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Abstract

Complex networks represent the natural backbone to study epidemic processes in populations of
interacting individuals. Such a modeling framework, however, is naturally limited to pairwise
interactions, making it less suitable to properly describe social contagion, where individuals acquire
new norms or ideas after simultaneous exposure to multiple sources of infections. Simplicial
contagion has been proposed as an alternative framework where simplices are used to encode
group interactions of any order. The presence of these higher-order interactions leads to explosive
epidemic transitions and bistability. In particular, critical mass effects can emerge even for
infectivity values below the standard pairwise epidemic threshold, where the size of the initial seed
of infectious nodes determines whether the system would eventually fall in the endemic or the
healthy state. Here we extend simplicial contagion to time-varying networks, where pairwise and
higher-order simplices can be created or destroyed over time. By following a microscopic Markov
chain approach, we find that the same seed of infectious nodes might or might not lead to an
endemic stationary state, depending on the temporal properties of the underlying network
structure, and show that persistent temporal interactions anticipate the onset of the endemic state
in finite-size systems. We characterize this behavior on higher-order networks with a prescribed
temporal correlation between consecutive interactions and on heterogeneous simplicial complexes,
showing that temporality again limits the effect of higher-order spreading, but in a less pronounced
way than for homogeneous structures. Our work suggests the importance of incorporating
temporality, a realistic feature of many real-world systems, into the investigation of dynamical
processes beyond pairwise interactions.

1. Introduction

Contagion processes, from the spread of diseases to opinions and rumors, are ubiquitous in nature [1-3]. In
all such cases, the contact structure of the underlying population has a crucial role in determining the emerg-
ing collective behavior, making network science one of the primary tools to investigate spreading dynamics in
real-world systems [4—8]. For instance, pioneering investigations have shown that heavy-tailed degree distri-
butions in the contact structure lead to a vanishing epidemic threshold, a behavior which cannot be observed
neither in well-mixed population nor in homogeneous networks [9]. For the biological spread of pathogens,
contagion is typically mediated by pairwise interactions, where each link represents an independent source of
infection. However, this mechanism of simple contagion does not seem to accurately describe social contagion.
To acquire new ideas, norms or opinions, spreading is better modeled by complex contagion [10—13]. In this
case, individuals are subject to the simultaneous pressure of their neighbors, leading to a dynamics of cascades
which has also been empirically observed in a number of different contexts [14—18].

For many years, the wide majority of networked systems have been represented by graphs, collection of
edges and links, where interactions are naturally limited to dyadic ones [19, 20]. However, in most real-world
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networks, interactions can also occur among groups composed by three or more individuals. All these systems
are better described by simplicial complexes or hypergraphs, which naturally take into account the presence of
higher-order interactions, providing a suitable extension of the traditional network framework beyond pair-
wise interactions [21-24]. In particular, simplicial contagion is a newly proposed paradigm that allows one
to model at the microscopic scale the effect of group interactions (described as simplices of different order)
on spreading dynamics [25]. Interestingly, if the infection rate associated to the higher-order interactions is
high enough, this leads to the emergence of new collective behavior, making the transition from the healthy
to the endemic phase explosive, and giving rise to metastable states. We point out that, while explosive phe-
nomena are in general unusual in traditional epidemic processes [26], instances of such transitions have been
observed in specific cases. A pertinent example is the one of cooperative [27] or synergistic contagion in net-
works [28], where a dynamical enhancement in spreading leads to an abrupt epidemic transition. Explosive
transitions have also been observed in multiplex networks where the spreading dynamics in a layer is coupled
to dynamical processes taking place on other layers [29, 30].

In context of higher-order interactions, such result was obtained analytically by a mean-field analysis and
confirmed by numerical simulations [25, 31], has also been replicated under different modeling frameworks,
such as the microscopic Markov chain approach (MMCA) [32], the generalised link equation [33], approx-
imate master equations [34], and on different higher-order representations, such as hypergraphs [35-37].
The disruptive presence of higher-order interactions is not limited to contagion dynamics, as new collective
behavior has also been observed in the case of synchronization phenomena [38—41], random walk [42, 43],
consensus [44, 45], ecological [46, 47] and evolutionary dynamics [48] when extended beyond simple dyadic
ties. For pairwise contagion, the temporal nature of interactions, where links can be created and destroyed
over time, is known to significantly affect the evolution and the long-term properties of the spreading process
[49, 50]. Indeed, temporal networks [51] are routinely used as a modeling framework to properly capture dif-
fusive processes taking place on realistic populations where the contact structure changes over time [52-55].
Recently, also higher-order social networks have been found to have a non-trivial temporal dynamics [56].
Yet, so far very little attention has been devoted to understanding how temporality affects spreading on
higher-order structures [57].

Here, we extend models of simplicial contagion to the case of time-varying networks, where both pairwise
and higher-order interactions can evolve over time. We compare the contagion process on static and temporal
simplicial complexes. The dynamics of the static case presents bistability, meaning that the long-term behavior
of the system is determined by the size of the initial seed of infectious nodes. In our work, we numerically char-
acterize the basins of attraction of healthy and endemic states in static and temporal higher-order structures,
showing that persistent temporal interactions anticipate the onset of the endemic state in finite-size systems.
This means that the same number of initially infected agents might or might not lead to an endemic station-
ary state, depending on the temporal properties of the underlying network structure. To this aim, we propose
a simple model to tune the degree of temporal correlations in synthetic structures that evolve over time, and
investigate how this variable affects the long-term outcome of the spreading dynamics. We show that temporal-
ity can significantly reduce the enhancement of epidemics typically induced by higher-order contagion terms
in the forward transition to the endemic state. By contrast, the backward transition to the infection-free state
remains unaffected by presence of temporal correlation or lack thereof. Finally, we study simplicial contagion
on temporal higher-order networks that present degree heterogeneity, showing once again that temporality
hinders higher-order spreading, but in a less pronounced way than for homogeneous structures.

2. Model

We study social contagion in simplicial complexes which evolve over time. In particular, following refer-
ence [25], we consider an SIS model, where each one of the N interacting nodes can be in either of two
states—susceptible (S) or infected (I). We consider interactions up to groups of three, such that one-simplices
(links) encode standard pairwise interactions, while two-simplices describe three individuals interacting
together (and this is structurally different from having three links that form a triangle).

In a time-step of the SIS model, any infected individual can infect their susceptible neighbors connected
by one-simplices with a probability 5|, and infected nodes can recover with probability ;1 and become sus-
ceptible again. However, in the simplicial version of the model, two-simplices provide an additional way for
a contagion event to happen. In particular, if a susceptible individual is part of a two-simplex while the other
two members of the simplex are infected, there is an additional probability S 5 to also get infected—associated
to a microscopic description of social reinforcement induced by group interactions.

We write the discrete time evolution equation for the infection probabilities of each node at a particular
instant using the MMCA [58]. MMCAs have been extended to temporal networks, allowing for an analytical
computation of the epidemic threshold [53], and more recently to simplicial complexes, though in this context




10P Publishing

J.Phys.Complex. 2 (2021) 035019 (10pp)

o &:ﬂ c

t=0 t=1 t=2 Time

S Chowdhary et al

Figure 1. Temporal higher-order networks. Schematic of a time-varying higher-order network where both pairwise and
higher-order interactions evolve over time.
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Figure 2. Contagion on static and temporal simplicial complexes. We show the fraction of infected nodes at the equilibrium
starting from a single infected node as a function of rescaled pairwise \| and simplicial A5 infection rates for static (a) and
temporal (b) simplicial complexes with N = 500 nodes. In the static case, the epidemic onset (solid black line) as a function of A,
is anticipated as we increase Aa. This suggests that the chosen initial infection of size ; belongs to the basin of the infection-free
state for small values of A x, moving into the basin of the endemic state upon increasing A . For time-evolving higher-order
networks such effect is not observed, and we find a suppression of the endemic phase which cannot be reached for low values of
A, independently on the value of A4 . The backward transition to the infection-free state (dashed black lines) is largely unaffected
by the temporality of the interactions. We set 1 = 0.1, (k;) = 12 and (ka) = 5 for both scenarios.

the non-linear term associated to contagion in two-simplices only allows a numerical solution [32]. According
to this approach, the probability of a generic node i to be infected at time ¢ + 1 is

pitt+1) = (1 — gi()gia (D)1 — pi(t)) + (1 — w)pi(t), (1)

where the first term on the right-hand side of equation (1) represents the probability at time ¢ for a susceptible
node to get infected. This is given by the product of (1 — p;()), the probability that node i is susceptible,
and (1 — q;(1)q; A(?)), the probability that i is infected by at least one of its neighbors. The second term,
(I — w)p,;(1), stands for the probability that node i is already infected at time t and does not recover. Here
q;(t) defines the probability that node i is not infected via pairwise interactions with its neighbors,

at)= 1] (1=8p1), (2)

jeLi(t)

with I';(#) denoting the set of one-simplices containing node i at time #. Similarly, g; A (t) defines the probability
that node i is not infected by any of its two-simplicial interactions,

aa®) = [ (1-Bapip®), (3)

HEA(?)

with A;(#) denoting the set of two-simplices containing node i at time .
Notice how, in contrast with reference [32], here I';(t) and A;(t) are functions of time, and allow us to
generalize the MMCA approach to evolving simplicial complexes.
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Figure 3. Effect of initial infection size on the onset of the endemic state. (a) Size of the infected population as function of A,
obtained analytically in the mean-field limit for different values of A . The basin of the infection-free state shrinks as A is
increased allowing earlier onset of endemic phase for the forward transition. Density of infected nodes for static (b) and temporal
(c) simplicial complexes as function of \| for three different initial infections, py = Oﬁl, Oﬁs, ﬁ and two different values of rescaled
simplicial infectivity, Ao = 15 (dashed curves) and Ax = 30 (solid curves). An early onset of the endemic phase is observed for
sufficiently high values of the infected seeds and Ao with an MMCA approach, compatible with our observations in (a). By
contrast, in temporal simplicial complexes, even for higher values of initial infection 3 and high simplicial infectivity, (e.g.

Aa = 30), there is a striking suppression of contagion and early onset of endemic state does not occur. We set y = 0.1, (k) = 12

and (ka) = 5 for both static and temporal scenarios.

3. Results

3.1. Social contagion on static and temporal simplicial complexes

We begin by comparing contagion processes in static simplicial complexes and in higher-order networks that
change over time. A schematic of a time-varying higher-order network is shown in figure 1 where one-simplices
and two-simplices are respectively colored in blue and yellow. In particular, we consider random simplicial
complexes (RSCs) with N = 500 nodes generated following the algorithm introduced in reference [25]. The
procedure allows to obtain homogeneous simplicial complexes with controlled generalised degree properties
[59], namely (k)), the standard pairwise degree, and (ka ), the average number of two-simplices incident on a
node. In such model, one-simplices are created akin to the Erdos—Rényi model, by connecting any pair (3, j)
of vertices with probability p,. Similarly, two-simplices are added by connecting any triplet (i, j, £) of vertices
with probability p 5. For two desired values of (k) and (ka) it is possible to choose p| and p, according to:

p= sy andpa = i 23]

We are particularly interested in studying how temporality affects the basins of attraction in the bistable
regime which separate the endemic state from the infection-free state. Thus, we simulate the contagion process
by first infecting a single node chosen at random and check whether this is sufficient or not to fall into the
absorbing state with no epidemics. In particular, we numerically track the temporal evolution of the system at
each time step t by updating the infection probabilities p;(¢) for all nodes as dictated by equation (1). We iterate
equation (1) for long time (10 000 time steps) and compute the density of infected node in the stationary state
by averaging the infection probabilities as p = %

In figure 2(a) we show p for a static RSC as a function of rescaled pairwise, A= B‘ U%, and simplicial,

Aa = Ba <k/_,A,> infection parameters. In figure 2(b) we compute p for RSCs that change over time, where at each
time ¢ we generate a new realisation of the RSC model with the same (k|) and (ka ) of the static simulations. In
both heatmaps, two distinct regions separated by the black solid curves appear, an infection-free region where
p = 0 and an endemic region where a macroscopic fraction of the nodes is infected.

In the static case, as we increase A a , the epidemic onset occurs for progressively smaller values of A in finite-
size systems. This means that the seed of infectious nodes of fixed size 3; belongs to the basin of attraction of the
infection-free state for small values of A o, while it moves to the basin of the endemic state upon increasing Aa.
Coherently with the results obtained with the mean-field formalism [25], above a critical value of A}, the system
always reaches a non-zero fraction of infected agents which grows together with Aa. It is worth mentioning
that in static structures (figure 2(a)) we find a slight anticipation of the epidemic threshold due to the MMCA
as compared to the mean-field treatment, according to which the critical threshold )\‘C =1 for Aa = 0. This
is consistent with what has been already observed in references [32, 33]. More interestingly, below this critical
value, it is still possible to end up in the endemic state due to the higher-order contributions, but only if the
seed of infectious nodes is big enough (critical mass). In this case, the system undergoes an abrupt transition.

Surprisingly, by contrast, Aa does not affect the onset of the epidemics in temporal simplicial complexes
of finite size. This is clear from figure 2(b), where the transition from the healthy to the endemic state is only
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Figure 4. Effect of temporal correlations in higher-order networks. (a) A schematic of temporal simplicial complexes with low
and high temporal correlations. (b) Size of the infected population at the steady state as a function of 3, for two different
temporal correlations, o = 0.7 and o = 0.3. The critical value of the simplicial infection rate 3% to enter the endemic state is
lower for higher temporal correlation. Both curves display an abrupt transition as a function of 3 5 . (¢) Critical simplicial
infection rate computed as a function of the temporal correlation o. The critical value 8% is higher for decreasing values of o, and
the epidemic threshold disappears below a critical value of temporal correlation o€ (gray line). This indicates that simplicial
effects are stronger in highly correlated higher-order networks. For panels (b) and (c) we set 3 = 0.85 d{?, and each point in

(c) was obtained by averaging over 100 RSCs with (k) = 12 and (ka) = 5.

observed as a function of ), with the critical point A\ = 1 coinciding with what predicted by the mean-field
approach [25]. Notice indeed that critical mass effects are completely suppressed, and below Af the same seed of
infectious nodes can never sustain the epidemics—as opposed to what happens in the static case for sufficiently
high values of Aa.

So far we have focused on forward transitions from the infection-free state to the endemic state. Yet, abrupt
transitions are typically associated to the emergence of hysteresis cycles. For this reason we also explore the
backwards transition from the endemic phase to the infection-free state by choosing the stationary-state infec-
tion probabilities obtained at the higher value of )| as the initial seeds for simulations at lower )| values. We
show the backward transitions as dashed black lines in figures 2(a) and (b) and find that they remain unaffected
by temporality.

In figure 2, we fixed the size of the initial seed of infectious nodes at p(0) = % To better characterize the two
basins of attractions in the bistable regime and the associated critical mass effects, in figure 3 we vary the initial
seed size and numerically investigate the onset of the epidemic. In particular, in figure 3(a) we first show the
analytical solution for the stationary p in the mean-field approximation derived in reference [25] as function
of A| for different values of Aa. The dashed curves represent the unstable solutions that separate the basin
of the infection-free state (p = 0) from the endemic state (p > 0). As Aa is increased, we see that the basin
of the infection-free state shrinks so that the endemic phase can be reached for progressively smaller values
of initial infection size p(0). Indeed, consistent with this, our numerical investigations on static simplicial
complexes (figure 3(b)) reveal that while a small initial infection of size py = Oﬁl does not lead to early onset
of endemic phase no matter the value of Aa, increasing the initial seed size to O'WS or 5 leads to early onsets on
the endemic phase in our system with N = 500 nodes. As expected, the onset occurs even earlier for higher
values of Aa. By contrast, in temporal simplicial complexes, as shown in figure 3(b), the onset of the endemic
phase in temporal simplicial complexes is largely independent of Aa, consistently with what was observed in
figure 2(b). This suggests that the basin of the infection-free state shrinks fast in static simplicial complexes
as Aa increases. As a consequence, the relevance of simplicial effects is strongly mitigated when we consider
temporality, a realistic feature of many real-world social systems.
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3.2. Contagion on temporally correlated higher-order networks

In the previous section we saw that introducing time-evolving structures can significantly impact contagion
on higher-order networks, by altering the basin of the infection-free state in finite-size simplicial complexes.
However, the way in which network structures evolve can be different. For instance, a social system may change
more or less quickly, giving rise to different temporal correlations among networks at consecutive times. We
thus consider as a measure of temporal correlation:

o= 1 . n(le N 1) - n(A N AL)
2T =1 n(‘t U |t+1) ”(At U At+l)’

(4)

where A, is the set of two-simplices at time # and |, is the set of one-simplices which are not part of any two-
simplex at time f, n(A; N A1) is the number of two-simplices that persist from time ¢ to the next time step
t+ land n(A; U A1) is the total number of two-simplices present at time for t + 1. Analogously, #(|; N |4+1)
and #(|; U |41) are defined for one-simplices.

In order to investigate how the evolution of the network affects the spread of contagion, we introduce a
model to systematically tune temporal correlations in simplicial complexes, where at each time the network is
described by an RSC. In details, we recursively generate a new simplicial complex at time ¢ + 1 by randomly
rewiring with probability f € [0, 1] the one-simplices and two-simplices present at time ¢. In this way, we are
able to generate a temporal sequence of RSCs. Using such a model for sparse graphs, we can tune the temporal
correlation o in an effective range between 0, describing the absence of correlation, and 1, where network
structure does not change over time. Two schematics of temporal simplicial complexes with low and high
correlation are shown in figure 4(a).

In the following analysis, we focus on the forward transition to endemic state only, as the backward tran-
sition is unaffected by temporality as observed in figure 2 (dashed curves). We first infect a single node and
simulate the epidemic process on top of two distinct sequences of temporal RSCs, one with correlation o = 0.3
and the other with correlation o = 0.7, and compute the fraction of infected nodes in the asymptotic state as a
function of S 5. As shown in figure 4(b), in both cases the endemic phase is separated by an abrupt transition
from the healthy region. The critical simplicial infection rate for the transition to occur is higher in the first
case.

We systematically investigate such phenomenon in figure 4(c), where we compute the critical simplicial epi-
demic threshold as a function of 0. We observe that 3% decreases monotonically with the temporal correlation
o and it takes its minimum value for maximally correlated RSCs, corresponding to a static simplicial complex.
Consistently with what was observed in figures 2 and 3, this suggests not only that simplicial effects are weaker
in temporal against a static setups, but that this is also the case the more diverse the temporal evolution of the
system is.

We also note that the absence of a threshold 3% for values of temporal correlation below a critical o€,
marked by a dashed vertical line, is due to the existence of a threshold of temporal correlation below which the
transition to an endemic state is not possible, no matter the value of 5.

3.3. Contagion on degree-heterogeneous temporal higher-order networks
In the previous section we investigated the effects of temporality in homogeneous simplicial complexes. We
now turn our attention to the role of degree heterogeneity in temporal higher-order networks [35-37, 60].

We generate scale-free (SF) simplicial complexes following a growth model introduced in [60], where both
one-simplices and two-simplices follow a SF distribution, and where the sequences of k and ka are maximally
correlated. Next, we obtain a temporal sequence of SF simplicial complexes via recursively performing degree
preserved rewiring at each time step such that the degree distribution of the simplices does not change. Desired
values of temporal correlation can be achieved by suitably choosing the rewiring probability.

We simulate the epidemic process on top of two distinct sequences of SF simplicial complexes correspond-
ing to the two extreme values of temporal correlation oy = 1 and o iy =~ 0. For both configurations, we
investigate two different scenarios of seeding infection, namely on the hub or on one of the leaves, and com-
pute the fraction of the infected population in the long-time limit as a function of 3 . As shown in figure 5(a),
for both hub and leaf cases, the critical value of 3% to enter the endemic state is lower for higher values of
temporal correlation, in agreement with what we found for homogeneous structures. Again, we only show the
forward transition to the endemic state as the backward transition is not affected by temporality. As expected,
seeding the infection on the hub enhances the epidemics. In particular, in the considered case, 8% decreases
by an order of magnitude when the infection is started on the best connected node of the network.

To properly quantify the effect of heterogeneity, we systematically compare the onset of the endemic state
in the heterogeneous simplicial complex as a function of both | and 5 against a homogeneous simplicial
complex with the same number of one- and two-simplices. As shown in figure 5(b), in uncorrelated temporal
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Figure 5. Effect of heterogeneity in higher-order networks. (a) Fraction of the infected population on heterogeneous SF simplicial
complexes (power-law exponents 7y = 2.2 and v, = 2.5) as a function of 3 for maximum (dashed lines) and minimum (solid
lines) temporal correlation. We consider two different scenarios for initial infection: hub (red) and leaf (blue). High temporal
correlation reduces the epidemic thresholds. (b) Epidemic thresholds as a function of 3f and 5 for heterogeneous and
homogeneous simplicial complexes with the same number of interactions for the forward (solid curves) and backward (dashed
curves) transition. On temporal SF complexes with no correlation, forward transition to the endemic state is possible for all
considered values of 8, upon increasing 35 both in the hub (red) and leaf (blue) seeding scenarios, in contrast with RSCs (green)
where the lack of temporal correlation prevents the onset of endemic phase entirely below a critical 3. For both SF and RSCs, the
backward transition to infection-free state occurs upon decreasing 3 5 , however a lower value of 3 is required for SF complex as

compared to RSCs. For panel (a), we set 5] = 0.25@, for both (a) and (b), we set 1 = 0.2, (k;) = 10, (ka) = 4.

SF complex, for the forward transition, it is possible to reach the endemic state for all 3| below a critical value
upon increasing (3. This is in contrast with RSCs where, below a critical 3, the lack of temporal correlation
prevents the onset of the endemic phase entirely, as already observed in figure 2(b). In such uncorrelated tem-
poral case, for both SF and RSCs, the backward transition to infection-free state occurs upon decreasing 5,
however a lower value of 3 is required for SF complex as compared to RSCs. Homogeneous structures are
the safer against contagion: when structural heterogeneity is present, starting the epidemic from a peripheral
node will have a milder effect than if contagion begins from the hub, but the system is more prone to reach the
endemic state compared to a homogeneous network with the same number of interactions.

4. Discussion

In this work we have investigated the effect of temporality in spreading dynamics on higher-order networks.
We focused primarily on the forward transition to the endemic state and showed that contagion processes
behave remarkably differently on temporal and static finite-size homogeneous simplicial complexes. While
in static networks the onset of the endemic state depends strongly on both 3| and (5, in random temporal
networks, where no correlations are present among time-consecutive interaction structures, the effect of the
higher-order contagion parameter is much weaker. This is linked to changes in the basins of attractions of the
epidemic-free state, which shrinks fast for static structures when increasing the infectivity of the two-simplices.
As a consequence, temporality can have a direct impact on critical mass effects—already present in the static
case [25]—Dby reshaping the basins of attractions of the system. In this scenario, a seed of infectious nodes
of a fixed size can lead the system to both the endemic and epidemic-free states according to the temporal
properties of its interactions. More in details, we investigated the effect of the initial infection size on the onset
of the endemic state, finding that while for very small values of initial infection the onset of the epidemic is
not impacted by simplicial infectivity in both static and temporal simplicial complexes, a reasonable initial
infection of size 1 leads to striking differences between the two cases. Intermediate scenarios in the forward
transition can be achieved on simplicial complexes with intermediate levels of temporal correlations. In con-
trast to the forward transition, we observed that the backward transition to infection-free state was unaffected
by presence or absence of temporal correlations.

We also investigated the effect of degree heterogeneity on higher-order contagion. We confirmed that even
in SF simplicial complexes, the absence of temporal correlations increases the infectivity required to achieve the
endemic phase. However, in contrast to homogeneous simplicial complexes, in heterogeneous structures the
lack of temporal correlations does not completely hinder the effect of simplicial infectivity, and the endemic
state can still be reached with a high enough value of S . The parameter space associated to the endemic
phase increases when the infection is seeded on a well-connected hub of the simplicial complex. However,
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even when the infection starts from a poorly connected node, the onset of the epidemics is always easier to
achieve compared to an homogeneous simplicial complex with the same number of interactions.

Reference [25] first pointed out that higher-order interactions might lead to new emergent phenomena
in spreading processes, for instance inducing new explosive contagion transitions which cannot be achieved
on traditional graphs where interactions are limited to dyadic ties. However, here we have shown that the
early onset of such explosive transitions can be delayed in absence of temporal correlations, in some cases
significantly reducing the parameter space associated to the emergence of the endemic state. As most higher-
order social networks naturally evolve, with both pairwise and group interactions changing over time [56], our
results also suggest potential strategies to control contagion, by suitably tuning the temporal network structure.

Our work corroborates some ideas recently presented in [57] on the importance of considering hetero-
geneity in disease modeling. There, the authors focus on how bursty exposure to social environments (where
the duration of higher-order interactions follows an exponential distribution) may affect contagion, showing
through a mean-field analysis that the invasion threshold decreases with higher values of burstiness. In ref-
erence [57] simplicial infectivity and burstiness are entangled together, and as a result simplicial infectivity
is never independently or explicitly explored. Our framework of simplicial contagion, instead, allows us to
explicitly disentangle temporality and simplicial infectivity. We use a different MMCA approach which oper-
ates at the level of single nodes, concluding that temporality may dominate higher-order effects in systems
where both time-varying and group interactions are present.

In the future, our temporal framework could be applied to investigate other dynamical processes recently
extended beyond pairwise interactions, including opinion [44, 61], convention [45], and evolutionary dynam-
ics [48]. Taken together, our work suggests the importance to consider temporality, a feature of many real-world
systems, when investigating dynamical processes on higher-order networks.
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