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Connecting Hodge and Sakaguchi-Kuramoto
through a mathematical framework for coupled
oscillators on simplicial complexes
Alexis Arnaudon 1,2✉, Robert L. Peach 1,3, Giovanni Petri 4,5 & Paul Expert6,7,8

Phase synchronizations in models of coupled oscillators such as the Kuramoto model have

been widely studied with pairwise couplings on arbitrary topologies, showing many unex-

pected dynamical behaviors. Here, based on a recent formulation the Kuramoto model on

weighted simplicial complexes with phases supported on simplices of any order k, we

introduce linear and non-linear frustration terms independent of the orientation of the

k+ 1 simplices, as a natural generalization of the Sakaguchi-Kuramoto model to simplicial

complexes. With increasingly complex simplicial complexes, we study the the dynamics of

the edge simplicial Sakaguchi-Kuramoto model with nonlinear frustration to highlight the

complexity of emerging dynamical behaviors. We discover various dynamical phenomena,

such as the partial loss of synchronization in subspaces aligned with the Hodge subspaces

and the emergence of simplicial phase re-locking in regimes of high frustration.
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Synchronization is an ubiquitous phenomenon observed in
many complex systems across spatial and temporal scales1,
from the firing patterns of neurons and the communication

of fireflies, to the flow of traffic2–4. One of the most popular
dynamical systems, capable of reproducing a wide range of
observed synchronization behaviors, is the Kuramoto model of
coupled oscillators5–7. Whilst the model was originally formulated
in terms of all-to-all interacting oscillators, the interactions
between oscillators are commonly considered in-homogeneous
and represented with a graph, whose structure affects the resulting
dynamics. For example, while the full synchronization of the
oscillator population is usually a strong attractor for the dynamics
irrespective of the underlying graph1,7, the transient dynamics on
the path toward synchronization can reveal the modular structure
of the oscillators’ interactions8.

Beyond the structure of oscillator interactions, other variations
of the Kuramoto model have been studied extensively, including:
time-delayed interactions9,10, oriented or signed interactions11,12,
time-varying parameters, stochasticity, and more, see1 for a
comprehensive review. Of particular interest for this study, the
introduction of a frustration parameter13 in the nonlinear term of
the Kuramoto model, then known as the Sakaguchi-Kuramoto
model, can produce rich dynamics14–17 and appears in many
applications18,19.

Recently, the study of higher-order interactions between ele-
ments of a system, that is, models with interactions involving
more than two nodes, has garnered momentum and interest20.
Higher-order interactions are typically represented with hyper-
graphs or simplicial complexes, both of which generalize the
graph representation of pairwise interactions to instead encode
three-, four- and higher-way interactions. Naturally, extensions of
well known dynamical systems have been proposed to investigate
the effect of higher order interactions on their behavior21–26.

The Kuramoto model—being a paradigmatic model for syn-
chronization phenomena—is no exception. In this case, however,
there are two main avenues to extend classical oscillator models
to higher-order. The first approach maintains the usual setup of
phases defined on nodes of a systems and upgrades the interac-
tions to the polyadic case, e.g., using simplicial complexes as the
underlying connectivity structure. Recent works investigated
variations of this node Kuramoto model with higher-order
interactions introducing various types of coupling terms27,28.
These models display a rich variety of synchronization and
desynchronization phenomena, as well as multi-stable behavior.
The second approach instead promotes phase variables from
nodes to higher-order simplices, thus defining phases for edges,
triangles, and all higher-order interactions, coupled by boundary
operators as generalized incidence matrices. Pioneering work in
this direction,24 showed that the edge dynamics projected onto
the nodes and faces possesses explosive synchronization proper-
ties when specific nonlinear and non-local couplings are intro-
duced between the two projections. More recently, a version of
the same model with local coupling between orders was
introduced29.

In this paper, we extend the simplicial Kuramoto model in 24 to
include: (i) weights on any simplices with a precise mathematical
formulation based on discrete differential geometry; and (ii) lin-
ear and nonlinear frustrations. We will refer to the linear frus-
trations as natural frequencies yielding non-fully synchronized
stationary states, and to the non-linear frustrations as the higher-
order generalization of the Sakaguchi-Kuramoto model13. The
difficulty of introducing proper nonlinear frustration comes from
the orientation of the simplices which make even a naive frus-
tration orientation dependent. Here, inspired by previous work
on higher-order random walks23, we lift the simplices to double
their numbers with opposite signs, obtaining an equivalent

formulation without frustration and an orientation independent
frustration. We then study the resulting frustrated simplicial
Kuramoto model on edges with numerical simulations of oscil-
lators which internal frequency vector, the linear frustration term,
lies in the kernel of the Hodge Laplacian, using several measures
to quantify the resulting dynamics, such as Hodge decomposition,
the order parameter and the largest Lyapunov exponent.

Results
Simplicial complexes and Hodge Laplacian. The central ele-
ments of the mathematical formulation of the Kuramoto model
on simplicial complexes are the boundary operators and the
related Hodge Laplacians, which are, respectively, generalizations
to higher order structures of the graph incidence matrices and of
the Laplacian operator. We briefly review the main concepts we
will use in our work following30, see also25, with additional details
in Methods. A k-simplex is defined by a set of k+ 1 nodes (a
1-simplex is an edge, a 2-simplex is a triangle, etc.). A simplicial
complex is defined as a set of simplices in which every face of a
simplex is also a simplex. For our purposes, the relevant con-
nectivity between k−simplices will be that induced by sharing a (k
−1)-simplex as a face, e.g., triangles sharing an edge, or by being
faces of a (k+ 1)-simplex, e.g., edges belonging to the same tri-
angle. A k-chain within a simplicial complex is a linear combi-
nation of k-simplices. We denote by nk the number of k-simplices
of a complex, which is also the dimension of the k-chains and k-
cochains vector spaces, dual to k-chains. The coboundary
operator Nk and its dual N�

k on a simplicial complex are defined
using the generalized incidence matrices BT

k 2 Mnk ´ nkþ1 which
encode the topology of a simplicial complex, and the weight
matrices Wk, which are diagonal matrices of the k-simplices
weights [Eq. 1]

Nk ¼ Bk ; N�
k ¼ WkB

T
kW

�1
kþ1: ð1Þ

The weight matrices Wk can be chosen in an ad-hoc fashion and
no formal relations need to exist between the different order k.
The only relative constraint is for the weights to be positive in
order to remain in the realm of unsigned graphs. Note that our
notation follows30 which differs from the convention commonly
used for these operators. Both act on k-cochains, defined as linear
functional on the space of k-chains. The Hodge Laplacian of
order k can then be written as [Eq. (2)]

Lk ¼ Ldownk þ Lupk ð2Þ

:¼ Nk�1N
�
k�1 þ N�

kNk: ð3Þ
For k= 0, W0= I and W1= I, we obtain the graph Laplacian
L0=D− A with A the simplicial complex 1-skeleton, namely the
graph node adjacency matrix, and D the diagonal matrix of the
nodes degree. The choiceW0=D−1 defines the normalized graph
Laplacian Lnorm0 ¼ I � D�1A.

The graph Laplacian L0 can produce two types of dynamics.
When acting on the left of a distribution f, it yields the consensus
dynamics _f ¼ L0f for any choice of W1 while by acting on the
right, it corresponds to the diffusion dynamics _p ¼ pL0. Equally,
both types of dynamics also exist for the edge Laplacian L123,31,
defined as [Eq. 4]

L1 ¼ B0W0B
T
0W

�1
1 þW1B

T
1W

�1
2 B1: ð4Þ

We refer the reader to the Methods section for the diffusion
formulation of the weighted simplicial Kuramoto model. For the
remainder of this paper we will use the standard consensus
formulation, but we emphasize that our formulation is not
restricted to consensus dynamics.
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Simplicial Kuramoto model. The Kuramoto model5 is typically
formulated for a node phase dynamical variable θ 2 Rn0 , with
natural frequencies ω ¼ ðω1; ¼ ;ωn0

Þ 2 Rn0 that are sitting on
the nodes of a graph G= (V, E) (∣V∣= n0, ∣E∣= n1) and interact
through the graph adjacency matrix Aij 2 Rn0 ´ n0

_θi ¼ ωi � σ∑
j
Aij sinðθi � θjÞ: ð5Þ

For simplicity, we will consider a unit coupling σ= 1
throughout the remainder of this paper and will thus omit it
from here on. The unweighted node Kuramoto model can be
equivalently formulated in vector form using the n0 × n1
incidence matrix BT

0
32 and a vector of internal frequencies ω as

[Eq. 6]

_θ ¼ ω� BT
0 sinðB0θÞ; ð6Þ

which is approximated by the Laplacian dynamics _θ ¼ ω�
BT
0 B0θ ¼ ω� L0θ in the limit B0θ≪ 1. When ωi= ω for all i, it is

customary to study the node Kuramoto model in a frame rotating
at ωt and thus ignore the internal frequencies, yielding _θ ¼ L0θ.
The Kuramoto model is therefore a nonlinear extension of the
consensus dynamics introduced above.

The weighted simplicial Kuramoto model is then given for a
time-dependent k-cochain θ(k), see24,25 for the original equations,
as

_θ
ðkÞ ¼ �Nk�1 sin N�

k�1θ
ðkÞ� �� N�

k sin Nkθ
ðkÞ� �

; ð7Þ
or equally with the weight and incidence matrices

_θ
ðkÞ ¼ � Bk�1 sin Wk�1B

T
k�1W

�1
k θðkÞ

� �

�WkB
T
kW

�1
kþ1 sin Bkθ

ðkÞ� �
:

ð8Þ

We emphasize that the positions of the weight matrices are not
arbitrary but constrained by the geometrical nature of the
coboundary operators. The definition and interpretation of the
weights themselves are defined by the system under study, which
may themselves include geometrical constraints. The weighted
model can be seen as an extension of the Kuramoto model on
weighted graphs, where the weights represent heterogeneous
couplings. The weights on simplices of different order can be
coupled, but this is not a necessary requirement and each order
can capture independent characteristics of the system studied. We
briefly explore the effect of weights on the dynamics of the
Sakaguchi-Kuramoto model that forms the basis of our numerical
experiments and is introduced in the next section. In the limit
where θ is close to the subspace kerðLkÞ, we recover the linear

consensus dynamics _θ
ðkÞ ¼ Lkθ

ðkÞ. For k= 0 and a connected
graph, the kernel consists of a constant vector, or full
synchronization.

Similarly to the node Kuramoto, the internal frequencies of the
oscillators can be introduced via a change of rotating frame
θ(k)→ θ(k)− h(k)t for any vector hðkÞ 2 kerðLkÞ. Indeed, such a
vector will leave invariant the nonlinear terms, due to the
presence of the boundary operator, and thus only adds a constant
drift to the phases. Again, if we consider k= 0 and a connected
graph, the kernel of L0 is the constant vector, corresponding to
the stationary state of consensus dynamics, and thus, by
extension, the node Kuramoto model in full synchronization.
For higher-order Kuramoto models k > 0, the dimension of the
kerðLkÞ corresponds to the number of k-dimensional holes, i.e.,
holes bounded by k-simplices, or –equivalently– to the Betti
number βk of the simplicial complex. For k= 0, the Betti number
β0 corresponds to the number of connected components, and the
stationary states are given by the piece-wise constant vectors to
which each component will synchronize. We did not introduce by

hand any internal frequencies at this stage, as we will see in
remainder of this section that they naturally emerge as a form of
linear frustration.

Simplicial Sakaguchi-Kuramoto model. The frustration in the
Kuramoto model was first introduced in the Kuramoto-Sakaguchi
model13, and has been studied in the context of graph theory,
where the graph topology can give rise to rich repertoires of
stationary states such as chimera states14,15 and remote
synchronization17. The frustrated node Kuramoto model is
usually written as [Eq. 9]

_θi ¼ ωi �∑
j
Aij sinðθi � θj þ αijÞ; ð9Þ

where α 2 Rn1 is the edge frustration vector, often taken to be
constant αij= α1. This equation cannot be directly formulated
using the incidence matrices because the relative sign between the
difference of phases θi− θj and αij must be independent from the
orientation of edges. In the adjacency matrix formulation, the
orientation of edges is ‘hidden’, because L0 ¼ BT

0 B0 and A=
D− L0 are independent of edge orientation, and the choice of
ordering θi− θj, instead of θj− θi, is possible irrespective of the
edge orientation. If one writes BT

0 sinðB0θ þ α1Þ, the resulting
order in the difference of phases depends on the choice of edge
orientation and will not be ‘node-centered’, i.e., the θi term will
not always appear in front.

Nevertheless, it is possible to introduce a frustration in the
general formulation of the Kuramoto model in Eq. (7) with
coboundary operators such that it reduces to the frustrated
Kuramoto in Eq. (9) for k= 0 and remains orientation invariant
for k+ 1 simplices. Our construction uses two ingredients: (i) lift
matrices23, defined as [Eq. 10]

Vk ¼
Ink
�Ink

 !
; ð10Þ

for any order k, and (ii) the projection onto the positive or
negative entries of any matrix X, defined element-wise as [Eq. 11]

X ±
ij ¼ 1

2
Xij ± Xij

���
���

� �
8ij; ð11Þ

where ∣ ⋅ ∣ denotes the absolute value function. The lift matrices
create duplicates of simplices of order k with an orientation
opposite to the original one, whilst the projection sets half of the
doubled simplices to zero, i.e., removes them, based on their signs.
One can define the lift of the coboundary operator as [Eq. 12]

Nk ! Vkþ1NkV
T
k : ð12Þ

The projection to positive or negative entries is often used to
define directed node graph Laplacians30,33 by transforming the
edge orientation to an edge direction with either [Eq. 13]

L0;out ¼ N�
0N

þ
0 ; or L0;in ¼ ðN�

0 Þ�N0 : ð13Þ
With Dout/in the diagonal matrices of out- or in- degrees and Adir

the corresponding directed adjacency matrix, L0,out models the
directed diffusion dynamics written explicitly as L0,out=Dout−
Adir and L0,in corresponds to the directed consensus dynamics
with L0,in=Din−Adir.

As we have seen in the construction of the weighted simplicial
Kuramoto model in Eq. (7), we are using the formulation that
yields consensus dynamics. We will thus consider the associated
projection onto the negative entries of the lifted simplicial
Laplacian as [Eq. 14]

bLk ¼ N�
k�1N

�
k�1 þ ðN�

kV
T
kþ1Þ

�
Vkþ1Nk: ð14Þ

First, we note that bLk ¼ Lk, thus the application of the lift and the
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projection has a trivial effect on the Hodge Laplacian, but
crucially it allows us to introduce the frustration via the linear
frustration operator [Eq. 15]

F αk
k ðNkÞ : x 7!Nkx þ αk; ð15Þ

acting on any cochain x and arbitrary frustration cochain αk. We
can now formulate the frustrated simplicial Kuramoto model as

_θ
ðkÞ ¼ � F αk

k ðNk�1Þ sin N�
k�1θ

ðkÞ� �� �

� ðN�
kV

T
kþ1Þ

�
sin F αkþ1

kþ1 ðVkþ1NkÞ θðkÞ
� �� � ð16Þ

¼ � αk � Nk�1 sin N�
k�1θ

ðkÞ� �

� ðN�
kVkþ1Þ� sin Vkþ1Nkθ

ðkÞ þ αkþ1

� �
:

ð17Þ

By construction, our formulation is independent of the orienta-
tion of the k+ 1-simplices but not of the k-simplices because only
the action of the k+ 1 lift is non trivial as it acts inside the
nonlinear part of the equation.

From this point of view, αk is a linear frustration, whilst αk+1 is
a nonlinear frustration. When the internal frequencies are all
equal, αk can be any arbitrary vector not necessarily in kerðLkÞ,
which corresponds to equal internal frequencies in the node
Kuramoto. This can lead to a variety of dynamics, including
partially synchronized dynamics or even non-stationary
dynamics if its amplitude is large enough24.

For k= 0, we recover the frustrated node Kuramoto model in
Eq. (9) as

_θ
ð0Þ ¼ �α0 � ðN�

0V
T
1 Þ

�
sin V1N0θ

ð0Þ þ α1
� �

; ð18Þ
where the natural frequencies vector α0 naturally appears from
the frustration operator, whilst the rest vanishes with N−1= 0.
The case where k= 1 constitutes the main equation we consider
in the rest of this paper, namely the frustrated edge simplicial
Kuramoto model

_θ
ð1Þ ¼ � α1 � N0 sin N�

0θ
ð1Þ� �

� ðN�
1V2Þ� sin V2N1θ

ð1Þ þ α2
� �

;
ð19Þ

which is invariant under change of face orientations, but not
under change of edge orientation. To lighten the notation, we will
write θ for θ(1) in the remainder of the paper as we only consider
systems with edge oscillators.

Hodge decomposition of the dynamics. The Hodge decom-
position is an important tool to study the properties of simplicial
complexes. Here, we use it to decompose the dynamics of the
oscillators on the simplicial Kuramoto model to understand their
properties in relation to the amount of frustration applied. The
Hodge decomposition theorem states that the space of k-cochains
can be decomposed into three orthogonal spaces34,35

CðkÞ ¼ ImðNk�1Þ � kerðLkÞ � ImðN�
kÞ; ð20Þ

which can be seen as analogues to the gradient, harmonic and
curl space respectively. When k= 1 the three orthogonal spaces
are exactly the gradient, harmonic and curl space respectively.
Any k-cochain θ(k) can thus be projected onto each subspace
θðkÞ ¼ θðkÞg þ θðkÞh þ θðkÞc as follow

θðkÞg ¼ Nkθ
ðk�1Þ

Lkθ
ðkÞ
h ¼ 0

θðkÞc ¼ N�
kþ1θ

ðkþ1Þ:

ð21Þ

where θ(k−1) and θ(k+1) are the corresponding potentials. Here,
instead of computing these potentials, as done for example in24,
we project the k-cochain θ(k) onto each subspace using the

projection operators

Pgrad ¼ pTgradpgrad

Pcurl ¼ pTcurlpcurl
Pharm ¼ pTharmpharm;

ð22Þ

where the matrices pgrad and pcurl are the orthonormal bases of the
ranges of Nk and N�

kþ1 and pharm the orthonormal basis of the
kernel of Lk.

Simplicial order parameter. Probably the most popular and
fundamental tool to measure the level of synchronization in a
coupled dynamical system is the order parameter. It is usually
defined as

R2
0;cðθÞ :¼

1
n0

∑
n0

i¼1
exp jθi
� �����

����
2

; ð23Þ

where j ¼ ffiffiffiffiffiffiffi�1
p

, and was introduced for the original Kuramoto
model on a complete graph, i.e., where all oscillators are coupled.
The generalization of the order parameter to any graph
structure32 can be expressed as

R2
0;gðθÞ :¼ 1þ 2

n20
1n1 � ðcosðN

�
1θÞ � 1Þ; ð24Þ

where 1n1 is the unit vector of dimension n1, see Methods for the
details. This formulation allows one to write the node Kuramoto
model with uniform natural frequencies as a gradient flow of the
form

_θ ¼ 1
2
n20∇θR

2
0ðθÞ: ð25Þ

Notice that the usual minus sign is not needed as the order
parameter is a concave function. Notice that only the cosine term
is needed to express the gradient flow, while the other constant
terms are needed for the normalization.

For a simpler derivation, we will thus modify the normalization
to define the simplicial order parameter (SOP) as

R2
kðθðkÞÞ ¼ 1

Ck
1nk�1

�W�1
k�1 cosðN�

k�1θ
ðkÞÞ

�

þ1nkþ1
�W�1

kþ1 cosðNkθ
ðkÞÞ
�
;

ð26Þ

where the normalization is Ck ¼ 1nk�1
�W�1

k�11nk�1
þ 1nkþ1

�
W�1

kþ11nkþ1
which corresponds to the weighted sum of nodes

and faces of the simplex, or the combined number of nodes and
faces for unweighted simplicial complexes, see Method for details.

As expected, Rk= 1 if θ(k) is in the harmonic space, which
corresponds to full synchronization. Notice that for k > 1, the
harmonic space is in general not spanned by the constant vector,
and full synchronization does not correspond to equal θkj values
on the k-simplices. The SOP generalizes the notion of full
synchronization to the instantaneous phase vector to be in the
harmonic space, where the phases are in general not equal, except
in the node Kuramoto case. This type of harmonic synchroniza-
tion is therefore akin to a simplicial phase locking, in which each
higher-order phase evolves with a different proper frequency but
overall the whole dynamics lives within the harmonic space, i.e.,
kerðLkÞ for the corresponding k. In addition, if the dimension of
the harmonic space is larger than one, the fully synchronized state
is in fact a linear combination of the basis vectors of the harmonic
space. For α2= 0 and if α1 is harmonic, i.e., α1 2 KerðL1Þ, the
particular linear combinations will be dictated by the choice of α1,
or, if absent, by the choice of initial conditions. Thus our
formulation extends the notion of full synchronization beyond
constant phases to include a generalized harmonic phase locking.
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As in the node Kuramoto case, this order parameter acts as a
potential for the gradient flow formulation of the full k-order
Kuramoto dynamics as

_θ
ðkÞ ¼ CkWk∇θðkÞR

2
kðθðkÞÞ: ð27Þ

Note that this formulation does not contain the harmonic natural
frequencies which can be recovered, as before, via a change of
rotating frame. Finally, we notice that in the case of the standard
node Kuramoto, this measure corresponds to the weighted
generalization of Eq. (24) with a different normalization factor

R2
0ðθð0ÞÞ ¼

1
C0

1n1 �W
�1
1 cosðN�

1θ
ð0ÞÞ; ð28Þ

where C0 ¼ ∑n1
i¼0 ðW�1

1 Þii is the weighted sum of edges, or for an
unweighted graph, the number of edges.

Frustrated simplicial Kuramoto model on a face. To showcase
the properties of the frustrated simplicial Kuramoto model, we
begin with one of the simplest examples: the single face complex
of a triangle graph. The single face triangle complex has no hole
and thus the harmonic space of the Hodge Laplacian is of
dimension zero. Therefore, to be in the full synchronization
regime, defined as θi= θj&for all; i, j in the absence of harmonic
space, one would expect that that state is only accessible for the
non-frustrated model with α1= α2= 0 in Eq. (19). We will show
it is not the case and the dynamics can still reach full-
synchronization. For simplicity, and without loss of generality,
we will use α1 as a constant vector in time with the same value on
all three edges. In addition, whilst the model is invariant to face
orientation, it is not invariant to edge orientation. We thus have
two non-equivalent choices for edge orientation: (i) a fully
oriented complex, or (ii) one edge oriented in the opposite
direction, as shown in Fig. 1(d).

In (i) the fully oriented complex, all edges are equivalent and
the frustrated simplicial Kuramoto model reduces to the scalar
equation

_θ ¼ �α1 � sinð3θ þ α2Þ:
If ∣α1∣ < 1, any initial condition will converge, as time→∞ to full
synchronization with phase θ1 ¼ 1

3 sin�1ð�α1Þ � α2
� �

in the
stationary state. Otherwise, the stationary solution will be
periodic around a linearly increasing trend. In (ii), the case of a
flipped edge orientation, only two edges are equivalent, yielding
the following coupled differential equations

_θ1 ¼ �α1 � sinð�θ1 þ θ2Þ � sinð2θ1 � θ2 þ α2Þ
_θ2 ¼ �α1 þ 2 sinð�θ1 þ θ2Þ � sinð2θ1 � θ2 þ α2Þ:

We solve these equations numerically for values of α1∈ [0, 2.5]
and α2 2 0; π2

� �
and show in Fig. 1(a–c) three measures that help

us characterize the ensuing dynamics.
In Fig. 1(a), we plot the SOP of Eq. (26) where we observe a full

synchronization regime, R2
1ðθð1ÞÞ ¼ 1, for the non frustrated case

with α1= 0, α2= 0, but also for a large region of the α1 and α2
parameter space. To understand this regime further in term of the
Hodge decomposition of the stationary state, we show in
Fig. 1(b–c) the slope of a linear fit, representing the drift, of the
temporal evolution of the projection of the solution onto
the gradient and the curl subspaces at stationarity. More precisely,
we estimate the parameter ah, or slope, of the linear regression of
the projections of θ(t) onto the grad, curl and harmonic spaces, as
defined in Eq. (22). In addition, the white regions correspond to
projections that are constant in time, while regions with vanishing
slopes but non-constant projections are in dark blue—corre-
sponding to a value of zero. The latter correspond to oscillating

solutions around a constant value. As we will see below, these
measures provide a finer, while still tractable, analysis of the
solutions in the frustration parameter space than the order
parameter. We highlight some important observations from these
plots. First, the region where the gradient component of the
solution is non-constant matches with the region where we
observe a large drop in synchronization. This suggests that when
the gradient, and curl, component of the phases becomes too
large, the synchronization is abruptly reduced. Notice that this
region is bounded below by α1= 1, as for the fully oriented case.
Second, the region where the projection of the curl is not constant
is strictly contained within the region of non-constant gradient.
This is a general result that we show below.

In Fig. 1(e–f) we show two typical trajectories of non-constant
gradient and non-constant gradient and non-constant curl
(corresponding to the magenta and green markers on Fig. 1(a–c)
respectively). We observe that the trajectory is a Lissajous curve
when the curl component is constant and a more complex
trajectory otherwise. The Lissajous behavior is simply explained
by imposing a constant curl, θ2= 2θ1+ δ for a constant δ, which
reduces the coupled differential equations to a one dimensional
dynamical system

_θ1 ¼ �α1 � sinðα2Þ � sinðθ1Þ;
parameterizing the speed of motion on this curve, represented in
Fig. 1(e) as dots equally spaced in time.

Finally, in the regime with non-vanishing curl, upper right of
Fig. 1(a–c), there exists a sharp transition along α1 between
almost vanishing and positive gradient slope while the curl
projection grows continuously. In Fig. 1(g–h), we show two
trajectories on each side of this transition, corresponding to the
blue (zero gradient slope) and orange (non-zero gradient slope)
dots in Fig. 1(a–c). The two trajectories are partially overlapping
where the segments of the trajectories parallel to the sinðθ1Þ axis
are switching sign of sinðθ2Þ. A more precise understanding of
this transition in the context of dynamical system theory could be
of interest but is beyond the scope of this work.

Although simple, this simplicial complex already displays
interesting and non-trivial dynamical behavior of the simplicial
Sakaguchi-Kuramoto model when the frustrations are turned on.
However, this example does not contain a hole, i.e., there is no
harmonic component to the dynamics. We explore the role of the
harmonic component of the dynamic in the next section.

Synchronization and edge orientation. For our second example,
we use a slightly larger simplicial complex which we display in
Fig. 2(a) to study the properties of the dynamics in the presence
of a hole. We previously mentioned, if α1 2 KerðL1Þ and α2= 0,
the dynamics will fully synchronize with the stationary state
θ(1)= α1. Setting α2 > 0 will perturb the stationary state by
increasing the gradient and curl components, but may remain in
a simplicial phase-lock for a wide range of parameters, including
at high frustration.

In Fig. 2(b, e) without loss of generality, we fix α1= 0 and scan
α2 2 0; π2

� �
and observe that for a given choice of edge orientation,

the level of synchronization, as measured by the SOP, decreases
with α2, while its standard deviation remain null, which is an
indicator of simplicial phase-locking. The projections onto the
gradient and the curl spaces are constant, while the harmonic
projection is not. We also notice that the dynamics are very
sensitive to changes in orientation. Reversing the orientation of
the blue edge, Fig. 2(a), has a dramatic impact on the solution,
with the gradient component becoming non-constant for some
choices of α2, see Fig. 2(c, f). Reversing the orientation of both the
blue and red edges make both the gradient and curl components
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non-constant (see Fig. 2(d, g). Similar to the first example of the
single face triangle complex, we observe that the projection onto
the curl is non-constant only if the projection onto the gradient is
also non-constant.

We now show the existence of two critical values for α2
corresponding to changes of regime: α2,g when the gradient
becomes non-constant and α2,c when the curl becomes non-
constant, and that α2,c ≥ α2,g. For simplicity, we set α1= 0, but any
α1 2 KerðL1Þ can be considered. First, for small α2 < α2,g, i.e.,
when the gradient and curl component are constant in the
simplicial phase-lock regime, the solution is of the form

θ1ðtÞ ¼ Ωthþ ϵ;

for a scalar Ω, h 2 KerðL1Þ and ϵ 2 KerðL1Þ? small, and thus

Ωh ¼ �L1ϵ� ðN�
1V2Þ�1α2: ð29Þ

The term ðN�
kVkþ1Þ�1nkþ1

counts the number of k+ 1-simplices
adjacent to each k-simplex and is therefore a generalized degree.
ðN�

0V1Þ�1n1 is simply the weighted node degree and ðN�
1V2Þ�1n2

the weighted edge degree.

From Eq. (29), Ω, h and ϵ are defined as [Eqs. 30, 31]

Ωh ¼ �PharmðN�
1V2Þ�1α2 ð30Þ

L1ϵ ¼ �P?
harmðN�

1V2Þ�1α2: ð31Þ
In this linear approximation, there always exists a solution of Eq.
(31) for ϵ, but, in the nonlinear regime, the presence of the sine
function may prevent any solution to exist and the system will
leave the phase-locked regime for α2 > α2,g. The exact value of α2,g
is difficult to find analytically, as we see in Fig. 2, it depends not
only on the structure of the simplicial complex but on the edge
orientation as well. In addition, if the dimension of the kernel of
L1 is larger than 1, the direction of the vector h in the harmonic
space may also depend on α2. For small α2, the value of Ω is
represented in Fig. 2(b–d) by the value of the harmonic slope (in
green), and increases quasi-linearly as a function of α2 as expected
from Eq. (30). For larger values of α2, the previous linearization is
not valid and cannot be used to correctly approximate the
dynamics. However, the Hodge decomposition is still valid and
the corresponding projections operators defined in Eq. (22) allow
us to decompose the simplicial Kuramoto equation in its gradient

Fig. 1 Simplicial Kuramoto model on a single face. This figure illustrates the effect of frustration in a simplicial complex composed of a single face and with
the orientation of an edge reversed. a Shows the average value of the simplicial order parameter defined in Eq. (26) in the stationary regime of the solution
where we scan a range of values for both frustration parameters α1 and α2 (b and c) respectively show the slope of the time evolution of the gradient and
curl projection of the dynamics on the same simulations, see text for more details. The regions in white show where the projections are time independent,
i.e., constant while dark blue—value of zero—are oscillating solutions around a fixed value. Higher values correspond to solutions that have a linear growth
term in time. In (d) the simplicial complex is represented, where edge orientations are given by arrows and edge and face labels as ordered node ids. In
(e–f), two typical stationary trajectories of the dynamics for the phases θ1 and θ2 are shown in the regime with, (e), and without, (f), a stationary curl. The
frustration parameter values are indicated by the magenta and green dots respectively in (a–c). The circle markers on the trajectories are equally spaced in
time along one cycle. g–h Illustrates the sharp transition between vanishing and non vanishing slope of the projection of the gradient in (h) and the
resulting change of the trajectories in (g). The frustration parameter values are shown by round markers of corresponding colors in (a–c). Notice that both
curl projections overlap across the transition in (h).
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and rotational parts as [Eqs. 32, 33]

_θg :¼ Pgrad
_θ
ð1Þ ¼ � N0 sinðN�

0θgÞ
� PgradðN�

1V2Þ� sinðV2N1θc þ α2Þ
ð32Þ

_θc :¼ Pcurl
_θ
ð1Þ ¼ �PcurlðN�

1V2Þ� sinðV2N1θc þ α2Þ; ð33Þ
where θ(1)= θg+ θc+ θh from the Hodge decomposition. Notice
that the Hodge decomposition directly implies that N1θ(1)=N1θc
as θg is in the range of N0, and N1N0= 0, thus only the curl
component of θ, θc, can survive in the sine terms containing N1, a
similar argument applies for θg. These two equations are coupled
by the term PgradðN�

1V2Þ� sinðV2N1θÞ which vanishes if α2= 0
because PgradðN�

1V2Þ� sinðV2N1θÞ ¼ PgradN
�
1 sinðN1θÞ ¼ 0, since

the range of N1 is orthogonal to the gradient space. The fact that,
in the absence of nonlinear frustration, the curl, grad and
harmonic projection of the dynamics are decoupled was already
noted in24 and is a direct result of the orthogonality of these three
spaces. The nonlinear frustration makes the dynamics of the
gradient projection depend on the solution of the curl projection.
This coupling relies on the presence of the lift and projections
which are necessary to preserve the independence on the face
orientation of the dynamics.

The presence of the coupling in the gradient equation explains
why the dynamics of the curl projection can be non-constant only
if the dynamics of the grad projection is also non-constant.
Indeed, for α2,g < α2 < α2,c, the curl projection equation is
stationary with a time-independent θc,∞ solution, i.e., _θc;1 ¼ 0.
The coupling term in the grad projection is then a constant,
which we denote as δ, and the Kuramoto dynamics reduces to

_θg ¼ �δ � N0 sinðN�
0θgÞ:

These dynamics correspond to the edge Kuramoto model on the
complex without faces and a non-harmonic natural frequency δ.
It has a transition from synchronization to non-synchronization
regime at α2,g. For α2 > α2,c, the dynamics are non-stationary in
the curl projection and in the gradient due to the presence of δ.

While the order of the transitions to non-stationarity for the
different components hold whenever they exist, their existence

and exact behavior is dependent on the orientation of the edges
and the localization of holes. Remarkably, even the simple
example we used here displays an abundance of varying
behaviors, of which we have only described representative
examples: we observe no transitions in Fig. 2(b), only a gradient
transition as in Fig. 2(c) or two transitions as in Fig. 2(d) with a
near singular re-phase-locked synchronization gap. In Fig. 2(c, d),
we also observe a re-synchronization to a phase-locked regime for
α2 > α2,c until π2, possibly a result of the small size of the complex
and high degree of symmetry. Indeed, as we observe in the next
section, this regime does not exist for larger, more irregular
complexes, see Fig. 3, and is replaced by a more chaotic regime.

Larger simplicial complex. Until now, we have studied the fru-
strated simplicial Kuramoto dynamics on small simplicial com-
plexes in order to study and understand in detail the effects of the
frustration on the dynamics. As a final example for this paper, we
consider a larger simplicial complex constructed from a Delaunay
triangulation of random points on a plane around two circular
holes as illustrated in Fig. 3(a). In Fig. 3(b,c), we show the same
analysis as in Fig. 2 with the slope of the projections and the SOP.
As expected, we observe more complex dynamics from the shape
of these curves, obtained after averaging over 10 simulations with
random initial conditions. In particular, we do not observe any
re-synchronization for large α2 but rather an even more complex
set of dynamics as shown by the standard deviation of theSOP in
Fig. 3(c).

To better quantify these complex dynamics, we compute the
largest Lyapunov exponent36,37 of the trajectories of each edge
phase and show in Fig. 3(d) the mean and quartile of them for
each value of α2. As soon as the dynamics are no longer constant,
i.e., α2 > α2,g, the largest Lyapunov exponent is on average
positive, but increases significantly for larger α2, clearly indicative
of chaotic dynamics. We visually noticed two different regime of
chaotic dynamics, which we highlighted with α2,a and α2,b which
corresponds to the start of the decrease of the slope of the
gradient and the curl projection, respectively. For α2 > α2,b, we
also observe some sensitivity to initial condition on the value of
the slope of the projection, the line thickness is the standard
deviation across 10 simulations with random initial conditions.

Fig. 2 Simplicial Kuramoto model on simplicial complex with a hole. We consider the simplicial complex in (a) comprising a single hole in white, faces in
gray and edge orientation described with black arrows. To study the effect of edge orientation on the dynamics, we construct two modified simplicial
complexes with the blue edge reversed and both the blue and red edges reversed. In (b–d), we set the linear frustration parameter α1= 0 and scan the
nonlinear frustration parameter α2 for the three complexes (original in (b), blue edge flipped in c and red edge flipped in d) and plot the slope of the
projection of the harmonic, gradient and curl component of the solution in the top row. If the slope value is absent, it corresponds to a constant projection.
For example in (b), only the harmonic projection is non-constant in time. If the slope is present with a value of 0, the solution is oscillating around a fixed
point, for example in (d) for gradient slope at large α2. In (e–g), we show the average and standard deviation across time of the simplicial order parameter:
R21 and σðR21 Þ respectively for the simulations of (b–d). The order parameter is 1 for α2= 0 and decreases as the nonlinear frustration increases. The
standard deviation of the order parameter allows us to detect in which regime the solution is non-constant in the gradient or curl space. With this simplicial
complex, the solution is non-constant only when the grad and/or curl are non-constant, even for high α2.
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These two regimes would be interesting to study in more detail,
since a decrease of the slope of the projection can either suggests
more synchronization, as in the examples of Fig. 2, or more
random or chaotic dynamics, as in Fig. 3. Understanding the
transition between these two regimes in term of the complexity of
the simplicial complex, where complexity is for example
measured by the number of holes, their relative localization and
the symmetries of the simplicial complex, is an open problem.
The Lyapunov exponent seems however a promising measure to
identify the switching between the two regimes: for the example
of Fig. 2(d) it remains at low values (see brown line in Fig. 3(d))
and does not increase for large α2.

Effect of weights. In this last example, we briefly explore the
effect of weights on the Sakaguchi-Kuramoto dynamics using the
general formulation of Eq. (19). Our formulation allows mathe-
matically for arbitrary weights on simplices of any order, how-
ever, the choice of weights may be constrained by the nature of
the modeled system, e.g., geometric constraints of lengths, areas,
and volumes. Whilst the exact interpretation of weights depends
mainly on the context, we nevertheless provide general guidelines
regarding their effect. In the node Kuramoto model, weights on
nodes can be interpreted as a modification of the underlying
graph Laplacian and thus the dynamics it represents. For exam-
ple, using the inverse degrees yields the normalized Laplacian.
Edge weights are a natural mechanism to introduce hetero-
geneous interactions between oscillators and is known to give rise
to interesting dynamics, e.g., metastable Chimera states15. In the
frustrated edge Kuramoto model of Eq. (17), the focus of this
paper, edge weights have a similar interpretation to edge weights
in the node Kuramoto model: they quantify the strengths of the
interactions for the node Kuramoto. Node and face weights both
modulate the interaction strength between oscillators. Face
weights parameterize the strength of the triple coupling between
phases where the nonlinear frustration acts, so vanishing faces
weights are another mechanism to control the effect of the
nonlinear frustration. Node weights play a similar role, but are
decoupled from the effect of the frustration. We finally point out
that while the weights at the different simplicial orders can related
to each others, it is not necessarily the case, except in limit cases
such as an edge with zero weights cannot serve as a support for a
face. A systematic exploration, both analytical and computational,
of the role and effect of each type weights and their combinations
is well beyond the scope of this paper. We present here a phe-
nomenological description of the dynamics in a simple example
as a preliminary to future work: we considered a simplicial
complex comprised of two triangles, one full and one empty,
sharing one face and varied the the weight w of the full face, see
Fig. 4(a) for the complexes and Fig. 4(b) for the results of the
simulation for various frustrations and w. In the limit where
w= 0, the face vanishes and we have two holes, and no frustra-
tion from α2 and the solution lies entirely in KerðL1Þ. For low
weights, only a small region is synchronized with a large increase
in the projection in the gradient and harmonic spaces, but no curl
component. The projection on the curl space is non-vanishing
only for larger weights on the face. Finally for w= 1, we recover a
similar behavior to that of the simple triangle of Fig. 1. The
structure of the projection suggest non trivial relations between
the different components, as well as three regimes: non-vanishing
and vanishing curl, and two gradients regime nested in the
vanishing curl one.

Conclusion
In this work, we extend a previously introduced Kuramoto model
on simplicial complexes24,25 to include weights on any simplices

Fig. 3 Simplicial Kuramoto model on a larger simplicial complex. We
consider the simplicial complex of (a) obtained from a Delaunay
triangulation of random points on a plane around two circular holes. Faces
are represented in gray, and edge orientations with arrows. We set the
linear frustration parameter α1= 0 and scan across the nonlinear
frustration parameter α2. We plot the slope of the projection of the
harmonic, gradient and curl component of the solution in (b). We highlight
the various transitions (see main text) with vertical lines. If the slope value
is absent, it corresponds to a constant projection. In (c), we show the
average, R21 , and standard deviation, σðR21 Þ, across time of the simplicial
order parameter R21 . In addition to the two critical α2, we manually
highlighted two possible points corresponding to the onset of chaotic
dynamics regimes with α2,a and α2,b. The standard deviation of the curves in
the top of (b), which are calculated over 10 simulations with random initial
conditions, is zero, except for large α2 where it is small and is represented
by the thickness of the curves. In (d), the dark line represents the average
largest Lyapunov exponent λ over edges, and the shaded gray region
between the lower an upper quartile of the corresponding distribution. For
the sake of comparison, we have included a light brown curve that is the
mean largest Lyapunov exponent for the simplicial complex in Fig. 2(d).
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as well as a linear and a non-linear frustration term to define the
simplicial Sakaguchi-Kuramoto. This formulation naturally
allows us to generalize the notion of synchronization, internal
frequencies, and edge frustration, of the standard
Kuramoto model.

Without frustration, the Kuramoto dynamics can be decom-
posed into three independent sub-systems aligned with the
orthogonal spaces given by the Hodge decomposition. However,
we have demonstrated that by adding frustration to the dynamics,
the harmonic, gradient and curl subspaces become hierarchically
coupled, see Eq. (32). The dynamics in the harmonic space is
coupled to both the gradient and curl subspaces even in the
absence of harmonic linear frustration. In the linear regime of
small nonlinear frustration, the amplitude of the dynamics in the
harmonic space is proportional to the amount of frustration. In
the nonlinear regime of simplicial Sakaguchi-Kuramoto, we
showed that the dynamics is highly varied, from constant to

chaotic solutions. We have discovered that the edge orientation is
of fundamental importance in the resulting Kuramoto dynamics
and the change of orientation of one edge can be enough to
significantly alter the dynamics. Understanding the precise rela-
tionship between the choice of orientation for a given simplicial
complex and the resulting type of dynamics has remained elusive
so far but would be an interesting topic to gain further under-
standing of these systems particularly in the context of control.

We foresee various interesting directions for further inter-
rogation of our frustrated simplicial Kuramoto and also addi-
tional adaptions. Firstly, while we only provide a simple example
of the effect of weights on the dynamics, we believe that a full
exploration of the weights definition and their effect will open
interesting avenue of research not only theoretically but also for
applications of the simplicial Sakaguchi-Kuramoto model. Sec-
ondly, whilst we used consensus dynamics in our formulation, we
also mentioned earlier the dual formulation of the diffusion

Fig. 4 Frustrated Kuramoto on weighted simplicial complex. a We consider a simplicial complex with one hole and one face parameterized by a weight
w∈ [0,1], depicted in shades of gray. bWe scan the frustration parameters for four different values of w > 1 in each column, discarding the trivial case w= 1
is trivial. We display the order parameter as well as gradient, curl and harmonic slopes on separate rows. The structure of the projection suggests non
trivial relations between the different components, as well as three regimes: non-vanishing and vanishing curl, and two gradients regime nested in the
vanishing curl one.
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Kuramoto (see Method). Indeed, examining how the dynamics of
the consensus and diffusion formulations deviate in the weighted
setting could be of interest. Thirdly, we did not explore the
possible interplay between the linear and nonlinear frustration.
The linear frustration is known to have a transition between
stationary and non-stationary regimes24, but may also affect the
types of dynamics with nonlinear frustration, which can even be
made non-constant. Finally, as we have shown with our three
examples, the topology of the simplicial complex is crucial to
determine the type of dynamics and in particular its complexity.
A more complete characterization in term of graph theoretical or
topological measures would be of interest to identify the criteria
necessary for the transition between non-stationary and chaotic
dynamics. In fact, particular geometries of simplicial complexes
may support more specific types of dynamics, with maybe partial,
cluster or metastable synchronizations.

Methods
Review of discrete geometry. We provide here a short review of discrete geo-
metry, following the exposition in30 to which we redirect the reader for an in depth
and detailed exposition of all the notions introduced here. A simplicial complex is a
collection of k-cells (node, edges, face, etc...), on which are defined k-chains as
vectors with coefficients on each cell. The space of k-chains is denoted as Ck, and
the incidence matrix BT

k maps k+ 1-chains to k-chains, i.e.,

BT
k : Ckþ1 ! Ck:

Dual to the space Ck of k-chains is the space Ck of k-cochains, defined using the
scalar product as duality pairing, i.e., for τk∈ Ck and ck∈ Ck, the pairing is

hτk; cki ¼ ∑
nk

i
ðτkÞiðckÞi:

From this pairing, the dual of the incidence matrix is defined as

hNT
k τkþ1; c

ki ¼ hτkþ1; ðNT
k Þ

�
cki;

but reduces to coboundary operator

ðNT
k Þ

� ¼ Nk : C
k ! Ckþ1:

We have thus defined the incidence matrix and its dual, but acting on chains
and cochains. The map between them is a metric represented by a diagonal matrix,
or weight matrix

Wk : Ck ! Ck

as ck=Wkτk, and it’s inverse

W�1
k : Ck ! Ck:

Then, to obtain the dual of the incidence matrix to form diffusion or Kuramoto
equations, we need to define the dual of simplicial complex and the Hodge
operator. If n is the largest dimension of the k-cells in the complex, the dual of a
complex is a complex where the k-cells of the primal complex are the (n− k)-cells
of the dual complex. With this definition, one can see that the dual incidence
matrices Mk are defined as NT

k ¼ Mn�kþ1, that is the incidence matrix on k-cells is
the transpose of the incidence matrix on n− k+ 1-cells in the dual complex.

The Hodge operator maps a k-cochain x of the primal complex to the (n− k)-
cochain x* on the dual as

x� ¼ ?x :¼ W�1
k x;

and the (n− k)-cochains y* on the dual complex to the k-chain y on the primal
complex as

y ¼ ?y ¼ Wky
�:

We are now in the position to define N�
k , the dual of the coboundary operator Nk,

which maps k+ 1-cochains into k-cochains as

N�
k ¼ ?Mn�kþ1? ¼ ?NT

k ? ¼ WkN
T
kW

�1
kþ1:

Finally, the Hodge Laplacian is

Lk ¼ Nk�1N
�
k�1 þ N�

kNk;

as defined in the main text.

Lift, projection and frustrations. We provide here more details on the derivation
of the frustrated simplicial Kuramoto model and the resulting orientation invar-
iance. The most general projected lifted Lk Laplacian with the lift from Eq. (12) and

the projections onto negative values is

bLfullk ¼ 1
2 ðVkNk�1V

T
k�1Þ

�
Vk�1N

�
k�1V

T
k

þ 1
2 ðVkN

�
kV

T
kþ1Þ

�
Vkþ1NkV

T
k

But we have the following propositions.

Proposition 1. The following holds for any k

1
2
VT

k
bLfullk Vk ¼ Lk:

Proof. Using the relations VT
k Vk ¼ 2 and VT

k V
�
k ¼ 1 For the down term of the

Hodge Laplacian, we have

VT
k
bLfullk;downVk ¼ VT

k ðVkNk�1Þ�N�
k�1V

T
k Vk

¼ VT
k V

�
k Nk�1N

�
k�12

¼ 2Nk�1N
�
k�1

¼ 2Lk;down;

which results in a non-lifted down term in the complete Laplacian. For the up
Laplacian, the same computation applies, thus we have the result. □

Then, from the form of the frustration operator acting in the nonlinear term
corresponding to the up Laplacian, we can only use the lift on the k+ 1 simplices
to get the lifted Laplacian in Eq. (14) of the main text.

Proposition 2. The frustrated simplicial Kuramoto model is independent on the
orientation of the k+ 1 simplices.

Proof. The term of interest is

LupðNk; θ
ðkÞÞ ¼ ðN�

kVkþ1Þ� sin Vkþ1Nkθ
ðkÞ þ αkþ1

� �
:

If we change the orientation of a k+ 1 simplex indexed by i the corresponding
coboundary operator eNj has ðeNkÞi ¼ �ðNkÞi. Then

Vkþ1
eNk ¼ PiVkþ1Nk;

where Pi permutes the rows i and 2i of the lifted matrix. Hence, we have the
orientation invariance

L upðeNk; θ
ðkÞÞ ¼ ðN�

kVkþ1PiÞ� sin PiVkþ1Nkθ
ðkÞ þ αkþ1

� �

¼ LupðNk; θ
ðkÞÞ;

as the permutation of rows commute with the point-wise sine function. □

Simplicial order parameter. Following32, the generalization of node order parameter
to any graph in Eq. (24) is obtained by rewriting the node order parameter for a
complete graph with the graph incidence matrix

n20R
2
0;c ¼ ∑

i
expðiθiÞ

����
����
2

¼ ∑
i
expðiθiÞ expð�iθiÞ þ 2∑

i<j
expðiθiÞ expð�iθjÞ

¼ nþ∑
i<j
expðiθiÞ expð�iθjÞ þ∑

i>j
expð�iθiÞ expðiθjÞ

¼ n0 þ 21n1 cosðB0θÞ
¼ n20 � 2n1 þ 21n1 cosðB0θÞ
¼ n20R

2
0;g

where we used n1 ¼ 1
2 ðn20 � n0Þ, which holds for complete graphs. We then chose a

simpler normalization to write the order parameter as an average over edges as

R2
0 ¼

1
n1

1n1 � cosðB0θÞ;

with 1n1 the constant vector of ones of dimension n1, so that for full-synchroni-
zation, we still have R2

0 ¼ 1.
In order to obtain a proper generalization of the order parameter on simplicial

complexes, one first has to notice that the order parameter generates the Kuramoto
model as a gradient flow. A gradient flow is constructed from two elements: a
convex potential function H(x) for x∈ V with V a vector space, and a gradient
structure K:V→V* where V* is the dual of V. The gradient is a symmetric
operator while an anti-symmetric operator would result in a Hamiltonian equation,
with its dynamics restricted to the level sets of the potential function. The gradient
flow is then given as [Eq. 34]

_x ¼ �K
δHðxÞ
δx

; ð34Þ

where δ
δx : F ðVÞ ! V� is a variational derivative acting on the space F ðVÞ of

functions of V to its dual V*.
In our case, the potential function is R2

k defined in the main text in Eq. (26), the
variational derivative is simply the gradient with respect to θ. The gradient results
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in a chain, as

W�1
k�1N

�
k�1 : C

k ! Ck�1 and

W�1
kþ1Nk : C

k ! Ckþ1;

and the gradient structure K is simply the weight matrix Wk that converts the
resulting chains to cochains.

Diffusion simplicial Kuramoto. All the derivations in this paper were done fol-
lowing the standard formulation of the Kuramoto model that corresponds to the
consensus dynamics from the graph Laplacian. The effects of this choice are actually
only noticeable once one considers weighted graphs or simplicial complexes in a
geometrical setting as presented here. Indeed, without weights, both the diffusion and
consensus dynamics are equivalent, as the graph Laplacian is symmetric. Hence,
there is an obvious formulation of Kuramoto model with the diffusion interpretation,
that is obtained simply by acting with the Hodge Laplacian on the θ(k) cochains from
the right. The diffusion simplicial Kuramoto model is then

_θ
ðkÞ ¼ � sin θðkÞNk�1

� �
N�

k�1 � sin θðkÞN�
k

� �
Nk ; ð35Þ

or, explicitly with the weight matrices,

_θ
ðkÞ ¼ � sin θðkÞBk�1

� �
Wk�1B

T
k�1W

�1
k

� sin θðkÞWkB
T
kW

�1
kþ1

� �
Bk;

ð36Þ

For k= 0, the fully synchronized state is not the constant state as with the consensus
dynamics but is proportional to diagðW�1

0 Þ, often given by the node degree for
normalized graph Laplacian.

In order to include the frustration operator, one has to define it’s ’dual’ version
acting on N�

k and we obtain the frustrated diffusion simplicial Kuramoto model
[Eq. 37]

_θ
ðkÞ ¼ � αk � sin θðkÞNk�1

� �
N�

k�1

� sin θðkÞN�
k þ αkþ1

� �
Nk:

ð37Þ

Such systems require non-trivial weight matrices to be different from the
simplicial Kuramoto model presented in the main text and could be of interest for
future studies.

Data availability
Data sharing not applicable to this paper as no datasets were generated or analyzed
during the current study.

Code availability
The code to reproduce the figures is available on GitHub at https://github.com/
arnaudon/simplicial-kuramoto, on https://pypi.org/project/simplicial-kuramoto/ with
code version 0.0.1, or on zenodo with https://doi.org/10.5281/zenodo.6630240.
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