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Homological scaffold via minimal 
homology bases
Marco Guerra1*, Alessandro De Gregorio1, Ulderico Fugacci3, Giovanni Petri2 & 
Francesco Vaccarino1

The homological scaffold leverages persistent homology to construct a topologically sound summary 
of a weighted network. However, its crucial dependency on the choice of representative cycles hinders 
the ability to trace back global features onto individual network components, unless one provides a 
principled way to make such a choice. In this paper, we apply recent advances in the computation of 
minimal homology bases to introduce a quasi-canonical version of the scaffold, called minimal, and 
employ it to analyze data both real and in silico. At the same time, we verify that, statistically, the 
standard scaffold is a good proxy of the minimal one for sufficiently complex networks.

Network science has long represented the cornerstone theory in dealing with complex, heterogeneous multi-
agent systems. Network descriptions have found wide applications and had a significant impact on a wide range 
of fields1,2, including social networks3,4, epidemiology5,6, biology7,8, and neuroscience9–11.

In recent years, new approaches to the analysis of networks and, more generally, complex interacting systems 
have emerged which leverage topological techniques12–15. These techniques generally are referred to as Topo-
logical Data Analysis (TDA)16,17. TDA is a relatively modern subject based on classical Algebraic Topology18,19 
and that was sparked from a handful of seminal works in the late 90’s20–24. TDA typically endows a large variety 
of datasets with a notion of shape (more properly, with a topological structure) and, based on that, studies the 
considered data in terms of its topological features.

This field is undergoing a rapid expansion thanks to its rooting in the powerful languages of homological alge-
bra and category theory, which provide strong formal foundations, as well as to the wide variety of applications 
it found, that span material science25,26, biology and chemistry27–33, sensor networks34, cosmology35, medicine 
and neuroscience36–44, manufacturing and engineering45–47, social sciences13,48, and network science itself17,49–54.

The most central tool in TDA is undoubtedly Persistent Homology16,55. The theory of (or around) persistence 
has recently been proposed as a framework for the topological skeletonization of spaces, particularly weighted 
graphs and networks56–59.

In41, the generators of persistent homology are used to build one instance of network skeletonization called 
homological scaffold. However, the method has a serious drawback, consisting in the large degree of arbitrari-
ness in the choice of one representative cycle from the many equivalent generating cycles of the same homology 
class. This is unfortunately a direct consequence of the homology classes being equivalence classes and affects all 
attempts to localize cycles43,60. In this work, we set out to address this issue by searching for a form of canonicity 
in the choice of generators, namely by computing minimal representatives of homology bases.

Minimal homology bases have long been investigated61,62, with a breakthrough only coming thanks to the 
introduction of a first efficient algorithm for the computation of bases in dimension one63. Here, we leverage said 
minimal bases to propose a new approach to network skeletonization, the minimal scaffold, which overcomes the 
limitation of the previous one. While the minimal scaffold is not unique in the most general case possible, we 
provide strong guarantees and caveats on when and to what degree it is well-defined. We then show a few applica-
tions of the novel method, concluding the paper with a comparison between our and the previous construction.

The paper is organized as follows. “Background” section provides a brief overview of the main concepts in 
Topological Data Analysis. “Homological scaffold” section describes the original approach to network skeletoni-
zation by means of persistent homology, and highlights the deficiencies which we wish to address. In “Minimal 
bases” section, the topic of computing minimal representatives of a homology basis is worked out. “Minimal 
scaffold” section introduces the main concept of this work, the minimal scaffold. In “Uniqueness of the minimal 
scaffold” section, the issue of uniqueness is discussed, with some results stated, leading to a more refined version 
of the minimal scaffold. “Applications” section showcases some applications for the minimal scaffold. In the light 
of its computational complexity, we further carry out in “Comparison of scaffolds” section a statistical comparison 
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between the minimal and original scaffolds, providing some heuristic guarantees and caveats. “Conclusions” 
section concludes the discussion.

List of symbols and their common usage throughout the paper: 

Symbol Meaning

C A point cloud in Rd

K A simplicial complex

F A filtration of simplicial complexes (Kε)ε=1,..M

W A non-negatively weighted finite graph

V The set of vertices of a graph

E The set of edges of a graph

VR(W) The Vietoris-Rips complex of graph W

Ck(K) The vector space over Z2 of chains of k-simplices of the complex K

∂k The boundary operator between Ck(K) and Ck−1(K)

H1(K) The 1st homology group of complex K

β1(K) The dimension of H1(K)

PH1(F) The 1-dimensional persistent homology of filtration F

µ A function assigning non-negative weights to edges and cycles

B A minimal homology cycle basis

B̃ A minimal homology cycle basis with draws

B∗ The disjoint union of minimal cycle bases across a filtration

B̃
∗ The disjoint union of minimal cycle bases with draws across a filtra-

tion

Vi A set of homologous, equally minimal variants of a basis cycle

H(W) The homological scaffold of weighted graph W

Hmin(W) The minimal homological scaffold of weighted graph W

H̃min(W) The minimal homological scaffold with draws of weighted graph W

Background
In this section we introduce the minimum amount of mathematics necessary to the understanding of the rest of 
the paper. We refer to classical textbooks on the subject for further reading16,18,19,55.

Simplicial complexes.  Thanks to their proven flexibility in a plethora of applicative contexts, simplicial 
complexes are the most adopted mathematical structure for encoding unorganized, large-size and high-dimen-
sional data. In purely combinatorial terms, a (finite) simplicial complex K on a finite set V is a collection of non-
empty subsets of V, called simplices, with the property of being closed under inclusion, i.e., every non-empty 
subset of a simplex of K is itself a simplex of K. Given a simplicial complex K, the elements of V are called vertices 
of K and a simplex σ ∈ K is called a k-simplex (equivalently, a simplex of dimension k) if it consists of k + 1 ver-
tices. The dimension of a simplicial complex K is the largest dimension of the simplices in K.

Even if the abstract definition of a simplicial complex just given is able to capture a variety of datasets not 
necessarily endowed with a geometrical realization, it is worth to be mentioned that, intuitively, a simplicial 
complex is nothing but a collection of well-glued bricks, its simplices. According with such a perspective, a 
k-simplex can be seen as the convex hull of k + 1 geometrically independent points. For instance, a 1-simplex is 
an edge, a 2-simplex is a triangle, a 3-simplex is a tetrahedron, and so on.

Homology.  Homology is a topological tool which provides invariants for shape description and characteri-
zation. Given a simplicial complex K, it is possible to associate to it a collection of vector spaces Ck(K) over a 
field, in our case Z2 , whose bases are indexed by the k-simplices so that, loosely speaking, we say that these spaces 
are generated by the k-simplices of K. These spaces are connected by boundary operators ∂k : Ck(K) → Ck−1(K) 
mapping each k-simplex σ in the sum of the (k − 1)-simplices of K strictly contained in σ.

We denote as Zk(K) := ker ∂k the space of the k-cycles of K and as Bk(K) := Im ∂k+1 the space of the 
k-boundaries of K. Then, since ∂k∂k+1 = 0 , the quotient

defines a vector space called kth homology group of K.
We will call two k-cycles homologous if they belong to the same homology class.
Roughly speaking, homology reveals the presence of “holes” in a shape. A non-null element of Hk(K) is an 

equivalence class of cycles that are not the boundary of any collection of (k + 1)-simplices of K. Such classes 
represent, in dimension 0, the connected components of complex K, in dimension 1, its tunnels and its loops, in 
dimension 2, the shells surrounding voids or cavities, and so on.

Hk(K) :=
Zk(K)

Bk(K)



3

Vol.:(0123456789)

Scientific Reports |         (2021) 11:5355  | https://doi.org/10.1038/s41598-021-84486-1

www.nature.com/scientificreports/

Persistent homology.  An intrinstic limitation of homology concerns the need for working with a single 
simplicial complex representing the dataset under investigation. However, in real world applications, the pres-
ence of noise and of measurement errors makes the choice and construction of a single steady representation 
very hard in practice. Persistent homology22,55, currently one of the main tools in Topological Data Analysis, aims 
at solving this issue through a multi-scale study of a dataset and of its homological features by associating to it 
a sequence of simplicial complexes. The concept of filtration captures exactly the idea of analyzing a dataset at 
different thresholds of a parameter on which it depends. More formally, given a simplicial complex K, a filtration 
F  of K is a sequence of its subcomplexes such that

Given a filtration of a simplicial complex K, persistent homology keeps track of the evolution of the non-null 
non-homologous cycles of K and, associating a lifespan to each of them, is able to discriminate the relevant infor-
mation from the noise. Formally, for p, q = 1, . . . ,M with p < q , Hp,q

k (F) on (p, q) of a filtration F  consists of 
the image of the linear map between Hk(K

p) and Hk(K
q) induced by the inclusion of complexes between Kp and 

Kq . So, more intuitively, the elements in Hp,q
k (F) represent the cycles of K which survive from step p to step q.

Given a filtration of finite simplicial complexes F  , we define its k-dimensional persistent homology classes as 
the homology classes of 

⊕
ε Hk(K

ε) modulo the maps induced by the inclusion of simplicial complexes. More 
properly, h1 ∈ Hk(K

p) and h2 ∈ Hk(K
q) with p ≤ q are equivalent if and only if ι∗ p,q

k (h1) = h2 where ι∗ p,q
k  denotes 

the linear map between Hk(K
p) and Hk(K

q) induced by the inclusion of complexes between Kp and Kq . We call 
k-dimensional persistent homology PHk(F) the space spanned by the k-dimensional persistent homology classes.

As proven in23, a basis of PHk(F) is in bijective correspondence with a finite set of intervals of the form 
{(p, q), p < q, p, q ∈ Z ∪∞} referred as persistence pairs. We define a set of k-dimensional generator cycles of 
the persistent homology as a set of k-cycles of KM whose persistent homology classes form a basis of PHk(F).

The information about the “life” of each homology class can be collected in a visual, informative representa-
tion of the topological structure of the input, the persistence barcode: a plot consisting of a bar for each homo-
logical feature appearing throughout the filtration, stretching from its birth to its death value. An equivalent 
way to depict the same information is through the persistence diagram: the persistence diagram is the multi-set 
(i.e., multiple instances of the same element are allowed) of points in R2 consisting of all the (birth, death) pairs, 
i.e., pairs of values p < q such that a k-dimensional homology class arises at filtration step p and becomes zero 
at step q. Persistent homology owes its popularity as a descriptor to the immediacy and power of these visual 
representations of the homological information but, even more, to the fact that the retrieved features are prov-
ably stable. In fact, by defining a notion of distance among persistence diagrams or barcodes, it can be shown 
that similar datasets necessarily have similar homological features24.

Building (filtered) complexes.  In many applications, one is not directly called to deal with a simplicial 
complex, but has instead access to data in the form of point clouds in a metric space or of weighted graphs. For 
example, data may be obtained as a sample of some (unknown) ground truth, i.e., an undisclosed manifold 
of dimension usually much lower than the space it is embedded in16. Another typical subject of application is 
network science52,54: in this setting, the input is in the form of a weighted graph. Notice that in this case it is not 
mandatory that the graph can be embedded in some metric space, i.e., that the edge weighting respects a trian-
gular inequality. Networks are not necessarily representations of geometrical entities, and still the topological 
approach extends naturally to this context.

In both these cases, one needs to provide a suitable simplicial complex resting on the given structure. The 
subject has been addressed extensively (see, for example55); in here, we simply review the most typical scheme, 
called the Vietoris-Rips complex. Given a graph G = (V ,E) , its flag or clique complex is the simplicial complex 
Flag(G) whose simplices coincide with the cliques of G.

Given a point cloud V ⊂ R
n and fixed a value ε > 0 , one can build a graph Gε with a vertex for every point in 

V, and an edge between two vertices every time the distance between the corresponding points is less or equal 
than ε . Analogously, given a weighted graph G = (V ,E) one can build a subgraph Gε on the same vertex set, with 
only those edges that have weight less or equal than ε . Independently from the considered case, one can define the 
Vietoris-Rips complex VRε of parameter ε as the flag complex Flag(Gε) of graph Gε . Furthermore, since varying 
ε the Vietoris-Rips complexes VRε form an increasing sequence of simplicial complexes, the family (VRε) gives 
raise to a filtration denoted as filtered Vietoris-Rips complex (see Fig. 1).

As already mentioned, Vietoris-Rips complexes are employed in a wide variety of different application 
domains. The reason is that their definition only depends on the pairwise distances between points, making 
them efficient to compute and to store with respect to more refined alternatives. It is worth noticing, however, 
that cost of this simplicity is the fact that the dimension of a Vietoris-Rips complex can explode even when the 
points are sampled from a low-dimensional subspace of Rn.

Homological scaffold
The homological scaffold originated from the intuition that traditional, graph-theoretical tools in network analy-
sis were naturally able to capture significant properties64, but proved not as effective in detecting multi-agent 
and large-scale interactions. Interest in searching for alternative descriptors of network relations arose, and soon 
works were published which leveraged invariants offered by computational topology13,14,65.

In proposing the scaffold41, the authors pointed out that homological might be able to summarize well net-
work mesoscale structures, i.e., features living between the purely local connections and the global statistics, to 
which previous methodologies were blind. Furthermore, this structure could be analyzed over the continuous, 
full range of interaction intensities, without the need for ad-hoc domain-specific thresholds.

∅ ⊆ K1 ⊆ · · · ⊆ KM = K
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Homological cycles intuitively describe obstruction patterns. The presence of non-trivial homology within a 
given region of a network highlights its structure as non-contractible, binding signals to flow over constrained 
channels, which in turn play the role of bridges.

To test the method, the homological scaffold was computed from resting-state fMRI data for 15 healthy vol-
unteers who were either infused with placebo or psilocybin: the scaffold discriminated the two groups, as well 
as providing meaningful insight as to the impact of the psychoactive substance onto the pattern of information 
flow in the brain41.

Given a non-negatively weighted finite graph W = (V ,E,w : E �→ R
+ ), let F  be a filtration of simplicial 

complexes as above.
Let {bi} be a set of 1-dimensional generator cycles of the persistent homology. Since we are over Z2 , each of 

the bi ’s is completely identified by its support, which is a set of edges of E. In particular, we can depict set {bi} as 
a matrix whose rows are indexed by E and having the bi ’s as columns. The row sums, as natural numbers, form 
a new weighting function on the edges of W, the new weights counting precisely in how many persistent cycles 
an edge appears along the filtration.

Definition 3.1  Suppose W and F  as above, and consider a set {bi} of 1-dimensional generator cycles of the 
persistent homology. Consider the function hW : E �→ R

+

where by 1e∈bi we denote the indicator function E  → R
+ such that 1e∈bi (e

′) = 1 if e′ appears in bi , and 0 
otherwise.

Then the homological scaffold of W is the weighted graph H(W) such that

–	 its vertex set coincides with the vertex set of W
–	 its edge set EH is a subset of the edge set of W, consisting of edges with nonzero value for hW
–	 its weight function is the restriction of hW to EH.

In accordance with the above definition, building the homological scaffold of a weighted network W is a 
method of network compression or skeletonization. The definition also implies that edge weights are assigned by 
the number of basis cycles the edge belongs to.

We provide an example, referring to Fig. 2. In panel (a), a filtration of simplicial complexes arising from a 
point cloud is depicted. At each step, highlighted in purple is a representative of a persistent cycle (i.e. of a bar 
in the barcode), each at the scale at which it is born.

In panel (b), the corresponding homological scaffold is represented: it amounts to taking the union of the 
cycles of panel (a), i.e. stacking generators of PH1 , each contributing unitary weight.

(1)hW :=
∑

i

1e∈bi

Figure 1.   (a) An example of Vietoris-Rips filtration of simplicial complexes with parameter ε , and the 
corresponding barcode for 0- and 1-dimensional persistent homology. (b) The persistent pairs of the above 
filtration. (c) Two equivalent representatives of the (only) generator of PH1.
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In the following, we shall sometimes refer to the homological scaffold as the loose, or original scaffold, to 
contrast it with the new definition of scaffold to follow.

As anticipated in the introduction, it is apparent that there is a substantial source of arbitrariness in this 
definition.

Several different representative cycles exist which form a basis of the persistent homology (as a consequence of 
several different cycles belonging to the same homology class), and hence one must make a choice. For example, 
Fig. 3a depicts one specific cycle whose homology class generates (part of) the persistent homology group of 
the point cloud. At the same time, any other choice of edges forming a cycle around the hole is homologically 
equivalent and, in principle, legitimate.

In the original paper, the authors resorted to using the cycles as output by the JavaPlex implementation66 of the 
persistent homology algorithm (based on the original implementation of21), and a posteriori checked the selected 
cycles for consistency. However, in principle, this means that the same simplicial complex written with two dif-
ferent orderings of the simplices could lead to different choices of generators, and therefore, to different scaffolds.

As such, we must be careful in the choice of nodes and edges output by the algorithm; while the presence of 
a generator denotes undeniably that an obstruction pattern exists, we cannot be as confident about its precise 
location in the network or the constituents that provide bridges around it. The homological scaffold defined in 

ε

0 0.25 0.32 0.5

(a)

(b)

Figure 2.   (a) A point cloud in [0, 1]2 and the generators of PH1 , plotted on the filtration step they appear at 
(scale reported on the axis below). (b) The resulting homological scaffold. Edges in blue have weight 1, each 
belonging to only one generator. The edge in green has weight 2, as it belongs to two generators.

Figure 3.   A simplicial complex K with dimH1(K) = 1 . Its homological scaffold (on a subset of the filtration 
steps, for clarity) is reported in panel (a): the chosen generator meanders around the hole. Furthermore, a 
different ordering of the list of simplices fed to the algorithm could return a different cycle. In panel (b), the 
shortest representative cycle is chosen: this choice is stable with respect to any ordering of the input, while at the 
same time endowing the generator with some metric and geometric meaning.
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this way introduces noise in the localization of mesoscale patterns onto individual nodes and edges, a process 
which, if accurate, could provide valuable insight as to the functional role of single players in a network.

In this work, we try to work around the problem of cycle choice and give a stricter definition, by requiring 
that, among all possible representatives, those of minimal total length are chosen (e.g., Fig. 3b).

The original algorithm reported a computational complexity of the order O(n3) to obtain representatives of 
basis cycles.

Minimal bases
The search for minimality in the computation of the scaffold was made feasible by the introduction of efficient 
algorithms to compute the minimal representatives of a homology bases in dimension one.

It is known that in dimension higher than one, minimal representatives of a homology basis will remain 
elusive. Indeed, Chen and Freedman67 proved that the problem of obtaining these minimal representatives is 
computationally intractable, being at least as hard as the notoriously NP-Hard Nearest Codeword Problem. 
Furthermore, it is even NP-Hard to approximate within any constant factor, meaning that no polynomial-time 
algorithm exists to obtain an approximate minimal basis that differs from the exact one by at most a multiplicative 
constant. In the light of this, we must necessarily restrict our attention to the 1-dimensional case, i.e., computing 
minimal representatives of a basis of H1.

Minimal bases and Dey’s algorithm.  Given a simplicial complex K, let us consider C1 the vector space 
generated by the 1-simplices of K and Z1 the vector space of 1-cycles, i.e., Z1 = ker ∂1 . Given a 1-cycle b ∈ Z1 , 
let µ(b) be its length, i.e., the sum of the weights of the 1-simplices that form it, and denote by [b] the homology 
class b belongs to. Finally, let β1 := dimH1(K) . We want to obtain a set of β1 1-cycles ∈ Z1

that is a set of cycles of minimal length whose homology classes span H1(K) . In accordance with the literature, 
we call this set a minimal homology basis, with a slight abuse of terminology, as it would be more appropriate to 
call it a minimally-represented homology basis.

In 2018, Dey et al.63 introduced a polynomial-time algorithm to obtain said representatives. Building on 
the work of Horton68, de Pina69, and Mehlhorn et al.70, the algorithm sets off to compute a basis of the space of 
cycles. Then, it applies a cohomological technique called simplex annotation71 to lift a basis of cycles to a basis 
of the homology group H1 , while at the same time enforcing the minimal length constraint. A sketch of the 
algorithm follows.

Algorithm: MinBasis(K)

•	 A basis of the cycles group Z1 is found via a spanning tree. Each edge in the complement of the spanning tree 
identifies a candidate cycle68.

•	 An annotation of the edges is computed via matrix reduction71. This yields the dimension β1 of H1 , as well 
as an efficient tool to determine if two cycles b1 and b2 are linearly dependent in H1 ( [b1] = [b2]).

•	 A set of support vectors is generated which maintains a basis of the orthogonal complement in H1 of the 
minimal basis cycles.

•	 Iteratively for each dimension of H1 , the candidate set of cycles is parsed in search of cycles b’s that are lin-
early independent in homology from the previous ones (exploiting the support vectors). Among these, the 
µ-shortest one is added to the minimal basis.

•	 The set of support vectors is updated for the remaining dimensions to enforce it remain a basis of the orthogo-
nal complement of the basis.

•	 The last two steps above are repeated until completion of the minimal basis.

Call B = {bi} the output of MinBasis on input K.

Theorem (3.1,63) Cycles in B form a minimal homology basis of H1(K).
Notice that the minimal homology basis is guaranteed to exist, as we only work with finite simplicial com-

plexes, which imply the existence of a finite number of bases. However, it needs not, in general, be unique. 
Several different cycles of the same minimal length may all belong to the same homology class of a basis cycle. 
Heuristically, this is especially true in case the input complex is unweighted (equivalently, has equal weights for 
every edge), in which case the length of a cycle is the number of edges that form it. Furthermore, there exist cases 
when different sets of cycles of minimal length generate the same homology space, and are not even pairwise 
homologous. We will treat the problem of the uniqueness of the minimal basis in more detail in the following, 
and account for it explicitly in the construction of the minimal scaffold.

The computational complexity of the above procedure is evaluated63 to O(n2β1 + nω) where n is the number 
of simplices in K and ω is the fast matrix multiplication exponent, which as of 2014 is bounded by 2.3763,72,73. 
This yields a worst-case complexity of O(n3) in the number of simplices for general complexes, which we recall 
is itself of order 3 in the number of points in the worst case.

(2){b1, . . . , bβ1} = argmin
Span{[bi]}=H1

∑

i

µ(bi)
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Minimal scaffold
In this section, we introduce an alternative definition for the homological scaffold, which we call minimal, based 
on the minimal representatives obtained above, and aims at overcoming the arbitrariness in the cycle choice of 
the previous definition. After addressing the simplest case, we analyze its uniqueness properties and introduce 
a second, more refined, definition.

Let F  be the filtration of simplicial complexes induced by a non-negatively weighted finite graph W. For all 
filtration steps ε , define, as per (2), Bε := {bεi } the minimal homology basis of H1(K

ε) . Take the disjoint union 
of minimal bases for ε varying on all filtration steps

Definition 5.1  Suppose W, F  and B∗ as above. Similarly to the loose case, define the function hW ,min : E �→ R
+ 

as

Then, we define the minimal scaffold of W as the weighted graph Hmin(W) whose:

–	 vertex set coincides with the vertex set of W
–	 edge set Em is a subset of the edge set of W, consisting of edges with nonzero value for hW ,min

–	 weight function is the restriction of hW ,min to Em.

The minimal scaffold amounts, again, to the stacking of generator cycles across a filtration. However, two 
differences are to be noted with respect to the loose definition. First, we require the representative cycles to be 
minimal. Second, we point out that while the loose scaffold is built by aggregating the generator cycles of PH1(F) , 
the minimal scaffold is built by independently computing a minimal basis for each H1(K

ε), for all ε . Notice that, 
since cycles are modified throughout a filtration, it would be meaningless to talk about a minimal representative 
over a certain persistence interval. This also means that its computation can be effectively parallelized by assign-
ing different filtration steps to different jobs, and later recombining the outputs.

An interesting phenomenon that descends directly from the above peculiarity is that the minimal scaffold 
of random point clouds tends to display a more pronounced triangular structure (clustering) around cycles. 
Indeed, as longer (or, in non-metrical filtrations, later) edges are introduced, a cycle can be shortened (by the 
triangular inequality) by a longer edge which cuts a corner. Since at each step the algorithm records the minimal 
representative, upon aggregating the minimal scaffold one finds each cycle in its progressively shorter version, 
and the history of the shortening is visible as a padding of triangles around it.

Considering the example of Fig. 4, in panel (a) we observe an example of a filtration of simplicial complexes. 
At each step, highlighted in purple we may see the minimal representative of a homology class, together with its 
evolution history. At filtration value 0.26, we observe a pentagon being reduced to a shorter, quadrilateral cycle 
by the addition of a longer edge. This is an example of the phenomenon explained above. Figure 3 gives a visual 
description of the difference between a minimal and generic cycle.

The union of these progressively shorter cycles for all steps (weighted according to Definition 3) is the minimal 
scaffold, as seen in Fig. 4 panel (b).

We remark that, if there is no ambiguity in the construction of a filtration of simplicial complexes from a 
point cloud, or from a weighted graph, we will indifferently speak of the scaffold as a function of either of them 
( Hmin(C) , or Hmin(W) , or Hmin(F)).

We have mentioned that the scaffold amounts to a change in weighting in the input graph

altering the original weights of the edges. Additionally, considering node strength (i.e. the sum of the weights of 
the edges incident to a given node), it can equally be considered as a function

assigning weights to nodes. Considering the reliability of the choice of edges in the procedure, this explains why 
the minimal scaffold can be utilized to associate mesoscopic features with single nodes and links.

Computational complexity.  For large input sizes, the cost of assembling the minimal basis cycles into the 
scaffold is negligible with respect to the cost of computing such minimal basis.

We know that each run of Dey’s algorithm costs O(|K |3) in the worst case63, and in the worst case |K | is itself 
O(n3) where n is the number of points.

The number of filtration steps has an upper bound of O(n2) (i.e., the number of edges) in the worst case, as 
in general every edge may carry a different weight. Hence Dey’s algorithm has to be run once for each edge in 
the worst case.

B∗ :=
∐

ε

Bε

(3)hW ,min :=
∑

b∈B∗

1e∈b

hW ,min : E �→ R
+

Hmin : V �→ R
+
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This yields a theoretical worst-case complexity of order O(n9n2) = O(n11) . Therefore, while the minimal 
scaffold is undeniably a polynomial-time algorithm, its practical computation is often hindered by its dire lack 
of scalability, especially if compared against the loose version, which has a far more favourable complexity.

A comparison of running times is carried out in Fig. 5, which clearly shows that computing the minimal 
scaffold on an ordinary machine can quickly become troublesome.

Implementation.  We have written a Python implementation of Dey’s algorithm, together with a library 
for the computation of the minimal scaffold. The code is available on GitHub at74, with some usage examples. 
It allows for shared-memory multi-threaded parallelism across filtration steps to improve computation times, 
while still being suitable for ordinary desktop workstations.

Uniqueness of the minimal scaffold
The uniqueness of the minimal scaffold depends on the uniqueness of the minimal basis. Indeed, if there exists 
only one possible set B∗ of cycles forming a minimal basis, then the scaffold is uniquely determined. Two issues 
affect the uniqueness of set B∗.

Figure 4.   (a) The same point cloud of Fig. 2. Along the filtration we show the evolution of minimal generators, 
which can get progressively shorter as new edges are introduced. For example, at ε = 0.26 , the pentagonal cycle 
gets cut to a shorter quadrilateral, albeit with an individual longer edge. This evolution is accounted for in the 
minimal scaffold, which displays the triangle-rich structure mentioned above. (b) The resulting minimal scaffold 
(weights not reported).

Figure 5.   The running times of computing the minimal and loose scaffolds for Watts-Strogatz weighted 
random graphs. For all instances, number of nodes N is indicated on the x-axis. Number of stubs k is N/2, and 
rewiring probability is p = 0.025.
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Draws.  The first one arises when two or more different and homologous basis cycles are of the same minimal 
length. This case is relatively simple to work around: we modify the definition of minimal scaffold to keep track 
of all variants of minimal basis cycles, dividing the weight equally among them.

Specifically, to account for this issue we have slightly modified Dey’s algorithm. In its last step described above, 
one is concerned with finding all cycles whose annotation is not orthogonal to the given support vector: among 
these, the one with minimal length is chosen as a basis cycle. Instead, we keep track of all such cycles with the 
same minimal length. This does not alter the complexity, as one needs to check all possible cycles anyway. We 
call this case a draw.

Therefore, we modify set B to become a set of sets of cycles. Given complex K, we define a minimal basis with 
draws

where for all i = 1, . . . ,β1(K) , the cycles bi,j with j = 1, . . . , ni are homologous and have the same minimal 
length. Furthermore, for every choice of ji ∈ {1, . . . , ni} , Spani{bi,ji } = H1(K) . Call Vi := {bi,1, . . . , bi,ni } each 
set of draws, i.e., variants of the ith minimal basis cycle, ∀i = 1, . . . ,β1(K).

In the example of Fig. 6a,b, we have set B̃ = { {b1,1, b1,2} } , whereas set B might have indifferently been equal 
to {b1,1} or to {b1,2} , whichever happened to come first in the search.

The minimal scaffold is modified accordingly. Given the usual filtration F  , let B̃ε be the minimal basis with 
draws of H1(K

ε) . Again, we aggregate all variants of minimal basis cycles along the filtration

Then, we define the weighting function with draws h̃W ,min : E �→ R+

and the resulting minimal scaffold with draws H̃min(W) is built from h̃W ,min as in Definition 3.

B̃ :=

β1(K)⋃

i=1

{bi,1, . . . , bi,ni }

B̃∗ :=
∐

ε

B̃ε

(4)h̃W ,min :=
∑

V⊂B̃∗

1

|V |

∑

b∈V

1e∈b

Figure 6.   Top panel: (a) A simplicial complex K. (b) Two homologous and equally minimal generators of 
H1(K) . (c) The minimal scaffold with draws H̃min(K) . The weight is equally divided among the variants of the 
minimal representative. Bottom panel: (d) A simplicial complex K on the represented point cloud. H1(K) has 
dimension 2. (e) µ(b1) < µ(b2) = µ(b3) . A minimal basis can either be composed of {b1, b2} or {b1, b3} , hence 
it is not unique.
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The meaning of the above definition is that all variants of all minimal basis cycles are taken into account 
when building the scaffold, and the weights are assigned dividing each variant’s contribution by its cardinality, 
for each filtration step. In the example of Fig. 6c, the two cycles forming the variant of the only generator are 
multiplied by a factor of 12 and then summed: therefore, common edges outside the diamond are assigned weight 
1, consistently with the minimal scaffold in definition (3), whereas the four edges forming the perimeter of the 
diamond each get assigned weight 12.

With the introduction of draws, we settle the case when ambiguity arises among individual cycles, without 
interactions. As an example, we can state the following result.

Proposition  If F  is such that, for all ε in the filtration, each basis cycle belongs to a different connected component 
of Kε, then the minimal scaffold with draws H̃min(F) is unique.

Pathological cases.  The other issue arises when there exist sets of minimal cycles that are not linearly 
independent. Suppose that three different cycles generate a homology group of dimension two, i.e., when three 
minimal cycles are pairwise independent in homology, but threewise dependent. In this case, two generators are 
sufficient to span H1 and, if their lengths are arranged pathologically, there is no principled way to choose two 
out of the three.

Suppose for example that three cycles b1, b2 and b3 are such that

In this case, both bases {b1, b2} and {b1, b3} span the same homology space, and are of equal minimal length. The 
minimality criterion fails in this case.

One could believe that such a configuration can only happen in the most general spaces, and that by impos-
ing some mild hypotheses on the input data one could rule the pathology out. In fact the opposite is true, this 
degeneracy being possible even after enforcing very strong conditions on the data.

Counterexample Even if W is planar and an isometric embedding W →֒ R
2 exists (i.e., the input planar 

weighted graph can be accurately drawn onto the plane), the minimal scaffold H̃min(W) needs not be unique.
In fact, consider complex K arising from the geometric, planar graph in Fig. 6d. Its homology H1(K) is gen-

erated by two cycles; possible generators are depicted in Fig. 6e. Since the outer cycle b1 is the shortest, and the 
two inner ones b2 and b3 are of equal length, the minimality criterion can not solve between {b1, b2} and {b1, b3} , 
as both are acceptable minimal bases. The minimal scaffold (with or without draws) is not unique in this case.

Clearly, the same could happen with more than three cycles, with a larger number of possibly ambiguous 
configuration. Therefore, if we allow for a high degree of symmetry in the input, this pathology could arise even 
in the rather tame context of planar graphs on R2 . This issue is rather delicate, in the sense that not only the algo-
rithm is unable to make a principled choice; it is not even capable of detecting when such a configuration takes 
place. In fact, this is more of a feature of homology than a flaw in the skeletonization framework: what our eyes 
see as different cycles are in fact homologically equivalent, and it is impossible to use homology to tell them apart.

We however remark that, for complexes arising from real-world data, this type of configuration is actually 
pathological. Indeed, the following generality result holds.

Proposition  Assume a point cloud C = {Xi} such that Xi ∼ U([0, 1]d) independently. Then, almost surely, the 
minimal scaffold Hmin(W) (with or without draws) is unique.

If the input point cloud is sampled uniformly at random in some Rd , then edge lengths are distributed accord-
ing to an absolutely continuous probability law. Therefore, given two edges e1 and e2 , P[µ(e1) = µ(e2)] = 0 . The 
same holds for any two non-identical cycles, and any two homology bases (being but finite sets of edges): the 
probability of them sharing the exact same length is zero. By finiteness of the input, at least one minimal homol-
ogy basis exists and, by the above reasoning, almost surely this basis is unique for each filtration step. Then, with 
probability 1 the minimal scaffold is unique.

This result is actually quite general: whenever we can assume our input data to be subject to noise, then we are 
in principle allowed to rule out pathological same-length cycles. In these cases, the minimal scaffold is unique.

We remark that this uniqueness result is compatible with the phenomenon of the concentration of measure: 
while for a very high-dimensional space or a very large number of points we know from theory that the distribu-
tion of length of edges concentrates towards its mean value, the probability of two edges (and hence two cycles) 
having the same length is still zero. One needs to be careful, however, that the probability of two cycles differing 
in length by less than some ǫ > 0 could grow very rapidly with ǫ.

In summary, the minimal scaffold with draws H̃min is well-defined up to some pathological circumstances, 
where it may depend on the ordering of the input.

Applications
As illustrative examples, we show here a few applications of the minimal scaffold. Through it, we obtain meaning-
ful subsets of known networks in neuroscience, and rank their constituents by their “topological importance”.

The C. elegans dataset is a correlation network of neural activations of the nematode worm Caenorhabditis 
Elegans. C. elegans has become a model organism due to the unique characteristic of each individual sharing 
the exact same nervous system structure.

The input consists of a symmetric weighted adjacency matrix over 297 nodes, each representing a neuron. 
Edge weights represent (quantized) time correlations between the firing of neurons, ranging from 1 to 70.

µ(b1) < µ(b2) = µ(b3) and [b1] = [b2] + [b3]
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The minimal homological scaffold of its brain map highlights the geometry of the obstruction patterns, i.e., the 
precise areas where nervous stimuli are less likely to flow. We stress the improvement obtained by the minimal 
scaffold over the loose one, in that it is not only able to identify the presence of a “grey area” in the network, but it 
can as well provide a reliable boundary for it, and identify which neurons and inter-neuron links are responsible 
for information flowing around the obstruction.

As an interesting example, we see in Fig. 7 the top 25 neurons ranked in descending order of relative node 
strength (sum of weights of incident edges) with respect to the average node strength. We can identify four 
nodes, labeled 81, 260, 36, and 37, which hold a significantly higher relative strength than the rest. This implies 
their presence in many minimal cycles across several scales, hence suggesting that they play a crucial role in the 
fabric of information flow within the nematode’s brain.

The same type of analysis was repeated on the correlation network of brain activities in an 88-parcel atlas 
of the human brain, obtained through fMRI imaging at resting state. The data is courtesy of the Human Con-
nectome Project75.

Again, the minimal scaffold identifies which regions and links in the human brain are key bridges for the flow 
of information. Two parcels stand out (Fig. 8a) as particularly relevant for network topology.

For a relatively small network such as this, we can visualize the scaffold as a proper subnetwork by a chord 
diagram (Fig. 8b), with edge weight represented by color intensity and node strength by the size and color of 
the vertex. We stress that, starting from a virtually complete graph over 88 nodes, we reduce the size from 3828 
edges to just 191, while preserving the topological structure.

We can, as well, leverage libraries in computational neuroscience76 to embed the scaffold in the actual human 
brain, with regions correctly located, projected on the three coordinated planes. In Fig. 8c, for visualization 
purposes color intensities represent log-weight in the scaffold.

To better highlight the value of the scaffold in signalling brain network function, we constructed a suitable 
null model of the functional network, as was done in77. The technique consists in reshuffling the correlation 
matrix subject to the constraint of keeping a fixed spectrum, i.e. applying a random rotation, which guarantees 
the matrix remains positive semidefinite and hence a proper correlation matrix. An implementation of such a 
procedure can be found in78.

The resulting randomized adjacency matrix is characterized by a vastly larger number of homological cycles 
than the original; so much so in fact that the computation of its minimal scaffold becomes cumbersome. However, 
even without computing them explicitly, we know for sure that the scaffolds of the original and randomized net-
works are totally different, specifically because they are built by aggregating two completely different persistence 
structures, i.e. the minimal scaffold does indeed highlight the functional information in the original dataset.

The possible applications in which the minimal scaffold could provide novel insight into the structure of brain 
data are many: any relatively small correlation matrix could be either compressed or its patterns analyzed, as is 
often the case in EEG42,44,79,80 or neuronal38 studies, and in fMRI ones when using rather coarse atlases (e.g.81,82).

Comparison of scaffolds
As the last contribution for this work, we consider a comparison between the minimal and loose scaffolds.

Figure 7.   The top 25 neurons by relative node strength in the minimal scaffold over average strength in C. 
elegans (mean 36.41). Four neurons show a significantly higher relative strength than the others.
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We have already pointed out that the minimal scaffold in general offers superior guarantees as a tool, both for 
network analysis and network skeletonization. On the other hand, the loose scaffold clearly has an advantage in 
terms of computational complexity: while it is in principle viable for most of the applications where persistent 
homology has been employed, the minimal scaffold, even adopting filtration-wise parallelization, requires a vastly 
larger amount of computational power, which effectively limits its range of application, unless run on dedicated, 
high-performance infrastructures.

A reasonable question to ask is the following. If one is interested not in the exact structure of the scaffold, but 
only in its statistical behaviour, could the loose scaffold provide a sufficient approximation of the minimal one? 
In a more concrete example, if instead of wondering exactly which nodes in a network are the most topologically 
important one is interested in the distribution of the degree sequence of the minimal scaffold, could the loose 
one come to one’s help?

To answer this question, we have performed comparisons of several graph metrics in the two scaffolds of C. 
elegans. Further, to gain insight into the general case, we have sampled two families of random graphs at differ-
ent parameter values, one for geometric graphs (Random Geometric Graph), and one for non-geometric graphs 
(Weigthed Watts-Strogatz).

C. elegans.  For the C. elegans dataset, we have compared the following graph metrics of the minimal and 
loose scaffolds: 

1.	 Degree Sequence
2.	 Node Strength
3.	 Betweeness Centrality
4.	 Closeness Centrality
5.	 Eigenvector Centrality

Figure 8.   (a) The top 25 brain regions in the human brain by relative node strength in the minimal scaffold 
over average strength (mean 546.7). Two neurons show significantly higher importance. (b) The chord diagram 
of the minimal scaffold. Node size represents node strength, edge color intensity represents weight in the 
scaffold. (c) The minimal scaffold embedded in the human brain, with regions accurately located, projected 
on the three coordinated planes. Edge color represents log-weight in the minimal scaffold (Log-scale for 
visualization purposes).
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6.	 Clustering Coefficients
7.	 Edge weights

Results (reported in the Table of Fig. 9c) indicate that, for metrics 1 to 5, the two scaffolds are very well corre-
lated. So for example the cheap, loose scaffold is a reliable proxy of the distribution of the “true” degree sequence 
(scatterplot in Fig. 9d).

We instead observe poor correlation of edge weights and clustering coefficients. The first one is not unex-
pected, since the edge weighting procedure is conceptually different in the two scaffolds: while in the minimal one 
we consider a different basis for each filtration step, the loose scaffold considers bases of the persistent homology 
space, drastically reducing the number of cycles considered. To make it clearer, in general set B∗ has cardinality 
much larger than the dimension of PH1 . It is therefore explicable that the distributions of edge weights do not 
generally agree.

Clustering coefficients, on the other hand, are a measure of how “triangular” a graph is around a given node. 
As remarked in “Minimal scaffold” section, another consequence of assembling the scaffold from the minimal 

Figure 9.   Correlations between the minimal and loose scaffold. (a) Comparison in the weighted Watts–
Strogatz model. Degree sequence and betweenness centrality in the two scaffolds are compared, using Pearson 
and Spearman correlation coefficients. Each box is computed over a sample of 30 weighted Watts–Strogatz 
random graphs, with parameters as reported on the x-axis: the pair (N, k) indicates a WS model on N nodes, 
with k stubs to rewire. The rewiring probability is 0.025. The cyan crosses and the green diamonds represent 
the average correlation value against the loose and minimal null models, respectively. (b) Comparison in the 
random geometric model. Again, Pearson and Spearman correlation coefficients of the degree sequence and 
betweenness centrality in the two scaffolds are compared. Each box is computed over a sample of 30 random 
geometric graphs, with parameters as reported on the x-axis: the pair (N, t) indicates a graph on N nodes 
sampled uniformly at random in the [0, 1]2 square. t is the connectivity distance threshold. The cyan x’s and the 
green diamonds represent the average correlation value against the loose and minimal null models, respectively. 
The darker boxes in panels (a,b) report, for their respective model and for each metric and parameter values, the 
fraction of the sampled instances for which the Kolmogorov–Smirnov test was inconclusive (p value > 0.05). (c) 
Correlation tests for several network metrics show significant capabilities of the standard scaffold to reproduce 
certain statistical properties of the minimal one in C. elegans. At the same time, due to different construction 
mechanisms, others are unreliable. (d) Scatterplot of the degree sequence of neurons of C. Elegans in the 
minimal scaffold versus in the loose one.
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bases of the H1 ’s is that a large number of artificial triangles appear around cycles. In this case too, therefore, the 
poor correlation is easily explained.

Random graphs.  Drawing inspiration from54, we repeat the analysis on random graph samples54. Divides 
random networks into two categories: those created from edge weighting schemes and those created from points 
in the Euclidean space. We have chosen to analyze the weighted Watts-Strogatz (WS) model as representative of 
the first class, and the geometric random model as representative of the second. We remark that weighting needs 
to be introduced in order to compute persistence; while for geometric graphs this simply requires computing the 
Euclidean distance, for the Watts-Strogatz model it requires an ad-hoc procedure that is described in detail in 
the supplemental material of54.

We briefly recall that a WS graph is parametrized by the number of nodes, by the number of stubs to rewire, 
and by the rewiring probability. A random geometric graph is instead parametrized by the number of points 
to sample (uniformly) in [0, 1]d , and by a cutoff value that acts as distance threshold, beyond which no edge is 
introduced.

In both cases, we observe good agreement on key statistics, as reported in Fig. 9a,b. Each bar is obtained by 
computing the correlation of the reported statistic on a sample of 30 random graphs of the reported model, with 
parameters as indicated on the x-axis.

For comparison, two null models are built for each instance of the minimal and loose scaffolds in the sample, 
by constructing an Erdős-Rényi random graph on the same vertex set, one with the same number of edges as the 
minimal scaffold, and one with the same number as the loose one. The correlation is computed of each statistic 
between the minimal scaffold and the loose null model and between the loose scaffold and the minimal null 
model. The average of these correlations is reported on the boxplots to act as a baseline value, highlighting that 
the two scaffolding procedures agree with each other by more than just statistical noise.

For a finer analysis, we have performed a two-sample Kolmogorov–Smirnov test comparing the distribution 
of the given metrics in the minimal and loose scaffolds, for all parameter values of the two random models. We 
consider the Kolmogorov–Smirnov test to be inconclusive if its p value exceeds a threshold of 0.05, in which 
case one cannot confidently reject the null hypothesis that the samples are drawn from the same distribution. In 
Fig. 9 panels (a) and (b), the darker boxes report for each parameter choice and metric the fraction of samples 
for which the test was inconclusive: in all cases except one, the KS test could not distinguish between the dis-
tribution of the graph statistic between the minimal and loose scaffolds, strengthening the indication of a good 
agreement between the two.

nPSO random graph model.  A modern random graph model, which has recently gained traction in 
network science for its ability to concurrently tune several parameters of interest in modeling real networks, is 
the Nonuniform Popularity-Similarity model. Introduced in83, it builds upon a sequence of increasingly refined 
generative models to provide all the key structural properties of real-world graphs, such as scale-freeness, small-
worldness and community structure. We therefore set out to employ it as benchmark in our comparison of the 
minimal and loose scaffolds.

In general, networks which display hyperbolic geometries tend to have a rather tree-like structure, with a 
certain scarcity of cycles. It is straightforward that, in the absence of a significant structure of persistent homol-
ogy, the loose and minimal scaffolds will agree to high degree for at least two reasons: the low number of cycles 
forces the loose scaffold to localize onto the few available holes, hence resembling the minimal, and secondly 
the scarcity of homology makes for a comparison between two mostly empty sets.

Following the lead of84, we tuned the nPSO model parameters in order to empirically maximize the persis-
tent homology structure, so as to make the comparison the most significant possible. As reported in Fig. 10, we 
observe again good ability of the scaffolds to proxy each other across the metrics analyzed, significantly higher 
than with respect to a null model, for a sample with parameters N = 50,m = 2,T = 5, γ = 3 and uniform dis-
tribution. A Kolmogorov–Smirnov test was also performed, as in the previous section, where a p-value higher 
that 0.05 indicates that the distribution of degrees and betweeness centralities in the minimal and loose scaffold 
cannot be confidently distinguished. This was the case for all the samples we tested.

Conclusions
We provided a new method of network analysis and skeletonization, based on the computation of minimal 
homology bases. This new construction fills a significant gap in previous literature, in that it yields, in all but 
some pathological cases, a well-defined and unique subgraph, acting as a reasonable ground truth for comparison 
with the previous construction. It can be employed in a range of applications, both to identify crucial and weak 
links in a network, and to obtain compressed and topologically sound representations of the input. It also allows 
to evaluate the reliability of other scaffolding procedures with respect to said ground truth: we have observed 
that, for some applications, the loose scaffold can be deemed a sufficiently accurate tool, while not incurring in 
as cumbersome a computational load.

We foresee that the subject of homological skeletonization is not yet concluded. Other approaches to finding 
canonical generators of homology are possible (for example in56,85), and we plan to investigate them further in 
subsequent works.

A question which remains open and could be worthy of further work is the following: could one construct 
a sensible “entropy” functional on the space of cycles, so as to obtain a strictly unique, minimally-represented 
basis that is in the most likely?
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Data availability
The C. elegans dataset analysed during the current study is available and included in the GitHub repository 
MinScaffold, https​://githu​b.com/marco​guerr​a192/MinSc​affol​d.
The Human Connectome Project dataset is available from the page http://www.gipsa​-lab.greno​ble-inp.fr/~sophi​
e.achar​d/Brain​_conne​ctivi​ty_netwo​rk.
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