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Complex networks have become the main paradigm for modelling the dynamics of interacting
systems. However, networks are intrinsically limited to describing pairwise interactions, whereas
real-world systems are often characterized by higher-order interactions involving groups of three or
more units. Higher-order structures, such as hypergraphs and simplicial complexes, are therefore a
better tool to map the real organization of many social, biological and man-made systems. Here,
we highlight recent evidence of collective behaviours induced by higher-order interactions, and we
outline three key challenges for the physics of higher-order systems.

Network science helps us to better understand the evo-
lution of the highly interconnected world in which we
live [1]. It sheds light on myriad systems — everything
from how rumours spread in a social network to how large
ecosystems stabilize in spite of competing interactions
between species. A key feature shared by such systems is
that they are characterized by a complex set of interac-
tions that govern their emergent dynamics [2–4]. In the
recent years, the architecture of social networks, ecosys-
tems and the human brain have all been modelled as
graphs, with collections of nodes describing the units of
the systems — humans, animals or neurons — and edges
encoding their pairwise interactions. This approach has
led to the discovery that a heavy-tailed distribution in the
number of contacts within a population causes the epi-
demic threshold to vanish, putting everyone at risk during
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a pandemic [5, 6]. It has inspired the realizations that
small-world networks and clustering promote synchroniza-
tion [7], and that efficient communication structures tend
to reach rapid and diffused consensus, but are also prone
to the spreading of misinformation [8].

But graphs, however convenient, can only provide a
limited description of reality. They are inherently con-
strained to represent systems with pairwise interactions
only. Yet in many biological, physical and social systems,
units may interact in larger groups, and such interactions
cannot always be decomposed as a linear combination of
dyadic couplings [10] (Fig. 1). For example, evidence from
neural systems shows that higher-order effects are present
and important both statistically [11–13] and topologi-
cally [14, 15]. However, there is also evidence to suggest
that such higher-order signatures might in some cases
be redundant, and may be fully describable in terms of
pairwise interactions [16, 17]. In ecological systems, evi-
dence clearly shows the existence of complex many-body
interactions between multiple species [18–20], although
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FIG. 1. Pairwise and higher-order representations. a, Systems comprising many interacting units have long been
represented as networks, with interactions restricted to pairs of nodes and represented as edges. However, it is not always
possible to describe group interactions as sums of pairwise interactions only. b, Representations allowing for genuine group
interactions include hypergraphs, which can encode interactions among an arbitrary number of units without further constraints.
Here, shaded groups of nodes represent hyperedges. c, Simplicial complexes offer another approach. Although more constrained
than hypergraphs, they provide access to powerful mathematical formalisms [9]. Edges (1-simplices) are shown here in black,
full triangles (2-simplices) in yellow. Note that in simplicial complexes, all subfaces of a simplex (for example, the edges of a
triangle) need to be included. This constraint does not hold for hypergraphs.

the effects induced by their interaction patterns have only
recently been investigated formally [21]. Other exam-
ples include metabolic and genetic systems [22], social
coordination [23] and group formation [24].

The idea of higher-order interactions is well-known in
the setting of many-body physics, for example in strong
interactions [25, 26] or van der Waals interactions [27],
as well as in statistical mechanics [28]. However, in all
these cases, representations of higher-order interactions
are simple in the sense that they do not contribute to
the emerging complexity of the problem. In complex
systems typically described as networks, the story is
different, and in many cases these interactions must
be taken into account using more advanced mathe-
matical structures, such as hypergraphs and simplicial
complexes [10]. Several investigations have already
shown that the presence of higher-order interactions may
significantly impact the dynamics on networked systems,
from diffusion [29, 30] and synchronization [31, 32] to
social [33–35] and evolutionary processes [36], possibly
leading to the emergence of abrupt (explosive) transitions
between states. And although most research in complex
systems focuses on the dynamical evolution of the states
of the nodes, it is natural to consider that higher-order
structures (described by hyperedges) could themselves
possess a dynamical state, leading to a whole new
panorama of dynamical processes. Finally, although
many datasets can be easily visualized as networks,
very few are readily described using a hypergraph
representation. The challenge of going from the dynamics
of units, and possibly information about their pairwise
interactions, to a meaningful pattern of higher-order
interactions between these units, remains substantial. In
this Perspective, we outline the main signatures of new
physics arising in higher-order systems, and we propose
three key directions for future research.

A general pathway to explosive transitions.

Most processes on networks, from the dynamical evolution
of coupled oscillators to the spreading of diseases, display
emerging collective behaviours. Typically, such phenom-
ena are described by continuous phase transitions: the
order parameter describing, for example, the emergence
of synchronization between oscillators, increases continu-
ously as the control parameter crosses a critical threshold.
Similar transitions are also well known for percolation on
networks, where small clusters that are initially separated
merge together to span a non-vanishing fraction of the
system size at a critical point. In contrast, an explosive
transition was first found some years ago for particular
set of link selection rules [37], for which the size of the
largest cluster seemed to jump abruptly to a finite value at
the transition. Although this specific transition was later
classified as continuous with anomalous scaling [38, 39],
explosive phenomena formed a focus of intense research
activity in the years following the initial discovery [40].
Several discontinuous phase transitions were confirmed
for different processes, such as synchronization.

However, explosive phenomena are rather difficult to
obtain for systems represented as networks — those with
only pairwise interactions. They can be engineered by
adding artificial elements or rules to the most natural
dynamical setups in an attempt to prevent the transi-
tion. Eventually though, these additions produce abrupt
jumps in the order parameter once the transition becomes
inevitable. For example, synchronization can become
explosive in heterogeneous networks by correlating the
natural frequency of oscillators to their degree [41]. How-
ever, explosive phenomena are known to exist in nature,
and developing a better understanding of how they be-
have is of key interest in many fields, primarily because
they are more difficult to handle, predict and control than
their continuous counterparts.

A modelling approach that goes beyond networks by
taking higher-order interactions into account provides a
framework in which explosive phenomena emerge natu-



3

FIG. 2. Higher-order interactions lead to explosive phenomena. Edges and hyperedges encode pairwise and group-level
couplings among the nodes of a complex system. a, Hyperedges modulate group infection and many-body feedback in higher-order
processes of contagion. Susceptible nodes (S, blue) can be infected by infectious ones (I, orange) in the usual way along edges,
but also by groups containing a large fraction of infected nodes (for example, orange 2-simplices). b, Hyperedges have a similar
effect on higher-order processes of synchronization, in which oscillators on nodes can be coupled along edges, or in groups via
higher-order interactions. c, Abrupt transitions emerge when increasing the strength of such interactions, suggesting a general
pathway to explosive phenomena.

rally and can therefore be studied more easily. An abrupt
transition was recently observed in a model social con-
tagion evolving on simplicial complexes [33], in which
individuals can assume either an infected or susceptible
state. In contrast to previous proposals, here pairwise
transmission does not operate alone, but can be rein-
forced by simplicial interactions associated with group
pressure (Fig. 2a). The model can be solved analyti-
cally with a mean-field approximation, showing that a
discontinuous transition from a healthy to endemic phase
(in which a significant fraction of the population is in-
fected) emerges when the relative weight of higher-order
interactions crosses a threshold. Interestingly, the inclu-
sion of three-body interactions is sufficient to obtain a
bistable region where endemic and non-endemic states
can co-exist. This result has been found to be robust and
general. Explosive transitions have in fact been observed
in heterogeneous [42] and time-varying [43, 44] structures,
and in the more general setup of hypergraphs [34, 45, 46],
where they can also be related to higher-order discontinu-
ous percolation processes [47].

Explosiveness is not limited to spreading processes.
Of paramount importance for biology and neuroscience
are systems of coupled oscillators, where the states of
the nodes are d-dimensional continuous variables that
evolve over time under mutual influence (Fig. 2b). The
most well-known setup is probably the one introduced by
Yoshiki Kuramoto [49], in which unidimensional phase
oscillators are endowed with natural frequencies, and
interactions occur through sinusoidal couplings. When
generalized to account for structured higher-order inter-
actions among oscillators, the additional non-linearity
generates abrupt switches between synchronized and in-
coherent states [50]. The emergence of bistability and
the appearance of hysteresis cycles are driven by the pres-
ence of higher-order interactions alone, without the need
for ad-hoc coupling mechanisms between the dynamical
evolution and the local connectivity of the nodes.

In both examples, the introduction of higher-order in-
teractions corresponds to having the state variable of a
node influenced by a non-linear combination of the states
of several other nodes. Tuning the relative importance of
the strength of the higher-order and pairwise interactions
provides a way in both cases to change the nature of the
transition from continuous to discontinuous (Fig. 2c).
The similarity of the mechanisms yielding a first-order
transition in these two very different dynamical processes
leads to conjecture that the introduction of non-linear
higher-order interactions and the tuning of their inten-
sity is a general ingredient sufficient to provide abrupt
transitions in a dynamical process.

Despite this preliminary evidence, however, a rigorous
and general proof of this conjecture is still lacking.
Approximate approaches based on linearization around
a fixed point of ordinary differential equations link
the stability of hypergraphs dynamics to their graph
projections [51–53], suggesting general conditions for
stability associated to the different orders of the inter-
actions. Mean-field treatment allows for an analytical
solution for diffusion and spreading processes on arbitrary
structures, separating stability conditions into structural
and dynamical terms [54, 55]. A general argument based
on bifurcation theory shows that variations on pairwise
models, such as adding higher-order interactions, can
lead to a change of critical behaviour from a continuous
to a discontinuous transition for a wide class of models,
including epidemic, synchronization and percolation
transitions [56]. Under some conditions, mathematicians
have been able to formally prove that higher-order
interactions are sufficient to induce bi-stable behaviour
in the Susceptible-Infected-Susceptible (SIS) model,
whereas it is impossible to achieve bistability in the
traditional pairwise scheme [57]. All in all, findings
indicate that the presence of higher-order interactions
provides a general pathway to explosive phenomena. Yet,
this marker of fragility of the collective behaviour in
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FIG. 3. Higher-order systems are fully dynamical. a, As opposed to traditional descriptions focused on node dynamics,
it is possible to define state variables for hyperedges or simplices of arbitrary order, for example by associating oscillators to
edges [48] and coupling them to each other using their higher-order adjacency. In so doing, the distinction between dynamical
units and interactions dissolves, and dependencies and feedback loops between orders become possible. b, For example, it is
possible to project the dynamics of hyperedges of order k (k = 1, edges or 1-simplices) onto their analogues of larger order
(k = 2, 3-hyperedges or 2-simplices). c, It is similarly possible to project onto analogues of smaller order (k = 0, nodes).

higher-order systems is still awaiting formal proof.

Topological dynamical processes. Most of the re-
search on dynamical processes on networks has focused
on the dynamics of node states, with interactions medi-
ated by links. This is a natural and intuitive approach,
because it describes the evolution of the most basic units
of the system, coupled through the only possible (and
simplest) interactions in networks [58]. But by encoding
higher-order interactions, it becomes possible to define
couplings between interactions of different orders (nodes,
and hyperedges or simplices). More importantly, we can
associate state variables, not only to nodes, but also to
hyperedges and simplices. For example, the state of an
edge can influence the states of its two associated nodes,
while contributing to and being influenced by the states of
the higher-order interactions (for example, a 3-hyperedge)
to which it belongs. In this way, higher-order dynamical
systems transform static interactions into active agents
that are coupled to the rest of the system and evolving
in time.

Recent results on simplicial oscillators offer a particu-
larly striking example of this phenomenon. Consider a
Kuramoto model defined on a simplicial complex com-
prising nodes, edges and 2-simplices (Fig. 3a). In this
case, phases are defined not only on nodes — as in the
traditional description — but also on higher-order faces.
The equations used in the classical formalism can be
directly adapted to higher-order interactions, by sub-
stituting node incidence matrices with the appropriate
higher-order analogues [7]. In simplicial complexes, these
matrices correspond to boundary operators between in-
teractions of orders differing by one — for example, node
and edges, or edges and 2-simplices — effectively pro-
viding a canonical mapping between phase dynamics of
different orders. Interesting phenomena emerge without
adding further complications: the dynamics on 1-simplices
(edges) displays a synchronization transition [48] that is
only revealed when projected onto simplices of higher

(2-simplices, Fig. 3b) or lower (nodes, Fig. 3c) dimen-
sion. Indeed, phase transitions appear in both projected
dynamics. And when the dynamics of the (n − 1)- and
(n + 1)-simplices are coupled via the respective global
order parameters, these transitions become explosive.

The Hodge decomposition provides a rationale for this
behaviour in terms of the inner structure of higher-order
states [29]. In fact, these can be decomposed into har-
monic, solenoidal and irrotational components, corre-
sponding respectively to the dynamics induced by the
kernel of the higher-order Laplacian, and to those in-
duced by the projection to simplices one dimension higher
and lower. In this light, higher-order systems can be
considered collections of topological signals — time se-
ries associated with interactions on all orders, which lend
themselves to analysis using tools at the interface be-
tween algebraic topology, differential geometry and dis-
crete calculus [29, 59]. As an example of this paradigm,
higher-order Laplacians were recently shown to improve
the description of flow information on edges with respect
to standard graph Laplacians [60]. The description was
improved even when simplicial complexes contained only
nodes and edges. Higher-order Laplacians also provided
the first formulation for signal processing on generic topo-
logical spaces[61].

Finally, even when states for higher-order interactions
are defined, the topological structure of the system

— that is, the presence or absence of simplices and
hyperedges — has typically been considered fixed in time
(for example, in neural codes [16]). However, in many
systems the organization of the interactions changes
over time [62]. It remains an open question how to
define realistic models of topological co-evolution, where
higher-order structure and higher-order dynamics evolve
together under the effect of mutual feedback [63].

Inferring higher-order interactions from data. A
crucial ingredient in modelling real systems is the recon-
struction of higher-order interactions from data (Fig. 4).
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FIG. 4. Inference of higher-order systems is still an
open and challenging problem. In spite of abundant net-
work data, few records contain the information necessary to
reconstruct a system’s higher-order interactions. A number
of tools and concepts have been proposed to overcome this
problem, but existing methods to extract signals associated
with higher-order interactions are still lacking. Reconstruction
techniques based on a combination of data-driven modelling
and Bayesian inference offer early evidence of an effective
approach.

The vast majority of data available on network systems
contains only records of pairwise interactions, even when
the underlying rules rely on higher-order patterns. Naively
attributing every observed dense subgraph in the pairwise
network (for example. triangles and larger cliques) to a
putative higher-order interaction conflates the existence
of an actual hyperedge with the coincidental accumulation
of edges, which may otherwise emerge from community
structure, homophily or a geometric embedding. Recent
work [64] has demonstrated that it is possible to distin-
guish between hyperedges and combinations of lower-order
edges by casting the problem as a Bayesian inference task,
taking into account the parsimony of the resulting recon-
struction. With such an approach, hyperedges are iden-
tified only if they are supported by statistical evidence.
It is as yet unclear how such approaches might be gen-
eralized to include more realistic modelling assumptions,
containing a tighter interplay with mesoscale structures
and latent space embeddings [65].

Even when explicit hyperedge data are available, just
as with pairwise network data, errors and incompleteness
are unavoidable, requiring us to reconstruct the object
of study from uncertain observations [66, 67]. For hyper-
graph data, recent work [68] has proposed an approach
based on comparisons with null models, which is capa-
ble of filtering out hyperedges that are not statistically
significant. More work is needed to provide uncertainty
quantification on the analyses that are conditioned on
the reconstruction, as well as leveraging more advanced
techniques of hyperedge prediction to improve accuracy.

In addition to the reconstruction from direct but uncer-
tain data, it is challenging to infer higher-order structures
from indirect data such as time series, which encode the
dynamical behaviour of the nodes rather than directly

measured edges and hyperedges. This is an important
issue in many biological systems such as the brain, where
diseases like Parkinson’s and schizophrenia have been
associated with dysfunctional brain connectivity [69–71],
but direct network measurements are often not available.
A common approach is to compute correlations [72] and
measure synchronization [73] between time series. How-
ever, these approaches yield an unreliable understanding
of the underlying system, because they cannot distin-
guish correlation from causation — two or more nodes
can be highly correlated even if they do not share an
edge or hyperedge. Another set of approaches involves
exploiting temporal correlations, for example, the phase-
dynamics reconstruction given a set of multivariate time
series [74]. Originally devised for pairwise interactions
only, this methodology has been generalized to account
for small motifs of interacting units [75].

The development of new synchronization measures for
triplets has made it possible to identify multi-body locking
from experimental data, even when every pair of systems
taken in isolation remains asynchronous [76]. This ap-
proach can better differentiate between the physical con-
nections and the effective ones, which are associated with
the temporal influence of one node on another, leading to
more reliable network reconstruction methods [77, 78].

Finally, another possibility involves extending
information-theoretical techniques, such as Granger
causality [79] and transfer entropy [80], to account
for the existence of multi-body interactions. Despite
promising first steps in reconstructing higher-order
interactions from static lower-order projections [64]
and in multi-body information-theoretic quantities
[81], the task of broadening this framework to consider
fully higher-order interaction schemes remains an open
problem.

Reconstruction methods that are based only on
temporal correlations still suffer from the problem of
not being able to fully distinguish between direct and
indirect causation, meaning they cannot differentiate
between the existence of an actual edge or hyperedge
between nodes and a longer path that connects them.
They are similarly incapable of discerning non-causal
correlation. Circumventing this problem is only possible
in general if we can make interventions, rather than
relying on observational data alone [82]. Nevertheless,
methods based on Bayesian inference of generative
models are able to convey the uncertainty about the
causal relationships [83]. An important future direction
is to generalize such methods to incorporate higher-order
interactions [84–90] that vary in time [91] and describe
emergent higher-order geometry [92].

Future directions from past inspiration. The
study of networked systems with higher-order interactions
is still in its infancy, posing new challenges and opportu-
nities for discoveries [10, 93–95]. Yet, it is also inspired by
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ideas from the past. For example, earlier work considered
systems of coupled cells where dependencies of different
orders were encoded via particular graph structures [96],
clarifying how higher-order symmetries affect synchroniza-
tion [97, 98]. Higher-order interactions can also generate
new insights on older problems where they emerge as
effective theories. A paradigmatic example is that of net-
works of phase oscillators with higher-order interactions,
which arise from the phase reduction of nonlinear oscilla-
tor systems [99–101]. As a consequence, understanding
the dynamics of phase-reduced systems with higher-order
interactions can also clarify the physics of the general
higher-dimensional system [102–105], in particular at the
onset of chaos [106] and metastable chimeras [107, 108].
Thus, in addition to providing an exciting way forward
for network science, higher-order interactions can also
create opportunities for a wider dialogue on the physics
of dynamical systems.

From p-spin models [13, 109] to multilayer [110] and
non-Markovian temporal networks [111], the past suggests
that new phenomena may occur when more realistic pat-
terns of interactions are considered. Overcoming previous
limitations, new data and new theory are now informing
our network models beyond pairwise interactions [10].

[1] A.-L. Barabási, Nat. Phys. 8, 14 (2011).
[2] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and

D.-U. Hwang, Phys. Rep. 424, 175 (Fervier 2006).
[3] A. Barrat, M. Barthelemy, and A. Vespignani, Dynami-

cal processes on complex networks (Cambridge university
press, 2008).

[4] A. Vespignani, Nat. Phys. 8, 32 (2012).
[5] R. Pastor-Satorras and A. Vespignani, Phys. Rev. Lett.

86, 3200 (2001).
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