̃ , ρ̃|t1, . . . , tk) =
k∑

i=1

log Sti − k log(1 − ST ). (36)

To obtain quantities other than St , evaluation of additional ODEs is needed as dis-
cussed, for instance, in KhudaBukhsh et al. (2020) or Khuda Bukhsh et al. (2022). Let
us also note that, since the DSA and Volz models are equivalent (see Lemma 1 in the
Appendix), the representation St in (33) can be similarly derived directly from Volz’s
model (6).

5 Discussion

Over the last two decades, two types of disease network models have emerged as
particularly relevant in many practical applications (including the recent COVID-19
pandemic, see KhudaBukhsh et al. (2023)): the so-called pairwise Rand (1999b);
Keeling (1999) and edge-based Volz (2008); Miller et al. (2012) approaches. More
recently, a version of an edge-based approach, dubbedDSA,was proposed in Jacobsen
et al. (2018); KhudaBukhsh et al. (2020) to facilitate statistical inference.

In this paper, we have shown that the three approaches are equivalent and asymp-
totically exact under the assumption that the contact network underlying the spread
of disease is a configuration model random graph with one of the three Poisson-
type (PT) degree distributions: Poisson, binomial, or negative binomial. Perhaps more
interestingly, we have shown that the pairwise closure for an epidemic on a configu-
ration model network is exact if and only if the ratio of mean excess degree to mean
degree for susceptible nodes remains constant over time (as the susceptible nodes
are depleted). This condition holds if and only if the degree distribution is PT. As an
interesting corollary of our results, we obtained a single equation representation of the
pairwise model that allows parameter estimation from time series data marginalised
over the network degree distribution. This finding is practically useful as it allows,
for instance, statistical inference based solely on the disease incidence data as in the
classical, homogeneous SIR models. Because these statistical methods are based on
survival times in susceptible individuals, statistical inference can be based on observa-
tion of a random sample of the population, which could allow more accurate tracking
of future epidemics.
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A Summary of notation

The following notation is used throughout the paper and in particular in the next
section.

• β := the force of infection per infectious neighbour (i.e., the constant rate at which
infectious nodes infect a neighbour).

• γ := the recovery rate (i.e., the constant rate at which infected nodes become
recovered).

• pk := the probability that a node will have degree k.
• ψ(x) := the probability generating function for the degree distribution {pk}.
• xS := the proportion of nodes susceptible at time t .
• xI := the proportion of nodes infectious at time t
• xAB := the proportion of AB-type edges at time t
• AX := the set of arcs (i, j) such that node i is in set X .
• MX := the proportion of arcs in set AX .
• AXY := the set of arcs (i, j) such that i ∈ X and j ∈ Y .
• MXY := the proportion of arcs in set AXY .
• θ := the probability that infection has not crossed a randomly chosen edge at time
t , also denoted by xθ in some of the models.

• pI := MSI /MS , the probability that an arc (i, j) with a susceptible i has an
infectious j .

• pS := MSS/MS , the probability that an arc (i, j) with a susceptible i has a
susceptible j .
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B Equivalence of Volz’s and DSAmodels

Lemma 1 The Volz model (6)–(7) and the DSA model (8)–(9) are equivalent.

Proof While our starting point is the system of Volz’s original set of Eq. (6), it is useful
to recast these over a different state space in order to show equivalence with the DSA
system in Eq. (8). Here, we move from the state space in terms of (θ, pI , pS) to a state
space in terms of (θ = xθ , xSI , xSS), where xSI and xSS are simply the limiting counts
of all SI and SS -type edges (counted in both directions) scaled by N (the number of
nodes in the network) with the limit taken as N → ∞.

As alluded to above, θ and xθ have exactly the same interpretation, but we denote
them differently to differentiate consistently between models over different state
spaces. We now proceed to show how one moves from the original Volz model to the
DSA equations. We start by showing that the first equation in (6) is equivalent to the
first equation in (8). Starting from (6), and taking into account that MSI = xSI /ψ ′(1)
and that MS = xθψ

′(xθ )/ψ
′(1) as shown in Volz (2008), we obtain

θ̇ = −β pI θ = −β
MSI

MS
θ = −β

xSI
ψ ′(1)

xθψ ′(xθ )
ψ ′(1)

xθ = −β
xSI

ψ ′(xθ )
= ẋθ . (37)

Showing the equivalence between the other equations requires an extra step. That
is, the evolution equations for pI and pS need to be rewritten explicitly in terms of
SI - and SS-type edges. In Volz (2008), it was shown that the equations for MSI can
be written as

ṀSI = β pI (pS − pI ) θ2
ψ ′′(θ)

ψ ′(1)
− (β + γ )MSI . (38)

Using the expressions for MSI and MS in terms of the DSA model parameters
above and the fact that MSS = xss/ψ ′(1), we get pI = xSI /(xθψ

′(θ)) and
pS = xSS/(xθψ

′(xθ )). Substituting these into (38), we get

ṀSI = β pI (pS − pI ) θ2
ψ ′′(θ)

ψ ′(1)
− (β + γ )MSI

= β
xSI

xθψ ′(xθ )

(
xSS

xθψ ′(xθ )
− xSI

xθψ ′(xθ )

)
x2θ ψ ′′(xθ )

ψ ′(1)
− (β + γ )

xSI
ψ ′(1)

= xSI
ψ ′(1)

[
β(xSS − xSI )

ψ ′′(xθ )

ψ ′(xθ )2
− (β + γ )

]

= ẋS I
ψ ′(1)

.

(39)

Thus, Eq. (6) is equivalent to the equation for xSI in (8). Following Volz (2008), the
evolution equation for SS-type edges can be rewritten to

ṀSS = −2β pI pSθ
2ψ ′′(θ)

ψ ′(1)
. (40)
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Making the same substitutions as before, we get

ṀSS = −2β
xSI

xθψ ′(xθ )

xSS
xθψ ′(xθ )

x2θ ψ ′′(xθ )

ψ ′′(1)

= −2βxSI xSS
ψ ′′(xθ )

ψ ′(xθ )2ψ ′(1)

= ẋSS
ψ ′(1)

,

(41)

which shows that (40) and the equation for xSS in (8) are equivalent. Since the remain-
ing equations in both systems rely on the first three equations that we have just shown
to be equivalent, the Volz and DSAmodels are equivalent under their respective initial
conditions. �
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