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Hyper-cores promote localization and
efficient seeding in higher-order processes

Marco Mancastroppa 1, Iacopo Iacopini 2,3, Giovanni Petri 2,4 &
Alain Barrat 1

Goingbeyondnetworks, to include higher-order interactions of arbitrary sizes,
is amajor step tobetter describe complex systems. In the resulting hypergraph
representation, tools to identify structures and central nodes are scarce. We
consider the decomposition of a hypergraph in hyper-cores, subsets of nodes
connected by at least a certain number of hyperedges of at least a certain size.
We show that this provides a fingerprint for data described by hypergraphs
and suggests a novel notion of centrality, the hypercoreness. We assess the
role of hyper-cores and nodes with large hypercoreness in higher-order
dynamical processes: such nodes have large spreading power and spreading
processes are localized in central hyper-cores. Additionally, in the emergence
of social conventions very few committed individuals with high hypercoreness
can rapidly overturn amajority convention. Our work opensmultiple research
avenues, from comparing empirical data to model validation and study of
temporally varying hypergraphs.

Network theory provides a powerful framework to describe a wide
range of complex systems whose elements interact in pairs1–4: this
theory has developed numerous concepts and techniques to char-
acterize the structure of complex networks at various scales, from the
single element (node or link) to groups of nodes to the whole system.
Moreover, networks can support dynamical processes of various
types, from spreading to synchronization phenomena3. Thus, under-
standing how network features impact such processes, or which parts
of a network play the most important role, is of crucial relevance. For
instance, hubs, nodes with a very large number of connections
(degree), are known to influence processes, such as spreading or
opinion dynamics, because of their tendency to be reached easily, and
of their ability to transmit to many other nodes1,3. The statistics of the
individual number of connections of nodes are, however, not a suffi-
ciently richcharacterization: the existenceofwell-connectedgroupsof
nodesmight be evenmore relevant. For instance, the tendency of hubs
to be connected to each other far above chance is quantified by the
rich-club coefficient5. Amore systematic way to decompose a network
into a hierarchy of subgraphs of increasing connectedness is given by
the k-core decomposition6–9: the k-core of a network is the maximal

subgraph such that all its nodes have a degree (number of neighbours
in the subgraph) at least k. This decomposition provides a fingerprint
of the network’s structure8,10–12, gradually focusing on more densely
interconnected parts of the network that were shown to play a crucial
role in spreading processes13–15. In fact, the coreness of a node, defined
as the largest value of k such that the node belongs to the corre-
sponding k-core, gives a centralitymeasure that largely determines the
impact of a spreading process initiated (seeded) in that node13. This
decomposition has also been extended toweighted networks16, via the
s-core decomposition (where s represents the strength of a node, i.e.,
the sum of the weights of its adjacent links)17, to temporally evolving
networks18,19, to multilayer networks20 and to bipartite networks21–23.

Despite their convenience, network representations are limited to
systems composed of only dyadic interactions. However, recent works
have made clear that many real systems include interactions between
groups of units24,25. Examples range from group conversations26 to
research teams27, from neural systems28 to interactions between spe-
cies in ecosystems29. Analogously, considering apurely dyadic network
substrate for the unfolding of processes, such as consensus formation
or (social) contagion, could put a limit on the ability to describe key
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mechanisms that are at play. For instance, reinforcement mechanisms
—in which two or more people can convince others in a group con-
versation—cannot be naturally accounted for by considering only
dyadic interactions30–33. In these cases, systems and processes can be
effectively represented within the framework of hypergraphs, a
“higher-order” generalization of networks in which nodes can interact
in hyperedges, groups of arbitrary size25,34,35. Higher-order interactions
give rise to both novel structures36–38 and phenomena24,39, highlighting
the importance of characterization tools able to detect hierarchies and
relevant subparts of systems that are better represented by
hypergraphs.

Here, we contribute to this endeavour by studying the decom-
position of a hypergraph in (k,m)-hyper-cores, which are defined as a
series of subhypergraphs of increasing connectivity k, ensured by
hyperedges of increasing sizesm40 (this definition is, in fact, equivalent
to the one of two-mode cores in bipartite networks21–23). We apply this
decomposition to a wide range of data sets, representing systems of
different nature: this highlights how such decomposition identifies
non-trivial mesoscopic higher-order structures, in particular when
comparing it to the one obtained in suitable null models. The
decomposition in hyper-cores leads us to the definition of the hyper-
coreness, a new family of centralitymeasures for nodes in hypergraphs
based on their degree of inclusion in hyper-cores. Finally, we investi-
gate the role of the hyper-cores, and of the nodes with the largest
hypercoreness, in paradigmatic spreading and consensus processes
based on group interactions32,41,42. We show that spreading processes
tend to be localized on hyper-cores associated to large k and m. We
then study the performance of hypercoreness-based strategies to
identify influential nodes in sustaining and driving higher-order pro-
cesses.Wefind that hypercoreness canbe effectively used tomaximise
the total outbreak size in higher-order spreading processes41,42 and to
help committed minorities reach the tipping point leading to the
systemic takeover in social convention games43.

Results
Hyper-core decomposition and hypercoreness
The hyper-cores, i.e. the higher-order cores of a hypergraph, allow us
to define a systematic decomposition of a hypergraph in a double
hierarchy of nested subhypergraphs of increasing connectedness and
hyperedge sizes. Let us consider a (static) hypergraphH= ðV, EÞ, where
V is the set of its N = jVj nodes and E is the set of its hyperedges25. We
recall that a hyperedge e = {i1, i2, . . . , im} is a set of m nodes, which can
thus represent a group interaction between these nodes. We denote
by M =maxe2E jej the largest hyperedge size in H. Each node i 2 V
can be characterized by a vector of degrees d(i) = [d2(i),d3(i), . . . ,
dm(i), . . . , dM(i)] whose component dm(i) denotes the m-hyper-degree
of the node i, i.e., the number of distinct hyperedges of sizem towhich
it belongs. We denote by Dm(i) =∑p≥mdp(i) the number of distinct
hyperedges of size at leastm to which i belongs.

The (k,m)-hypercore is defined as the maximum subhypergraph
J induced by the set of nodes A � V and with hyperedges of size at
leastm, such that 8 i 2 A,DJ

mðiÞ≥ k, whereDJ
mðiÞ denotes the number of

distinct hyperedges of size at least m in which i is involved within the
subhypergraph J 40. In other terms, all the nodes in the (k,m)-hyper-
core belong to at least khyperedges of size at leastm, within the hyper-
core itself. The set of hyperedges of the subhypergraph J , induced by
the set A � V, is defined by S = fe \A s.t. e 2 E ^ je \Aj≥mg44, i.e., a
hyperedge of S is a subset of a hyperedge of E, of size at least m and
containing only nodes ofA. Note that hyperedges of S might thus not
be in E, but they can still be interpreted as existing interactions if one
assumes that subsets of a set of interacting nodes are indeed inter-
acting. As our study will focus on the sets of nodes forming the various
hyper-cores, rather than on their sets of hyperedges, this considera-
tion does not impact our results. We also note that this definition of
hyper-cores is equivalent to the one of two-mode cores in bipartite

networks, upon mapping a hypergraph onto a bipartite representa-
tion, in which nodes represent either hyperedges or nodes of the
hypergraph, and each hyperedge is connected to its elements21–23,45.
The (k,m) two-mode-core of a bipartite graph corresponds indeed to
the bipartite subgraphs inwhich the nodes have degree respectively at
leastm (for the nodes representing hyperedges) and k (for the nodes
representing nodes of the hypergraph). The earlier works introducing
such concepts21–23 have indeed mostly focused on their interpretation
in bipartite networks, rather than for hypergraphs (see however40), and
have shown their interest for visualisation purposes21 but did not study
how empirical data can be systematically decomposed into hyper-
cores, nor the interplay between hyper-cores and dynamical processes
on hypergraphs.

To obtain the (k,m)-hyper-core of a hypergraph, one can first
remove from E all hyperedges of size smaller than m. One then
removes recursively fromV all nodes iwithDm(i) < k, until all the nodes
in the remaining subhypergraph are involved in at least k hyperedges
of size at least m. Note that this process does not correspond only to
the removal of nodes with Dm(i) < k in the original hypergraph H:
indeed, each time a node is removed, the sizes of the hyperedges to
which it belongs decrease by one unit. Thus, the removal of a node can
induce the removal of some of the hyperedges to which it belongs, if
their size becomes less than m, or if they fully coincide with already
existing hyperedges. In Fig. 1 we illustrate the process on an example
hypergraph and highlight some of its (k,m)-hyper-cores. The
straightforward implementation of the procedure to obtain the com-
plete (k,m)-core structure of a hypergraph H= ðV, EÞ features a time
complexity that scales as MðN + jEj logðjEjÞÞ (see the Code Availability
for an implementation, and the Supplementary Note 7 in

Fig. 1 | Sketch of the (k,m)-hyper-core decomposition. We show a hypergraph
and highlight some of its (k,m)-hyper-cores. Note the inclusions as k orm increase:
the (1, 2)-hyper-core contains the (1, 3)-hyper-core, which contains the (2, 3)-hyper-
core; similarly the (1, 2)-hyper-core contains the (2, 2)-hyper-core which contains
the (2, 3)-hyper-core. On the other hand, the (1, 3)-hyper-core and the (2, 2)-hyper-
core share somenodesbut neither is included in the other. The greennodes belong
to the (1, 2)-hyper-core but neither to the (1, 3)- nor the (2, 2)- ones. The blue nodes
belong to the (1, 3)-hyper-core but are excluded from the (2, 3) one. Orange nodes
belong to the (2, 2)-hyper-core but are excluded from the (2, 3) one because they
belong only to hyperedges of size 2. The (1, 4)-core and (1, 5)-core contain all the
nodes involved respectively in at least one interaction with m ≥ 4 and m ≥ 5 (for
simplicity these cores are not highlighted). The (k, 2)-cores and (k, 3)-cores with
k ≥ 3, and the (k, 4)-cores and (k, 5)-cores with k ≥ 2 are all empty. Notice that the
node i does not belong to the (2, 3)-core even if D3(i) = 2 because of the recursive
and interaction downgrading mechanisms of the decomposition; in the (1, 3)-core
and (2, 3)-core the pairwise interactions ei∀ i∈ [1, 5] are excluded, thus the (1, 3)-
core is composed of two disjoint subhypergraphs.
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the Supplementary Information, SI, for further details; we also note
that efficient algorithms have been proposed in the context of bipar-
tite graphs23).

As k andm increase, the (k,m)-hyper-cores progressively identify
groups of nodes increasingly connected with each other through
interactions of increasing order. In fact, the (k,m)-hyper-core includes
the (k,m + 1)- and (k + 1,m)-hyper-cores (Fig. 1). We define the m-shell
indexCm(i) of a node i as the value of k such that ibelongs to the (k,m)-
hyper-core but not to the (k + 1,m)-hyper-core. The (k,m)-shell S(k,m)

can then be defined as the set of all nodes whose shell index Cm(i) at
size m is k, and we denote by km

max the maximum value of k such that
the shell S(k,m) is not empty. The ratio CmðiÞ=km

max thus quantifies how
well-connected node i is in the hypergraph when considering group
sizes at least m. As this ratio is a function of m, different nodes have
different functions, which can potentially exhibit very different func-
tional shapes (see Supplementary Figure 5 in the SI for examples). It is
therefore impossible to use such functions to compare and rank
nodes. This suggests to use another strategy, namely, to construct a
scalar capable of summarizing the centrality properties of a node with
respect to the hyper-core decomposition. We thus define a family of
centrality measures that we call hypercoreness. Specifically, we define
for each node i its g-hypercoreness Rg(i) as:

Rg ðiÞ=
XM

m= 2

gðmÞCmðiÞ=km
max , ð1Þ

where g(m) is an arbitrary weight function, which canweigh differently
the various possible sizes of higher-order interactions.Rg is thus now a
scalar that can be used to rank nodes. The simplest case is given by the
size-independent hypercoreness R, which weighs equally all group sizes
by using g(m) = 1,∀m. Alternatively, the function g could be used to
emphasise hyperedges of larger or smaller sizes, or a specific value
(e.g. by using g(m) = δ(m −m*) if m* is a specific size of interest for a
dynamical process). In the spirit of a data-driven measure, we also
consider the frequency-based hypercoreness Rw, where the function g is
informed by each data set and weighs each group sizem by its relative
abundance in the data:

RwðiÞ=
XM

m= 2

ΨðmÞCmðiÞ=km
max , ð2Þ

where Ψ(m) is the fraction of hyperedges of size m in the considered
data set. The rationale behind using such a weight function is to give
more importance to the more frequent hyperedge sizes.

Hyper-core decomposition of empirical hypergraphs
To illustrate thedecompositionprocesses along (k,m)-hyper-cores, we
rely on a number of empirical hypergraphs, obtained from publicly
available data sets, that describe a variety of systems of agents inter-
acting in different environments. In particular, we consider data sets of
face-to-face interactions between individuals, collected in contexts
ranging fromworkplaces to schools46–49. We also use data sets of email
communication (email-EU, email-Enron50–52) and of other online
interactions: online reviews of products (music-review52,53) or opinion
exchanges in scientific forums52,54. We moreover consider data
describing committees membership (house-committees, senate-
committees52,55,56) and bills sponsorship (congress-bills, senate-
bills52,55,57,58) in the US Congress. Finally, we use ecological data sets,
describing pollination interactions between plants and insects
species59–61. These data sets cover a wide range of system sizes and of
interaction size distributions (see Methods and Supplementary Note 1
in the SI, for a detailed description of each data set). In the following,
we give results on the music-review, email-EU, house-committees, and
congress-bills data sets, and we refer to the SI for the other data sets.

Figure 2 shows the results of the hyper-core decomposition on
two data sets. The relative size n(k,m) of the (k,m)-hyper-cores exhibits
distinct behaviors as a function of k and m, identifying structural dif-
ferences between data. In some cases, the decrease with k is rather
smooth (Fig. 2a and Supplementary Figs. 2 and 3 in the SI), showing
that most shells are populated. In other cases, abrupt drops and pla-
teaus can be observed (Fig. 2e and Supplementary Figs. 2 and 3 in the
SI), corresponding to alternatively empty and densely populated
(k,m)-shells (see also Supplementary Figure 4 in the SI for the sizes of
the (k,m)-shells vs. k and m).

These differences indicate that the (k,m)-hyper-cores could be
used to provide a fingerprint of hypergraphs, just as the k-core
decomposition provides afingerprint of networks8,10,12.We explore this
point further in Fig. 2b, f, by comparing the hyper-core decomposition
of empirical data with the ones of randomized versions that preserve
the distribution of hyperedges sizes and the hyper-degrees of each
node (see Methods for details on the randomization). The most com-
mon pattern obtained in the data sets considered (see also SI) consists
in significantly smaller hyper-core sizes in the data for low values ofm
and k, and significantly larger sizes at large values of m and k. In par-
ticular, km

max is most often smaller in the data for m ≤m0 (m0 = 3 in
Fig. 2b) but larger form >m0 (see also SI). This shows the existence of
structures that are more strongly connected by hyperedges of large
size in the data than in their randomized counterparts, i.e., that cannot
be explained by the distribution of hyperedge sizes nor by the het-
erogeneity of node degrees. Such results provide evidence of non-
trivial hierarchical arrangement of hyperedges connectivity in data,
which should thus be taken into account for realistic hypergraph
modeling.

The distributions of hypercoreness values also differ across data
sets, as illustrated in the rank-order plots of Fig. 2c, d, g, h and in the SI:
some data sets have an almost uniform distribution of values, others
feature few nodes with high hypercoreness and many nodes with
medium hypercoreness, or vice-versa. We also show in the SI some
typical examples of the normalized m-shell index function Cm(i) as a
function ofm for various nodes. As anticipated above, the diversity of
these functions and of their shapes makes it difficult to compare them
and justifies the need to define summary indices such as the
hypercoreness.

We finally compare in the insets of Fig. 2c,d,g,h the hypercoreness
R and Rw with the centrality of nodes obtained by disregarding the
higher-order nature of the interactions and projecting the hypergraph
H onto a network. To this aim, we transform each hyperedge in a
network clique, and each edge (i, j) of the resulting network is weigh-
ted by the number of distinct hyperedges in H involving both i and j.
We then perform the s-core decomposition of this weighted network
and assign its s-coreness S(i) to each node i17. As expected, since all
measures deal with coreness concepts, S(i) and R(i) are positively
correlated, as well as S(i) and Rw(i). However, they do not provide
exactly the same information, and the hypercoreness measures
enhance the information given by the s-coreness by providing an
internal hierarchy within the nodes of maximal s-coreness, thanks to
the fact that the hypercoreness centralities take into account not only
the connectivity but also the sizes of the connecting hyperedges. That
is, nodes presenting the same s-coreness values can spanabroad range
of hypercoreness values.

Having illustrated the relevance of the hyper-cores on empirical
hypergraphs, we nowmove to study the role that these substructures
play in dynamical processes on hypergraphs. In particular, we are
going to investigate whether the (k,m)-hyper-cores and the hyper-
coreness centralities can be used to identify nodes and structures
relevant for spreading and consensus processes whose mechanisms
are explicitly defined on hyperedges. To this aim, we will consider
different models of spreading processes that have been recently well
studied and shown to exhibit interesting new phenomenology driven
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by higher-order effects41,42, and a consensus formation model that has
been shown to reproduce well-experimental results on the effect of
critical masses of committed individuals62, and where higher-order
effects have also been shown recently to influence this
phenomenology32.

Higher-order contagion processes localize in hyper-cores, and
high hypercoreness seeds increase total outbreak size
Networks are widely used to describe the substrate on which con-
tagion processes take place, such as the spread of pathogens or
information. In standard diffusion modeling approaches, nodes
represent individuals that at any time can be in one of several possible
states, such as S (susceptible), I (infectious) or R (recovered); S nodes
become I at rate β when they share a link with an infectious (I) indivi-
dual, while infected (I) nodes recover spontaneously at rate μ, either
becoming again susceptible (S), in what is usually called the SIS
model63, or becoming recovered (R) in the so-called SIR model.
Recently, several models have been proposed to take into account
possible higher-order mechanisms, that amount to reinforcement
mechanisms affecting the contagion probability due to the simulta-
neous exposure to multiple sources of infections in group
interactions30,41,64,65. For instance, in a social contagion process, the
probability that an individual is convinced upon separate exposures to
two “infectious”neighbours canbe reinforced if these exposures occur
during a group discussion featuring the three individuals altogether.

Here, we show that hyper-cores and nodes with large hyper-
coreness centralities play a crucial role in the dynamics of higher-order
spreading processes. To this aim, we consider the recently proposed
higher-order nonlinear contagion41. In this model, each susceptible
node in a hyperedge of sizem in which there are i infected individuals
becomes infectious with rate λiν, where ν controls the non-linearity of
the process (for ν = 1 the usual linear contagion is recovered, while for

ν > 1 non-linearities are introduced) and λ∈ [0, 1] (see Methods for
details). Infected individuals (I) recover independently at constant rate
μ, becoming either susceptible S (SIS model) or R (SIR). The higher-
order nature of contagion produces novel effects on the epidemic
phenomenology, including abrupt transitions with bistability in the SIS
phase diagram and intermittent regimes42,64. Moreover, hyperedge
size has been shown to play an important role for such higher-order
nonlinear contagion processes: on the one hand, in a stationary state,
the infection tends to localize on large hyperedges41; on the other
hand, nodes belonging to large groups are optimal seeds—in terms of
spreading speed—at the beginning of an outbreak41. Nevertheless,
which nodes among these large groups are most important for the
contagion, both in terms of being infectious more often in an SIS
process, or in terms of having large spreading power, remains an
unexplored issue. In spreading processes on networks the coreness
has been shown to correlate with spreading properties of nodes13.
Thus, here it seems natural to investigate which role the connectivity
properties of large hyperedges play in higher-order contagion pro-
cesses: does the infection process localize more strongly in hyper-
cores of large k and m and/or on nodes with large hypercoreness
values? Do nodes with higher hypercoreness have larger
spreading power?

To investigate these points, we perform numerical simulations of
the higher-order nonlinear contagion model on empirical hyper-
graphs. In the SIS case, the system is initialized with one single seed of
infection (a randomly chosen node in state I) in an otherwise fully
susceptible population.We let the process evolve (seeMethods)until a
steady state is reached in which the number of infectious individuals
fluctuates (we consider parameter values such that the epidemic does
not die out rapidly). We then consider a finite time-window T and
measure for each node j the time τ(j) it spends in the I state during that
window. In this way we identify the nodes on which the epidemic is

Fig. 2 | Hyper-core decomposition of empirical hypergraphs. Panels a, e show
colormaps giving the relative size n(k,m) (number of nodes in the hyper-core, divi-
ded by the total number of nodes N) of the (k,m)-hyper-core as a function of k and
m (white regions correspond to n(k,m) = 0). In the insets, n(k,m) is shown as a func-
tion of k at fixed values ofm. Panels b, f show colormaps giving the z-score z(k,m) of
the (k,m)-hyper-core relative size, with respect to 103 shuffled realizations of the
hypergraph, as a function of k and m (values of z(k,m)∈ (−1.96, 1.96) are shown in
white). In panels c, g the size-independent hypercoreness R(i) is plotted as a
function of the corresponding node rank; the insets give scatterplots of R(i) vs. the

s-coreness, S(i), for all nodes. Panels d, h are the same as c, g, but for the frequency-
basedhypercorenessRw(i). In panelsa–dweconsider the email-EUdata set:R(i) and
S(i) have a Pearson correlation coefficient of ρ =0.90 (p-value p≪0.001) and the
corresponding rankings have a Kendall’s τ coefficient of τ =0.85 (p≪0.001), while
Rw(i) and S(i) have ρ =0.90 (p≪0.001) and τ =0.85 (p≪0.001); in panels e–h we
consider the music-review data set: R(i) and S(i) have ρ =0.74 (p≪0.001) and
τ =0.58 (p≪0.001), while Rw(i) and S(i) have ρ =0.98 (p≪0.001) and
τ =0.89 (p≪0.001).
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mainly localized in the steady state, i.e. the nodes thatdrive and sustain
the process. In the SIR case instead, the dynamics starts from a single
seed and evolves until no individual is in the state I anymore (only
nodes in states S or R remain). To quantify the “spreading power” of
each node j considered as an individual seed, we average the final
epidemic sizeR∞(j), i.e., the number of nodes in stateR at the endof the
process, over 300 stochastic runs for each seed.

Figure 3 reports results of simulations performed on the
music-review and house-committees data sets (see SI for the other
data sets). Panels 3a and c show that nodes in (k,m)-hyper-cores
with either increasing k or m tend to be more often infectious
during the SIS process, as τ(j)/T averaged over all nodes of each
(k,m)-hyper-core increase with k and m. This implies that the SIS
process is more localized in the (k,m)-hyper-cores with large k
(which favors connectedness, hence mutual reachability) and m
(i.e., large hyperedges where large values of i can be obtained
yielding large infection rates). The insets show how the depen-
dency on the connectivity k is non-trivially affected by m, the
minimal group size considered. Moreover, Fig. 3b and d show that
the final epidemic size 〈R∞(j)〉 of SIR processes, averaged over all
nodes of each (k,m)-hyper-core, increases both with k and m, with
the insets emphasizing how the minimal connectivity k impacts the
dependency on the group-size m.

Many centrality measures have been defined for nodes in a net-
work. Among them, the coreness centrality is particularly suited to
identify important nodes in spreading processes on networks13.
Moreover, it has been shown that nodes belonging to hyperedges of

large size are important in nonlinear spreading on hypergraphs41.
These earlier results, together with the results of Fig. 3, prompt us to
investigate whether the hypercoreness centrality measures are able to
identify the nodes with the most important role in the higher-order
nonlinear contagion process, and to compare their performance with
coreness concepts based on a network representation that does not
take group sizes explicitly into account. We thus rank the nodes
according to the fraction of time τ/T spent in the I state during the SIS
process. Figure 4a and c show the Jaccard coefficient between the first
fNnodes according to this ranking and the first fNnodes according to a
ranking based on one of the considered centralities: the size-
independent hypercoreness R, the frequency-based hypercoreness
Rw, the s-coreness S, and the k-coreness (unweighted version of the s-
coreness). The larger the Jaccard coefficient is, the better the centrality
identifies nodes on which the SIS process tends to be localized. The
results show that both R and Rw are more able to uncover the 10% of
nodes where the process is most localized, with especially good per-
formances obtained by the frequency-based hypercoreness in some
data sets. The insets of panels a and c present similar results under a
different angle: namely, they display the average of τ/T over the fN
nodes with the highest hypercoreness R or Rw, or the highest k- or s-
coreness. Nodes with highest coreness tend to be more often in the
infectious state, and this tendency is stronger for the hypercoreness
centralities than for the k and s-coreness: among the nodes with the
largest values of k- or s-coreness, the hypercoreness centralities allow
to distinguish which ones are the most involved in the higher-order
spreading processes. Overall, the hypercoreness centralities thus

Fig. 3 | Hyper-cores for seeding and localization in higher-order nonlinear
contagion processes. For the SIS model, panels a and c give the heatmap of the
average fraction of time 〈τ/T〉 of infected nodes in the steady state as a function of k
and m. Averages are computed over all the nodes of each (k,m)-hyper-core. The
insets represent 〈τ/T〉 as a functionof k for fixedvalues ofm. All results are obtained
by averaging the results of 103 numerical simulations, with an observation window
T = 103. For the SIRmodel, panelsb andd show theheatmapof the averagefinal size

of the epidemic 〈R∞〉 as a functionof k andm, where theprocess is seeded in a single
node belonging to the (k,m)-hyper-core (averaged over all nodes of the hyper-
core). The insets represent 〈R∞〉 as a function ofm for fixed values of k. All results
are obtained by averaging the results of 300 numerical simulations for each seed.
Panels a and b: music-review data set with ν = 1.25, λ = 5 × 10−4 (a) and ν = 3,
λ = 5 × 10−4 (b). Panels c and d: house-committees data set with ν = 1.25, λ = 5 × 10−4

(c) and ν = 4, λ = 5 × 10−5 (d). In all panels μ =0.1.
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perform better at identifying nodes on which the spreading gets more
localized than coreness measures that ignore the size of hyperedges,
i.e., are based on a network representation.

The panelsb andd of Fig. 4 convey similar results for the SIR case:
hypercoreness centralities better identify the nodes with highest
spreading power than coreness centralities which do not take group
sizes into account, and the nodes with higher hypercoreness lead to
larger epidemics (insets), determining a hierarchy even among the
nodes with the highest k- or s-coreness; nodes with higher con-
nectedness along groups of larger sizes can seed more efficiently the
contagion process, and the hypercoreness centralities identify well the
nodes with the highest spreading power.

In the SI we show that a similar phenomenology is obtained with a
different model of contagion involving higher-order mechanisms42,64,
for both SIS and SIR.

Hyper-core seeding facilitates systemic takeover by minor-
ity norms
Group interactions can also play an important role in the formation of
consensus and the emergence of shared conventions in a population.
In the context of addressing societal challenges, critical mass theory
predicts that regular individuals might benefit from the presence of a
committed minority that aims at overturning the status quo66.
Recently, it has been shown that group interactions can influence this
takeover32. An important issue in this respect concerns the best
“seeding” strategy –where should the committed minority start from

in order to best achieve the takeover? Here we show how hypercore-
ness centralities can provide an answer.

We consider the well-known naming-game (NG) model43, which
describes how a shared convention can emerge in a population of
interacting agents62,67,68, in its minimal version modified to take group
interactions into account32. Individuals are represented by theN nodes
of a hypergraph, and each node is endowed with a dictionary that can
contain at most two names (representing conventions or norms), A
andB. At each time-step ahyperedge is chosen randomly and a speaker
is randomly selected within it. The speaker randomly chooses a name
from its dictionary and communicates it to the other hyperedge
members (the listeners), who can agree or not on the proposed name.
Todetermine the possibility of an agreementwithin the hyperedge, we
consider two alternatives32: (i) the union rule, for which an agreement
can be reached if at least one of the listeners has the proposed name in
its dictionary; (ii) the unanimity rule, for which the agreement can be
reached only if all nodes in the group have the proposed name in their
dictionary. A parameter β∈ [0, 1] modulates the social influence by
controlling the propensity of the listeners to accept the local con-
sensus: the group agreement becomes effective only with probability
β. In this case, all nodes in the hyperedge add the accepted name to
their dictionary, if it was not already present, deleting all others. If
instead no agreement is reached, the listeners simply add the name
given by the speaker to their dictionaries.

The population includes a committed minority of Np individuals
who do not obey these rules whenever they are listeners, but instead

Fig. 4 | Centralities performance in identifying nodes with highest importance
in higher-order nonlinear contagion processes. Panels a, c give the average
Jaccard similarity 〈Jτ〉 between the nodes in the top fN positions of the rankings
basedeither on the fractionof time τ/T spent in the I state during the SIS process, or
on each of the centralities considered (see legend), vs. f. The insets represent, as a
function of f, the fraction 〈τ/T〉f averaged over the first fN nodes according to the
different coreness rankings. Panels b, d show the average Jaccard similarity hJR1

i

between thenodes in the top fNpositions of the rankingsbased either onR∞, i.e. the
average epidemic final-size produced by seeding the SIR process in each node, and
each of the centralities considered, vs. f. The insets give the average epidemic final-
size hR1if , averaged over the first fN nodes according to coreness rankings, as a
function of f. Panels a, b refer to the music-review data set, panels c, d refer to the
house-committees data set. The parameters and simulation conditions are fixed as
in Fig. 3.
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stick to their norm, a single name A (their dictionary is never updated).
Such individuals have also been called “zealots” in various models of
opinion dynamics69–71. We initiate the process with the rest of the
population, i.e. the majority, having only the name B. The system can
evolve towards different regimes of co-existence of the two names or
of dominance of one name, depending on β, on the considered rule,
and on the relative size of the minority p =Np/N. In particular, the
committed minority can overcome the majority, with the whole
population converging on A, for a range of intermediate values of β
and for large enough p. When committed individuals are chosen at
random in the population, this range increases when the hypergraph
contains hyperedges of larger sizes32. This naturally raises the question
of whether the committedminority might also benefit from belonging
to specific substructures, such as hyper-cores with large connected-
ness and group sizes.

We investigate this issue through numerical simulations of the
higher-order NG process on empirical static hypergraphs, selecting
committed individuals with different seeding strategies: (i) at random
from the entire population (random); (ii) as theNponeswith the highest
size-independent hypercoreness R or frequency-based hypercoreness
Rw (top hypercoreness); (iii) as the Np ones with the highest s-coreness
(top s-coreness) or k-coreness (top k-coreness) in the projected graph.
In each case, wemeasure the fraction nAof nodes holding onlyA in their
dictionary (both committed or not), and focus on its large time limit n*

A.
Figure 5 reports the simulation results for two empirical data sets,
congress-bills (a–e) and the email-EU (f–j) (see SI for the other data
sets). For the randomstrategy, we recover the results of32: for low values
of β, a co-existence state of A and B is observed; at a low fraction of
committed and large β values, the majority remains B. At intermediate
β, the minority takes over and the whole population converges on A.

To go further, we consider non-random strategies, in which the
committed individuals are selected according to a centrality

criterion. In particular, we consider different scenarios in which
committed individuals are placed on the most central nodes
according either to their k- or s-coreness, i.e., without taking group
sizes into account, or according to one of the considered hyper-
coreness centralities. Figure 5 shows, for two data sets, that even if
different scenarios yield the same phenomenology, the choice of the
seeding strategy can strongly enhance the range of parameters in
which the minority overturns the majority (black-coloured regions).
Results on the other data sets are reported in the SI. We note that the
size-independent hypercoreness R tends to be globally more effec-
tive at enabling the minority takeover than the frequency-based one
Rw. This might be due to the fact that seeding and convincing very
large groups can have an enormous effect in the NGdynamics, even if
they are rare in the data (belonging to such large groups is less
emphasized in Rw than in R). In general, a tiny fraction of committed
individuals, selected according to their hypercoreness centrality, is
able to take over on a wide range of β values (for low β values, a co-
existence regime is observed whatever the seeding strategy –due to
the small propensity to accept a local consensus32). The value of
critical mass pc necessary to bring the system to the tipping point at
fixed β is also strongly lowered for the top R hypercoreness strategy.
For instance, in the congress-bills data set with unanimity rule and
β = 0.62, the critical mass for the top size-independent hypercore-
ness strategy is pR

c =6:4× 10
�3 (pRw

c = 7:0× 10�3 for the top frequency-
based hypercoreness strategy), as compared to pr

c =2:68× 10
�2,

pk
c =2:2× 10

�2 and ps
c =2:04× 10

�2 obtained with the random, the top
k-coreness and top s-coreness strategies respectively (see Fig. 5a–e);
similarly, in the email-EU data set with union rule and β = 0.83, these
values are respectively pR

c =3:1 × 10
�3, pRw

c = 1:3 × 10�2, pr
c = 1:53× 10

�2,
pk
c =6:1 × 10

�3, ps
c =9:2 × 10

�3 (see Fig. 5f–j).
The hypercoreness centralities are overall particularly effective in

identifying nodes with a crucial role in higher-order NG processes.

Fig. 5 | Comparisonof seeding strategies for committedminorities in a naming-
game process. The stationary fraction n*

A of nodes supporting only the name A is
shown as a function of the fraction of committed nodes p and the agreement
probability β. a–e: congress-bills data set with unanimity rule. f–j: email-EU data set
with union rule. Committed nodes are selected through random seeding (a, f), top
k-coreness (b, g), top s-coreness (c,h), top frequency-based Rw hypercoreness (d, i)
and top size-independent R hypercoreness (e, j) strategies. With the top R hyper-
coreness strategy, a fraction p = 1.51 × 10−2 in the congress-bills data set with
unanimity rule is enough to allow the minority takeover over a range of β values
whose extension is Δβ ≳0.5. This cannot be achieved with the other strategies, for
which below p = 2.8 × 10−2 only Δβ ~ 0.4 can be reached (see panels a–e). In the
email-EUdata setwith the union rule, a fraction p = 4.1 × 10−3 is enough to obtain the

minority dominance over Δβ ≳0.5 when seeded according to the top size-
independent R hypercoreness strategy. With the top s-coreness and the random
strategies the same result is obtained only for p = 1.33 × 10−2 and p = 1.74 × 10−2

respectively (panels f–j). The minority takeover, i.e. n*
A = 1, takes place for 7.9% of

the explored parameter space in panel a, 13.8% in b, 16.3% in c, 23.0% in d, 41.5% in
e, 37.0% in panel f, 51.9% in g, 45.9% inh, 45.2% in i and 56.4% in j. All simulations are
run until the absorbing state n*

A = 1 is reached or the dynamics has evolved for
tmax = 5 × 105 time steps. The stationary fraction n*

A is obtained by averaging over
100 values sampled in the last T = 5 × 104 time-steps. Results refer to the median
values obtained over 200 simulations for each pair of parameter values. Cross
markers indicate the (β, p) values considered for Fig. 6.
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Indeed, nodes belonging to (k,m)-hyper-cores with large values of k
and m, if committed, can convince many others through their simul-
taneous presence in several large groups. This is efficiently sustained
by their large connectedness, favouring convergence on their con-
vention even outside of the committed minority. In addition, Fig. 6
illustrates how, even when all seeding strategies lead to the agreement
on the convention initially supported by the minority, the hypercore-
ness seeding strategies lead to particularly fast convergence. As also
shown for other data sets in the SI, the convergence processes
obtained using seeding strategies based on hypercoreness are always
among the fastest explored.

Discussion
Here we have considered a systematic procedure to extract, from a
given hypergraph, structures of increasing connectedness along
increasing group sizes: the (k,m)-hyper-cores, in which each node is
connected to the others by at least k hyperedges of sizes at leastm. We
have defined a new family of centralities in hypergraphs: a node
hypercoreness summarizes its relative depth in the hierarchies of
hyper-cores at all orders. We have specifically considered two among
the arguably most natural choices in this family, the size-independent
hypercoreness, which does notput anybias towards a specific size, and
the frequency-based hypercoreness, which directly takes into account
the distribution of group sizes in each data set. Using empirical data
describing a variety of higher-order systems, and using a comparison
with a null model, we have illustrated how the (k,m)-hyper-cores
provide a (statistically significant) fingerprint of empirical

hypergraphs. Crucially, we have also highlighted howhyper-cores with
increasing k and m play important roles in several dynamic processes
with higher-order mechanisms unfolding upon hypergraphs, such as
contagion processes and consensus formation. The hypercoreness
centrality identifies nodes with high spreading power and on which
stationary contagion processes tend to localize; moreover nodes with
high hypercoreness centralities, if belonging to a committedminority,
can be particularly efficient at overturning a majority convention. As
the coreness measures defined on the network representation of each
data set are known to also provide indication on a node’s importance
for several dynamical processes, we have performed a comparison
between coreness centralities that do not take into account group
sizes and hypercoreness centralities. We have shown how the hyper-
coreness determines a hierachy among nodes with the same coreness
in the projected graph, how it better identifies the most important
nodes in several higher-order spreading processes and also provides
powerful seeding strategies for committed individuals in the emer-
gence of social conventions.

Our work opens the door to several research directions in the
expanding field of hypergraphs structure and dynamics. It can provide
an additional systematic characterization of both empirical andmodel
hypergraphs, and thus a model validation tool as well as a comparison
method between hypergraphs (e.g. by computing distances between
the (k, m)-hypercore profiles of Fig. 2). For systems where additional
properties of thenodes are known, the shell indices andhypercoreness
values of nodes could be compared in more detail to provide insights
into their relative positions and roles in the system. Moreover, two
limitations of our study canbenoted: (i) the fact that our results rely on
numerical investigations, and (ii) the range of types of dynamical
processes we have considered, namely spreading processes (although
we considered two different higher-order infection mechanisms, and
both SIS and SIRmodels in each case) and consensus formation.On the
one hand, obtaining analytical insights on the role of various centrality
measures on the spreading power of nodes in hypergraphs would be
an important achievement. However, understanding which nodes are
the most influential spreaders is a challenging task with very few ana-
lytical results even in usual networks (typically limited to mean-field
approaches and the role of the degree centrality), while most
approaches are heuristic and numerical72–75. On the other hand, further
works should investigate the interplay between hyper-cores and
hypercoreness and other dynamical processes on hypergraphs24,33,
ranging from other opinion formation models76–78, to cooperation79

and synchronisation80,81. Relevant questions could include e.g., whe-
ther nodes with higher hypercoreness can drive cooperation more
efficiently, or whether synchronisation occurs preferentially, andmore
rapidly, in more central hyper-cores.

Moreover, while here we focused on static hypergraphs, many
such systems evolve in time82–84. Hyper-cores and hypercoreness could
be used to investigate the evolution of the higher-order interactions at
multiple scales, from theglobal evolution of the structuredescribedby
hyper-core sizes, to the changes in shell indices and hypercoreness of
individual nodes8. An interesting case study in this direction could be
for instance the evolution of the hyper-core positions of scientists in
co-authorship “networks”, which are indeed evolving hypergraphs82.

Methods
Data description and preprocessing
Several data sets we considered are publicly available in the form of
static hypergraphs, thus they do not require any preprocessing. These
data sets describe:

• email communications: within a European institution (email-
EU50), and within Enron, between a core-set of workers (email-
Enron51,52). Each node corresponds to an email address and a
hyperedge includes the sender and all receiversof anemail. Note
that the original data is directed from the sender to the

Fig. 6 | Temporal dynamics of minority takeover with different seeding stra-
tegies for committed minorities in the naming-game process. Panels a, b show
the temporal evolution of the fraction of nodes supporting only the name A, nA(t),
for the different seeding strategies for the committedminority and for fixed values
of the agreement probability β and of the fraction of committed nodes p (see the
cross markers in the heatmaps of Fig. 5), (a): congress-bills data set with unanimity
rule and (β, p) = (0.48, 2.3 × 10−2); (b): email-EU data set with union rule and
(β, p) = (0.55, 9.2 × 10−3). All results are obtained in the same simulation conditions
of Fig. 5.
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receivers, but the direction is discarded when building the
hyperedges.

• interactions in legislative bills in the U.S. Congress (congress-
bills) and in the U.S. Senate (senate-bills)52,55,57,58: each node cor-
responds to a member of the U.S. Congress or Senate and a
hyperedge involves sponsors and co-sponsors of legislative bills
discussed in the Congress or Senate.

• interactions in committees in the U.S. House of Representatives
(house-committees) and in the U.S. Senate (senate-
committees)52,55,56: each node corresponds to a member of the
U.S. House of Representatives or Senate and each hyperedge
involves nodes that share membership in a committee.

• online interactions (3 data sets): exchanges between users of
MathOverflow on algebra topics (algebra-questions) or on geo-
metry topics (geometry-questions), in which each node corre-
sponds to a user of MathOverflow and each hyperedge involves
those users who have answered a specific question belonging to
the topic of algebra or geometry52,54; interactions between
Amazon users on music (music-review52,53), in which each node
corresponds to an Amazon user and each hyperedge involves
users who have reviewed a specific product belonging to the
category of blues music.

Moreover, we built static hypergraphs from several data sets of
time-resolved face-to-face human interactions, as in30,32. The data sets
are provided by the SocioPatterns collaboration46–48 and by the Con-
tacts among Utah’s School-age Population (CUSP) project49 and
describe interactions between individuals in several contexts: a hos-
pital (LH1085), a workplace (InVS1547,86), a conference (SFHH47), a high-
school (Thiers1387), two primary-schools (LyonSchool88, Elem149) and a
middle-school (Mid149). For these data sets we carried out an aggre-
gation procedure to obtain static hypergraphs: (i) we aggregate the
data over time windows of 15 minutes; (ii) we identify the cliques in
each time window, i.e. groups of nodes forming a fully connected
cluster, (iii) we identify in each temporal window the maximum cli-
ques, i.e. cliques not completely contained in a larger clique, and
promote them to a hyperedge status.

Finally, we consider hypergraphs built from ecological data sets
provided by the Web of life: ecological networks database59. The data
are in the form of bipartite graphs, where the nodes represent insect
species or plants and the links connecting them represent a pollination
relationship. Starting from these bipartite graphs we built two types of
projected hypergraphs, obtained respectively by considering insect
species as nodes and hyperedges connecting species that pollinate the
same plant, or by considering plants as nodes and hyperedges con-
necting plants that are pollinated by the same insect species. Here we
use two bipartite networks: M_PL_01559,61 and M_PL_06259,60, yielding
the hypergraphsM_PL_015_ins andM_PL_062_ins with insects as nodes,
and the hypergraphs M_PL_015_pl and M_PL_062_pl with plants
as nodes.

Overall, the data sets considered describe interactions in several
different environments, mediated by different mechanisms. They
correspond to a wide variety of statistical properties (e.g. data set size,
hyperedges size distributions), as shown in the SI where these statis-
tical properties of the data sets are reported in detail.

Hypergraph randomization procedure
Given a hypergraph H, we generate a randomized realization H0 with
the same number of nodes N, the same number of hyperedges of each
size m,∀m∈ [2,M], and that also preserves the degree vector d(i) of
each node i. Each realization is obtained through a hypergraph shuffling
procedure analogous to those used in Refs. 12,89, which works as fol-
lows. At the beginning of the shuffling procedure H0 =H; then we ran-
domly select two hyperedges of the same sizem, e = {i1, i2, . . . , i, . . . , im}
and f= {j1, j2, . . . , j, . . . , jm}. We then randomly draw a node from each of

the two hyperedges, let us say respectively i and j, and replace e !
e0 = fi1,i2,:::, j,:::, img and f ! f 0 = fj1, j2,:::, i,:::, jmg. The hyperedge swap
is accepted if neither e0 nor f 0 already existed inH0. Note that the other
hyperedges to which i and j belongs are not changed. The procedure is
repeated∀m∈ [2,M] until 105 hyperedge swaps are performed for each
m (if there are at least 4 hyperedges of size m, otherwise the shuffling
procedure is not applied for that m). The results presented in the
manuscript following this procedure correspond to 103 independent
realizations of the shuffled hypergraphs.

Models and stochastic simulations
Higher-order nonlinear contagion. We performed stochastic
numerical simulations of the higher-order nonlinear contagion model
on each empirical static hypergraph. The simulations are performed
with discrete time-steps. The S→ I infectionmechanism is the same for
the SIR and the SISmodels: for each time-stepΔt, given a hyperedge of
sizem containing i infected nodes, each of the susceptible nodes in it
can be infected with probability ð1� e�λiν Þ. Therefore, the probability
that a node j is infected in a time-step Δt is:

pj = 1�
Y

e2EðjÞ
e�λiνe , ð3Þ

where EðjÞ denotes the set of hyperedges in which the node j is
involved and ie is the number of infected nodes in the hyperedge e.
Each infected node heals (returning susceptible in SIS or gaining
immunity in SIR) with probability μ in each time-step.

In the SIS process, the population is initialized with a single
infectious seed randomly selected in the population and the process is
iterated until the system reaches a steady state with a fluctuating
number of infectious. An observation time window T is then con-
sidered and the time τ spent in the infectious state is estimated for all
nodes over that time-window. The results are averaged over 103

simulations.
In the SIR process the population is initialized with a single

infectious seed j and the dynamic process is iterated until no more
infectious nodes are present: the final epidemic size R∞(j) obtained by
seeding the infection in j is defined as the final number of nodes in the
R state. The results are averaged over 300 simulations for each infec-
tion seed j.

Higher-order NG process. We also performed numerical simulations
of the higher-order NG process on the empirical hypergraphs. The
systemwithNnodes is initializedbyfixingNpnodes as belonging to the
committed minority (equivalently, with a fraction p =Np/N of com-
mitted nodes), with only the nameA in their dictionary, and setting the
dictionaries of all the other nodes of themajoritywith only the name B.
The committed nodes are selected following one of the three seeding
strategies, i.e. randomly from the whole population or as the Np nodes
with highest s-coreness or hypercoreness. If several nodes have the
same coreness value, the committed nodes are randomly selected
within the coreness class.

The simulations are performed in discrete time-steps: at each
time-step a hyperedge is randomly selected (activation of the group)
andwithin it a node is randomly chosen as the speaker, while the other
nodes behave as listeners. The speaker randomly selects a name in
their dictionary and all nodes in the group update their dictionary
according to the chosen agreement rule (except for the committed
nodes). The process is iterated until the system reaches the absorbing
state where all nodes have only the name A in their dictionary, i.e.
nAðtÞ=n*

A = 1, or until the systemhas evolved for tmax time-steps: in this
last case the stationary fraction of nodes with the name A in their
dictionaryn*

A is obtained by averaging nA(t) over 100 values sampled in
the last T = 50, 000 time-steps. The results refer to the median values
obtained over 200 simulations.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are publicly available.
The SocioPatterns data sets at http://www.sociopatterns.org/; the
Contacts among Utah’s School-age Population data sets at https://
royalsocietypublishing.org/doi/suppl/10.1098/rsif.2015.0279; the
online and political interactions data sets at https://www.cs.cornell.
edu/~arb/data/; the Web of life ecological data sets at https://www.
web-of-life.es.

Code availability
The code is available at https://github.com/marco-mancastroppa/
hypercore-decomposition/ and on Zenodo90 at https://doi.org/10.
5281/zenodo.8345106. The code uses the CompleX Group Interac-
tions, XGI, Python library91.
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