communications
physics

ARTICLE B creckoriprees

https://doi.org/10.1038/s42005-021-00637-w OPEN

Hypergraph reconstruction from network data
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Networks can describe the structure of a wide variety of complex systems by specifying
which pairs of entities in the system are connected. While such pairwise representations are
flexible, they are not necessarily appropriate when the fundamental interactions involve more
than two entities at the same time. Pairwise representations nonetheless remain ubiquitous,
because higher-order interactions are often not recorded explicitly in network data. Here, we
introduce a Bayesian approach to reconstruct latent higher-order interactions from ordinary
pairwise network data. Our method is based on the principle of parsimony and only includes
higher-order structures when there is sufficient statistical evidence for them. We demon-
strate its applicability to a wide range of datasets, both synthetic and empirical.
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sparse!. Whether they are social, biological, or

technological?, they comprise large groups of densely
interconnected nodes, even when only a small fraction of all
possible connections exist. This situation leads to delicate mod-
eling challenges: How can we account for two seemingly con-
tradictory properties of networks—density and sparsity—in our
models?

Abundant prior work going back to the early days of social
network analysis>* and network science>® suggests that higher-
order interactions’ are a possible explanation for the local density
of networks!®. According to this reasoning, entities are connected
because they have a shared context—a higher-order interaction—
within which connections can be created®. It is clear that a
phenomenon along these lines occurs in many social processes:
scientists appear as collaborators in the Web of Science because
they co-author papers together; colleagues exchange emails
because they are part of the same department or the same division
of a company. It is also known that similar phenomena explain tie
formation in a broader range of networked systems, including
biological, technological, or informational systems’.

The ubiquity of higher-order interactions provides a simple
and universal explanation for the observed structure of empirical
networks. If we assume that most ties are created within contexts
of limited scopes, then the resulting networks are locally dense,
matching empirical observations»-10.

Despite their tremendous explanatory power, higher-order
interactions are seldom used directly to model empirical systems,
due to a lack of data’. Indeed, while the context is directly
observable for some systems—say, co-authored papers or co-
locating species—it is unavailable for several others, including
brain datall, typical social interaction datal?, and ecological
competitor data!? to name only a few.

As a specific motivating example, consider one of the empirical
social networks gathered as part of the US National Longitudinal
Study of Adolescent to Adult Health!4. This dataset is constructed
using surveys, where participants are asked to nominate their
friends. Even though there are good reasons to believe that people
often interact because of higher-order groups!2, the survey cannot
reveal these groups as it only inquires about pairwise relation-
ships. If we actually need the higher-order interactions to give an
appropriate description of the social dynamics at play!?, what
should we do with such inadequate survey data? As we show in
Fig. 1, there are many kinds of higher-order interactions that are
compatible with the same network data. How can one pick
among all these possible higher-order descriptions?

Empirical networks are often locally dense and globally

Network data

Higher-order
interactions

Fig. 1 Projected higher-order interactions. We show the extended ego
network (circle nodes) of a participant (square node) of the AddHealth
study'4. Friendships are measured between pairs of participants (links and
nodes, respectively), even when the fundamental units are groups of
friends'2. Multiple combinations of groups and isolated friendships lead to
the same network (gray arrows).

Prior work on higher-order interaction discovery in network
data often uses cliques—fully connected subgraphs—to identify
the interactions!>-17. Clique-based methods are straightforward
to implement because they rely on clique enumeration, a classical
problem for which we have exact!®!? and sampling?? algorithms
that work well in practice. However, clique decompositions do
not offer a satisfactory solution to the recovery problem alone.
Networks typically admit many possible clique decompositions,
which begs the question of which one to pick. For example, a
triangle can be decomposed as a single 2-clique, or as three 1-
clique (i.e., as edges) (see Fig. 1). In general, the multiplicity of
possible solutions implies that higher-order interaction recovery
is an ill-posed inverse problem. It becomes well-posed only once
we add further constraints on what constitutes a good solution.
Thus, existing approaches have sought to address the ill-posed
nature of the higher-order interaction recovery problem in var-
ious indirect ways. For instance, in graph theory, it is customary
to look for a minimal set of cliques covering the network?!-2,
Other methods appeal to notions of randomness and generative
modeling to regularize the problem!23-25, These methods
describe an explicit process by which one goes from higher-order
data to networks, and can therefore assign a likelihood to possible
higher-order data representations, allowing the user to single out
representations.

In the present work, we develop a Bayesian method for the
inference of higher-order of interactions from the network. Given
a network as input, the method identifies the parts of the network
best explained by latent higher-order interactions. Our approach
is based on the principle of parsimony and directly addresses the
ill-posedness of the reconstruction problem with the methods of
information theory. We show that the method can find compact
descriptions of many empirical networked systems by using latent
higher-order interactions, thereby demonstrating that such
interactions are in complex systems.

Results and discussion

Generative model. The problem we solve is illustrated in Fig. 1.
We have a system we believe is best described with higher-order
interactions, but we can only view its structure through the lens of
pairwise measurements (an undirected and simple network G);
our goal is to reconstruct these higher-order interactions from
G only.

For convenience, we encode the higher-order interactions with
a hypergraph HZ?°. We represent a higher-order interaction
between a set of k nodes i,..,7 with a hyperedge of size k.
Empirical data often contain repeated interactions between the
same group of nodes, so we use hypergraphs with repeated
hyperedges and encode the number of hyperedges connecting
nodes iy, .., i as A; ; =0.

Our method then makes use of a Bayesian generative model to
deduce one such hypergraph H from some network dataset G.
This generative model gives an explicit description of how the
network data G is generated when there are latent higher-order
interactions H. With a generative model in place, we can compute
the posterior probability

P(G|H)P(H)

P(H|G) = =~ ©

M

that the latent hypergraph is H, given the observed network G. In
this equation, P(G|H) and P(H) define our generative model for
the data, and its evidence P(G) = >_yP(G|H)P(H) functions as a
normalization constant.

The appeal of such a Bayesian generative formulation is that we
can use P(H|G) to make queries about the hypergraph H. What
was the most likely set of higher-order interactions? What is the
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probability that a particular interaction was present in H based on
G? How large were the latent higher-order interactions? All of the
queries can be answered by computing appropriate averages over
P(H|G). As is made evident by Eq. (1), however, we first have to
introduce two probability distributions so that we may compute P
(H|G) at all. We now define these distributions in detail.

Projection component. The first distribution, P(G|H), is called the
projection component of the model. It tells us how likely a par-
ticular network G is when the latent hypergraph H is known.

We use a direct projection component and deem two nodes
connected in G if and only if these nodes jointly appear in any of
the hyperedges of H.

This modeling choice is broadly applicable. For instance, when
researchers measure the functional connectivity of two brain
regions, they record a connection irrespective of whether the
regions peaked as a pair or as jointly with many other regions.
Likewise, surveyed social networks contain records of friendships
that can be attributed to interactions between pairs of individuals,
and to interactions that arise from larger groups.

Certain authors use more nuanced projection components
and do not assume that the joint participation of two nodes in a
hyperedge necessarily leads to a measured pairwise interac-
tion (for example, when edges are omitted at random). Doing
so blurs the line between community detection and higher-order
interaction reconstruction, because there is little difference
between noisily measured cliques and communities. Hence, we
here treat measurement as a separate issue28-2%, and assume that
the network is reliable.

We formalize the projection component as follows. We set
P(G|H) =1 only when (i) each pair of nodes connected by an
edge in G appears jointly in at least one hyperedge of H, and
(ii) no two disconnected nodes of G appear together in a
hyperedge of H. If either of these conditions is violated, then we
set P(G|H) = 0. We can express this definition mathematically as

1,27

()

0 otherwise .

PGIH) — {1 if G=G(H),

where we use G(H) to denote the projection of H and use G =
G(H) to say that H projects to G, or equivalently that (i) and
(ii) hold. ,

Testing G=G(H) might appear unwieldy at first but,
thankfully, a factor graph encoding of H can help us compute
the projection component efficiently by highlighting existing
relationships between the edges and cliques of G30.

To construct this factor graph, we begin by creating two
separate sets of nodes: one representing the edges of G and the
other representing the cliques of G. Crucially, the second set
contains a node for every clique of G, even the included ones like
the edges of a triangle, the triangles of a 4-clique, and so on. We
call this set the set of factors and refer to nodes in the first set
simply as nodes. We obtain a factor graph, by connecting a factor
and a node when the corresponding clique contains the
corresponding edge.

This construction is illustrated in Fig. 2 for a simple graph of
five nodes. In Fig. 2, we see that, for example, the edge between
nodes 1 and 2 is part of the triangle {1,2,3} in G, and it is
therefore connected to the factor A;,3. This edge is also part of the
2-clique {1, 2}, so it is connected to the factor A,, too.

The resulting factor graphs can encode particular hypergraphs
H by assigning integers to the factors, corresponding to the
number of times every hyperedge appears in H. For example, by
setting Aj,3 =1 and A,3 = A,y = A34 = Ays =1, we can encode a
hypergraph with five hyperedges, one of size 3 and four of size 2

(see Fig. 2b). We obtain a simple graph representation of the
same data by setting A;,3 =0 and A}, =1 instead (see Fig. 2a).

It is straightforward to check whether G = G(H) holds with
this encoding. The first condition—all the connected nodes of G
are connected by at least one hyperedge in H—can be verified by
checking that every node of the factor graph is connected to at
least one active factor, defined as A; ; >0. The second
condition—no pairs of disconnected nodes in G are connected
by a hyperedge of H—is always satisfied by construction, because
no factor connects two disconnected nodes of G, so we never
represent these forbidden hyperedges with our factor graph.

We note that the factor graph can be stored relatively
efficiently, by first enumerating the maximal cliques—cliques
not included in larger cliques—and then constructing an
associative array indexed by cliques, which we expand only when
included cliques are needed. Even though enumerating maximal
clique is technically an NP-hard problem3!, state-of-the-art
enumeration algorithms tend to work well on sparse empirical
network data!®1932, and indeed we have found that enumeration
is not problematic in our experiments.

Hypergraph prior. The second part of Eq. (1), P(H), is the
hypergraph prior. Empirical hypergraphs generally have a few
properties that a reasonable prior should account for33: the size of
interactions varies; some of these interactions are repeated, and
not all nodes are connected by a hyperedge. It turns out that an
existing model®4, known as the Poisson Random Hypergraphs
Model (PRHM), reproduces all of these properties. Hence, we
adopt it as our hypergraph prior. The PRHM was initially
developed to study critical phenomena in hypergraphs34; here, we
use it to make posterior inferences about networks.

In a nutshell, the PRHM stipulates that the number of
hyperedges connecting a set of nodes is a random variable, whose
mean A, only depends on the size k of the set. The variable follows
a Poison distribution, such that the number of hyperedges

connecting the nodes i), .., i equals to A; _; with probability

A .
R
A ¢ " ®)

[

P(Ail,...ik ) =

where A; ; is invariant with respect to permutation of the
indexes. The PRHM also models all the hyperedges as
independent. Hence, the probability of a particular hypergraph
can be calculated as

L
PHIN) = I I P@A; ;14
k=2 i ieCl
L AAil...ik A (4)
= H H Iaf{ 7€ 7k,
k=2 i), jecy Tk

where L is the maximal hyperedge size, C denotes all possible
subsets of size k of {1,..., N}, and where A refers to all the rates
collectively.

Equation (4) expresses the probability of H in terms of
individual hyperedges. To obtain a simpler form, we notice that
the number Ej; of hyperedges of size k can be calculated as

E,= X Ai,,..,ik (5)

TN
iy, i €CF

and that there are precisely <ZZ> terms in the product over all

sets of nodes of size k. We can use these simple observations to

COMMUNICATIONS PHYSICS| (2021)4:135 | https://doi.org/10.1038/s42005-021-00637-w | www.nature.com/commsphys 3


www.nature.com/commsphys
www.nature.com/commsphys

ARTICLE

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00637-w

A1 23 A234

Az Az Ags Agy Ay Ass

Qi ®

)

(b)

A1 23

A234

Fig. 2 Encoding hypergraphs as factor graphs. The two panels show the factor graph encoding of two different hypergraphs that project to the same
network, shown at the bottom of the figure. a A hypergraph without higher-order interactions is obtained by associating each edge in G (blue lines) to a
node in the factor graph (empty circles); this correspondence is illustrated with a dashed line. Each node in the factor graph is then connected to a factor A;
(squares) where (i, j) is the corresponding edge in G. Higher-order factors Aj corresponding to possible hyperedges of three nodes are also added and
connected to the edges (i, ), (j, k), (i, k) they comprise. Since there is no 4-clique in the graph, the construction stop at this step. A particular combination of
hyperedges can then be specified by activating some factors (coloring them blue), here all the factors corresponding to the edges. b To encode a
hypergraph H with one higher-order interaction, we mark the factor A;»3 as active.

rewrite Eq. (4) as

L /\Ek e_ k k (6)
PHI) = [[ 22—
g Zy

where we have defined

e ®
Zp = H A at= 1_[1 (ml)y™, (7)
m=

iy, i €CY

and where 7% is the number of hyperedges of size k that are
repeated precisely m times.

In this form, it is clear that the parameters A control the density
of H at all scales. Hence, they more or less determine the kind of
hypergraphs we expect to see a priori, and therefore have a major
effect on the model output. How can we choose these important
parameters carefully?

We propose to a hierarchical empirical Bayes approach, in
which we treat A as unknowns themselves drawn from prior
distributions. We use a maximum entropy, or least informative,
prior for A, because we have no information whatsoever about A a
priori. The only thing we know is that these parameters take
values in [0, o) and are modeled with a finite mean34. Hence, the
maximal entropy prior of interest is the exponential distribution

e*/\k/”k

PAlvy) = ; (8)

Vk
of mean v,. We obtain a complete hyperprior for A by using
independent priors for all sizes k, P(A|v) = Hi:z P(A|vy).
Integrating over the support of A, we find that the prior for H
is now

P(H|v) = / P(HIMP(A|v)dA,

_ﬁ Ek! |:1 N (N>:|_(Ek+1) )
s ZkVi Vi k ’
with v fixed.

It might appear that we have only pushed our problem further
ahead—we got rid of 1 but we now have a whole new set of

parameters on our hands. Notice, however, that the new
parameters v do not have as direct an effect on H. A whole
range of densities is now compatible with any choice of v. As a
result, the model can assign significant probabilities to hyper-
graphs that project to networks of the correct density, even when
the hyperprior is somewhat in error. Hence, we safely fix the new
parameters v with empirical Bayes without risking strongly biased
results.

With these precautions in place, we use the observed number
of edges E in the network G to choose v. Our strategy is to equate
E to the expected number of edges (E(v)) in the network G(H)
obtained by projecting H drawn from P(H|v). This expected
density can be approximated as

L N
(E(v)) = > Vk< )
k=2 k

by assuming that hyperedges do not overlap on average. To set
the individual values of v, we further require that all sizes

(10)

contribute equally to the final density, with Vk<IZ =y for a
constant y. Substituting these equalities in Eq. (10), we obtain
w=E/(L-1), ()

and the prior in Eq. (9) becomes
L

| —(E+1D)
i ](EkN)E B+ 1} ’ (12)

k=2
Z
K\ &
which is the equation we will use henceforth, with y = E/(L — 1).

Properties of the posterior distribution. The model defined in
Egs. (2) through (12) has two crucial properties.

The first noteworthy property is that the model assigns a
higher posterior probability to hypergraphs without repeated
hyperedges, even though the prior P(H) allows for duplicates. An
explicit calculation of how P(H|G) scales with the number
of duplicated hyperedges can illustrate this fact. Indeed,
consider a hypergraph H, with no repeated hyperedges, for
which P(G|Hp) =1. Write as « the fraction of k-cliques
connected by a hyperedge in Hy, and consider an experiment in
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which an average of > 0 additional hyperedges are placed on top
of the hyperedges of size k already present in H,. In these
hypergraphs, the expected number of hyperedges of size k is

E, =a(l+ [3)(1]\{]) and log Z, is approximated by

N
3 loga, =~ a | Jiog + .

see Eq. (7). Substituting our various formula in the logarithm of P
(H), and using the Stirling approximation log n! ~ nlogn — n, we
find that

1+

«

1
u

N
log P(H) ~ —a(1 +[3)< P ) log

This equation tells us that log P(H) decreases with growing f,
because the argument of the logarithm is at least one. Furthermore,
the likelihood equals one by construction, which implies that the
scaling of the prior determines the scaling of the posterior. Hence,
the hypergraphs H generated by adding duplicated hyperedges to
Hy—that is by increasing f—are less likely than Hy.

A second noteworthy property of the model is that it favors
sparser hypergraphs: as long as P(G|H) = 1, the fewer hyperedges,
the better. To make this observation precise, suppose we have a
hypergraph H,, that can be termed minimal for G: every edge of
G is covered by exactly one hyperedge of H,, and no more. We
observe that we cannot improve on the posterior probability of
H,, by adding a hyperedge, even when this new hyperedge does
not fully repeat an existing one. Indeed, consider the hypergraph
H,, created by adding a hyperedge of size k to H,,. For example,
we could add a hyperedge of size 3 on a triangle whose sides were
already covered by edges, but did not yet participate in any larger
hyperedge together. By direct calculation, the ratio of posterior
probability for H), and H,, equals

PH,IG) _zE+1]1 ™
P(Hm|G)_Z,Q<N> pll
k

where Z, is the quantity in Eq. (7) for the modified minimal
hypergraph, and Z, is the same quantity for the minimal
hypergraph. One can show that this ratio is always smaller than
one and that, as a result, adding a spurious hyperedge to a
minimal hypergraph decreases the posterior probability. The
proof is straightforward and relies on the observation that for a

IZ),Zk =1l,and Z, =1 or
Z, =2. The result follows by direct computation when

JZ) and uses the fact that that Z, =2 when E; = (JZ)
(because adding a single hyperedge to a completely connected
minimal hypergraph means one has to double-up one hyperedge).

As a corollary of the two above observations, we conclude that
the minimal hypergraphs are high-quality local maxima of
P (H|G). We cannot simply pick one of these optima as our
reconstruction, however, because there may exist multiple ones of
comparable quality. Further, non-optimal hypergraphs may
account for a significant fraction of the posterior probability in
principle. Instead, we handle these possibly conflicting descrip-
tions by combining them.

minimal hypergraph, we have E; <

E <

Posterior estimation. In the Bayesian formulation of hypergraph
inference, estimating a given quantity of interests always amount
to computing expectations over the posterior distribution P(H|G).
For example, the expected number of hyperedges of size k can be
computed as (Ey) = > yEx(H)P(H|G). More generally, we are

interested in averages of the form

(f(H)) = %f(H)P(HIG) (13)
for arbitrary functions f that map hypergraphs to vectors or
scalars.

The summation in Eq. (13) is unfortunately intractable: the set
of possible hypergraphs grows exponentially in size with both the
number of nodes and the maximal size of the hyperedges.
Hence, we propose a Markov Chain Monte Carlo (MCMC)
algorithm to evaluate Eq. (13). This kind of approach generates a
random walk over the space of all hypergraphs, with a limiting
distribution identical to P(H|G). We use the Metropolis—-Hastings
(MH) construction to implement the random walk. As is usual,
the algorithm consists of proposing a move from H to H' with
probability Q(H < H’) and accepting it with probability3°

2= mind 1 Q(H < H)P(H'|G)
B 'QH < H)PHIG) |’
. { QH « H') P(GIH’)P(H/)}
= minyx 1, .
Q(H' < H) P(GIH)P(H)

We use the factor graph representation of H to define these
Monte Carlo moves this encoding facilitates checking the value of
P(G|H'). Hence, we can state the moves as modifications to the
value of the factors A; ;. ie, the number of hyperedges

connecting particular sets of nodes.

The specific set of moves we use goes as follows. For every
move, we begin by choosing a maximal factor node uniformly at
random from the set of all such factors. We select a size ¢
uniformly at random from {2, 3, ..., k}, where k is the size of the
clique corresponding to the current maximal factor. Then, we

select one of the subfactors A; ; of size ¢ uniformly at random,

(14)

among the (Ig) factors of that size, and we update the selected

factors as either A=A,
probability 1/2). If A;

. T 1 or A=A

’ iy 1 (with
was already equal to

iy zero, we force

A=A ;+1L Therefore, we have that
, ifAilwi[ >0,
% =12 ifA,_, =0, (15)
2 ifA’=0.

Finally, we check whether P(G|H) =1 using the factor repre-
sentation, and compute the ratio P(H')/P(H) to obtain the
acceptance probability a. We test for acceptance and, if the move
is accepted, we record the update. Otherwise, we do nothing.
The posterior distribution is rugged so the initialization of the
MCMC algorithm matters a great deal in practice. Building on
our observations about the properties of P(H|G), we select as our
initialization the hypergraph with one hyperedge for every
maximal clique of G. This starting point is not a known optimum
of P(H|G), but it is close to many of them. Hence, chains
initialized at this point have a fairly good chance of converging to
a good optimum. Indeed, in our experiments, we find that the
maximal clique initialization works much better than a random
initialization, an edge initialization, or an empty one.

Recovery of planted higher-order interactions in synthetic
data. To develop an intuition for the workings of our method, we
first use our algorithm to uncover higher-order interactions in
synthetic data generated by the model appearing in Egs. (2)-(12),
altered slightly to facilitate the interpretation of the results. In this
experiment, we create a hypergraph that comprises a few large
disconnected hyperedges, and we add several random edges
(chosen uniformly from the set of all edges) to create a noisy
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hypergraph H. We then project this noisy hypergraph to obtain a
network G(H), which we feed to our recovery algorithm as input.
Our goal in this experiment is to find the hypergraph H* that
maximizes the posterior probability P(H|G(H)) (we do not use
the full samples given by our MCMC algorithm just yet). We can
consider the experiment successful if H* contains all the higher-
order interactions planted in H.

The results of this experiment are reported in Fig. 3. At the
bottom of Fig. 3a, we show a typical example of what the
projected networks G(H) look like when there are very few added
random edges. In this regime, the recovered higher-order
interactions (in blue) correspond perfectly to those planted in
H. For the sake of comparison, we also generate an equivalent
random network, obtained by completely rewiring the edges of
G(H), see the top of Fig. 3a. (Equivalently, we generate an
Erdds-Rényi graph with an equal number of edges3®.) This
network has the same number of edges as G(H), but is otherwise
unstructured. As expected, we find no higher-order interactions
beyond the random triangles that occur at this density3”.

If we add many more random edges, we obtain the results
shown in Fig. 3c. Again, we can recover the planted higher-order
interactions, but we also start to find additional ones, due to the
appearance of random triangles formed by triplets of edges added
at random38. To understand this behavior we turn to the
minimum description length (MDL) interpretation of Bayesian
inference3%40,

In a nutshell, the description length is the number of bits
that a receiver and a sender with shared knowledge of the model
P(G, H) would need to communicate the network G to one
another. This communication costs can be minimized by finding
a hypergraph H* that is cheap to communicate and that projects
to G; receivers who know P(G, H) also know that they can project
H* to find G = G(H)*. From this communication perspective,
hypergraphs with as few hyperedges as possible are good
candidates because they are cheaper to send?4. The connection
with Bayesian inference is that H* happens to coincide with the
hypergraph which maximizes the posterior probability P(H|G)
(see Supplementary Notes 1 and 2 for a detailed discussion).
Hence, maximum a posteriori inference is equivalent to
compression.

2500 ~
2000 A

1500 -

Description length % [bits]

1000 A

500 -

Planted interactions [ )

Reviewing our experiment with the MDL interpretation in
mind illuminates the results. In Fig. 3b, we plot the description
length provided by our model, for levels of randomness that
interpolate between the easy regime shown in Fig. 3a, and the
much more random regime appearing in Fig. 3c. We find that the
model compresses those networks that have planted interactions
much better than their randomized equivalents. These results
make intuitive sense: networks with planted interactions contain
large cliques, and these cliques can be harnessed to communicate
regularities in G. As can be expected, these savings disappear once
the large cliques are destroyed by rewiring.

Recovery of planted higher-order interactions in empirical
data. Having verified that the method works when the higher-
order network possesses little structure beyond disjoint planted
cliques, we turn to more complicated problems. We ask: can our
method identify relevant higher-order interactions when the data
are (plausibly) more structured? To answer this question, we use
empirical bipartite networks and create higher-order networks, by
representing the bipartite networks as hypergraphs H2. We then
project the hypergraphs with Eq. (2), and attempt to recover the
planted higher-order interactions in G(H) with our method.

In Fig. 4, we report the results of this experiment for 11
hypergraph constructed with empirical networks
datasets*1-4545-50_(See also Supplementary Table 1 for a detailed
numerical account of the results.) The figure depicts the accuracy
of the reconstruction, as quantified by the Jaccard similarity J,
defined as the number of hyperedges found in both the original
and the reconstructed hypergraph, divided by the number of
hyperedges found in either of them. A similarity of J=1 denotes
perfect agreement, while /=0 would mean that the hypergraphs
share no hyperedges. (When computing J, we ignore duplicate
hyperedges since they are impossible to distinguish from the
projection. For instance, if the board of many companies
comprises the exact same directors, then we encode their
association with a single hyperedge.)

To obtain a baseline, we also attempt a reconstruction by
identifying the maximal cliques of the projected graph to
hyperedges—a maximal clique reconstruction. We find that the
reconstruction given by our method is good but imperfect,

Randomized W

0 50

Additional edges

100 150 200

Fig. 3 Reconstruction in random networks with and without higher-order interactions. a Two networks, one obtained by projecting a hypergraph of ten
disjoint hyperedges of unequal sizes (blue shades), and the other obtained by drawing uniformly from all networks with the same number of edges (orange
shades). b Description length X of the networks as a function of the number of additional edges, chosen uniformly at random from the set of non-edges. ¢
The two networks of panel (a), with 200 additional edges. In a, ¢, we show the group interactions uncovered by our method with shaded colors. The

description lengths are averaged over ten independent realizations of the network generation and inference processes. Error bars of 1 standard deviations

are too narrow to see with the naked eye.
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Fig. 4 Quality of the planted interaction reconstruction in projected
bipartite networks. Empty symbols show the Jaccard similarity of the
higher-order interactions reconstructed with the maximal clique
decomposition. Filled symbols depict the same quantity for the
reconstruction given by our method (best model fit). Our method improves
on the baseline in every case. Detailed numerical results are reported in
Supplementary Table 1.

which is expected as the problem is under-determined. However,
we also find that our method systematically outperforms the
maximal clique decomposition, often by a sizable margin. In
many cases, the maximal clique decomposition recovers nearly
none of the common interactions, whereas our method
reconstructs the interactions to a great extent.

Detailed case study of higher-order interactions in an empiri-
cal network. To understand why our method works well in
practice, it is useful to analyze a small empirical dataset in detail.
For this example, we will consider the well-known football
network®l. The 115 nodes of this network represent teams
playing in Division I-A of the NCAA (now the NCAA Division I
Football Bowl Subdivision), and two teams are connected if they
played at least one game during the regular season of Fall 2000.
The relationships between teams are viewed through the lens of
613 pairwise relationships, but higher-order phenomena shape
the system. For example, the teams of a conference all play each
other during a season. Other higher-order phenomena such as
geography also intervene: teams in different conferences are likely
to meet during the regular season if they are in close-by states.
There might also be more subtle phenomena like historical riv-
alries that survived conference changes. Which of these higher-
order organizing principles best determine the structure is not
that clear, so there is no single natural bipartite representation of
the system—it is best to work with the projected network and let
the data guide us.

Best model fit. In Fig. 5 we show the interactions that our method
uncovers when we look for the single best higher-order descrip-
tion H*. We find a large number of interactions that are not
pairwise: 30 of the hyperedges of H* involve more than two
nodes.

The higher-order interactions uncovered by our method are
not merely the maximal cliques of G (see Fig. 5a). We argue that
interlocked maximal cliques—cliques that share edges—are the
reason why these descriptions differ. When two maximal cliques
interlock, the hypergraph constructed directly from maximal
cliques contains two overlapping hyperedges. This choice is
wasteful from a compression perspective: the edges in the

intersection of the two cliques are part of two hyperedges, and
therefore contribute twice to the description length
Y = —log P(H). Our method instead looks for a more parsimo-
nious description of the data. In doing so, it can identify trade-
offs and, for example, represent one of the two cliques as a
higher-order interaction and break down the other as a series of
smaller interactions, thereby avoiding redundancies. These trade-
offs culminate into much better compression: we find a
hypergraph H* with a description length of 2405.8 bits, which
represents a 43.3% saving over the description length of the
maximal clique hypergraph (4246.5 bits). The interactions in the
optimal hypergraphs do not necessarily map to obvious suspects
like subdivisions or geographical clusters; instead, they interact in
nonobvious ways and reveal, for example, that one of the
subdivisions (top left of Fig. 5b) is best described as two
interlocking large hyperedges with a few interactions.

Probabilistic descriptions. Being Bayesian, our method provides
complete estimation procedures, beyond maximum a posteriori
estimation. For example, a quantity of particular interest is the
posterior probability that a set of nodes is connected by at least
one hyperedge?8, once we account for the full distribution over
hypergraphs P(H|G). By computing this probability for all sets of
nodes with a non-negligible connection probability, we can
encode the probabilistic structure of H in a compact way>2, with a
few probabilities only.

In practice, we evaluate the connection probabilities by
generating samples from P(H|G) and counting the samples in
which a set of interest is connected by at least one hyperedge
(recall that the model defines a distribution over hypergraph with
repeated hyperedges). Mathematically this is computed as

P(X (16)

1 n
ipedy = 11G) = ;[gl Xil,...ik(Hé):
where Hy, ..., H, are n hypergraph sampled from P(H|G), and
where X;  (H) =1, is a presence/absence variable, equal

to 1 if and only if there is at least one hyperedge connecting nodes
i1,.., i, in hypergraph H.

Applying this technique to the Football data, we find that many
of the hyperedges of H* have a presence probability close to 1,
even once we account for the full distribution over hypergraphs.
The hypergraph is not reconstructed with absolute certainty,
however. Observing that probabilities P(X; ; = 1]G) close to 1

or 0 both indicate confidence in the presence/absence of edge, we
define a certainty threshold « and classify all hyperedges with
existence probabilities in [, 1 — «] as uncertain. With a threshold
of « =0.05, we find 16 uncertain triangles (hyperedges on three
nodes), 70 uncertain edges, and 9 additional uncertain interac-
tions of higher orders.

To go beyond a simple threshold analysis, we compute the
entropy of the probabilities p := P(X; ; = 1/G), defined as

S(p) = —plog, p — (1 — p)log,(1 — p). (17)

The entropy provides a useful transformation of p because it
grows as p moves away from the extremes p=0,1, with a
maximum of § =1 at p = 1/2, the point of maximal uncertainty.
The distribution of entropy is shown in Fig. 6a for the Football
data. The figure shows that while the majority of hyperedges are
certain (i.e., their entropy is greater than S* =~ 0.286 correspond-
ing to a=0.05), making the certainty criterion slightly more
stringent would add many more uncertain hyperedges to the ones
we already have.

In Fig. 6b, we show the location of the uncertain hyperedges in
H. We observe that these uncertain hyperedges are co-located.
The minimality properties of P(H|G) discussed above can explain
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Fig. 5 Higher-order interactions uncovered in the network of American football games. a Size distribution of the hyperedges of the hypergraph H* that
maximizes the posterior probability or, alternatively, minimizes the description length of the network of football games G. Also shown is the distribution of
hyperedge sizes for the hypergraph constructed by assigning a hyperedge to every maximal clique of G (dashed histogram). b Visualization of the

hyperedges present in H*, color-coded by size.
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Fig. 6 Uncertain higher-order interactions uncovered in the network of American football games. a Distribution of the entropy for the presence/absence
of hyperedges. The entropy quantifies the variability of hyperedges: sets of nodes that are connected in nearly all—or almost none—of the samples have
low entropy. We deem as uncertain a hyperedge that has a probability p € [a, 1 — a] of being present, with @ = 0.05. Note that we only show the entropy
for the sets of nodes that were connected at least once in our Monte Carlo samples; a large number of hyperedges, of entropy zero, are never seen in our
samples. b Visualization of the uncertain hyperedges. Uncertain edges are highlighted in orange and uncertain triangles are shown in blue. Remaining

uncertain interactions are shown in gray. All results are computed with 4000 Monte Carlo samples from the posterior distribution each separated by 1000

complete sweeps of the factor graph.

these results. Hypergraphs that have a sizable posterior
probability are typically sparse and include as few hyperedges
as possible. But they also need to cover the whole graph, meaning
that every edge of G needs to appear as a subset of at least one
hyperedge H (due to the constraint G = G(H)). Co-located
uncertain triangles and hyperedges are hence the result of
competing solutions of roughly equal qualities, which cover
a specific part of the hypergraph with hyperedges of
different sizes.

Systematic analysis of higher-order interactions in empirical
networks. For our fourth and final example, we apply our method

to 15 network datasets, taken from various representative scien-
tific domains and structural classes!114>1,53-64,

For each empirical network in our list, we first search for the
hypergraph H* that maximizes P(H|G), as we have done in our
two previous examples. This search gives us an MDL X. For the
sake of comparison, we also compute the description length ¥’
that we would obtain if we were to use the maximum clique
decomposition to construct H naively. We note that X' cannot be
smaller than X because it is the description length of the starting
point of the MCMC algorithm—at best, the algorithm cannot
improve on ¥/, and we then have ¥ = ¥'. The difference ¥’ — =
gives the compression factor or, in other words, the number of
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Fig. 7 Higher-order interaction in empirical networks. A few datasets are highlighted with colors: the Southern women interaction data®3 (yellow), the
Football data®' (orange), and the political blogs># (blue). a Description length of the hypergraph H whose hyperedges are the maximal cliques of the input
network G, compared with the description length found with our method. b, ¢ Compression, defined as the difference in description length, as a function of
the average degree and clustering coefficient2. d, e Interaction size, averaged over all interactions in H*, as a function of the average degree and clustering
coefficient. Detailed numerical results are reported in Supplementary Table 2.

bits we save by using the best hypergraph instead of a hypergraph
of maximal cliques.

In Fig. 7a, we show the description lengths of the networks in
our collection of datasets. We observe a broad range of outcomes.
Compression of multiple orders of magnitude is possible in some
cases, like with the political blogs data>* highlighted in blue, while
the best description is directly the maximal cliques in others, like
with the Southern women interaction data®® highlighted in
yellow. We find that the average degree of the nodes correlates
with compression (Kendall’s 7= 0.52) (see Fig. 7b.) This result is
expected: the denser a network, the more likely it is that
interlocking cliques are present, and therefore that a parsimo-
nious description can be obtained by optimizing over P(H|D).
The average local clustering coefficient {C)? is not correlated with
compression, however (7=0.03) (see Fig. 7c). Local clustering
quantifies the density of closed triangles in the neighborhood of a
node and is, as such, a proxy for the density of cliques. However,
as our results show, (C) fails to capture the correct type of
redundancy necessary for good compression with our model.

We note that clustering, nonetheless, predicts the absence of
compression well: If (C) = 0, then there are no closed triangles in
G, and it is impossible to compress the network with our method
—there are no cliques, and therefore no higher-order interactions
in the data. The Southern Women?®? falls in this category because
it is a bipartite network.

In Fig. 7d, e, we show the size of the higher-order interactions
founds by our method, averaged over the hyperedges of H*. We
again observe a wide range of outcomes. As a sanity check, we can
confirm that the incompressible network has an average
interaction size of 2. All hypergraphs are just networks in this
case and therefore have no higher-order interactions. Other
datasets yield hypergraphs with large interactions on average,
involving as many as 4.4 nodes in the airport network. The
correlation between local properties and interaction size is weak
(r=0.09 and 7=0.12 for the degree and local clustering,
respectively). Nonetheless, we expect some dependencies as
these network properties put constraints on the possible values

that the average interaction size (s) can adopt. For instance, to
have an average size (s), a network must have an average degree
of at least (s) — 1. Likewise, some level of clustering is required to
obtain large interactions.

Summarizing these results, we find that some level of
compression is always possible, except when the network has
no clustering whatsoever. Furthermore, we find that a high
average degree is related to more compression and larger higher-
order interactions. Finally, we find that some minimal level of
clustering is necessary for compression, but that results vary
otherwise.

Conclusion

Higher-order interactions shape most relational datasets”-?°, even
when they are not explicitly encoded. In this work, we have
shown that it is possible to recover these interactions from data.
We have argued that while the problem is ill-defined, one can
introduce regularization in the form of a Bayesian generative
model, and obtain a principled recovery method.

The framework we have presented is close in spirit to pre-
cursors who have used a generative model to find small patterns
in networks, so it is worth pointing out where it differs, both in its
methodological details and philosophical underpinning. Closely
related work includes that of Wegner?3, who used a notion of
probabilistic subgraph covers to induce distributions over possi-
ble decomposition in motifs, and more recent works in graph
machine learning that solve graph compression by decomposing
the network in small building blocks?42°, Unlike these authors,
however, we focused on higher-order interactions, so we con-
sidered decompositions in hyperedges rather than in general
motif grammars. We also differ on a methodological ground: we
embraced the complexity of the problem and proposed a fully
Bayesian method that can account for the multiplicity of
descriptions, in contrast with the greedy optimization favored in
previous work?3-25. As a result of these methodological choices,
our work is perhaps closest to that of Williamson and Tecl,
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who also solved a similar problem by using Bayesian nonpara-
metric techniques!, and view a network as collections of over-
lapping cliques. Unlike these authors, however, we have
formalized network data as uncorrupted; in our framework, latent
higher-order interactions always show up in network data as fully
connected cliques. In contrast, they think of this process as noisy,
so latent higher-order interactions can translate into relatively
sparsely connected sets of nodes. Their proposed methods thus
bear a resemblance to community detection techniques that
formalize communities as noisily measured cliques27-0>-69,

The method we have proposed here is one of the simplest
instantiations of the broader idea of uncovering higher-order
interactions in empirical relational data. There are many ways in
which one could expand on the method. On the modeling front,
for example, it would be worthwhile to study the interplay of the
projection component P(G|H) of Eq. (2) and inference: can it be
defined in a way that does not turn higher-order interaction
discovery into overlapping community detection? The hyper-
graph prior, too, will have to be expanded as the PRHM we have
used is pretty simple. Interesting models could include degree
heterogeneity as part of the reconstruction’%-72, or community
structure’3. One could also envision a simplicial analog to these
models, leading to probabilistic simplicial complex recovery’47>.
Finally, it would be interesting to explore the connection between
different forms of regularizations that make the problem well-
defined.

On the technical front, it will be interesting to see whether
more refined MCMC methods can lead to more robust con-
vergence and faster mixing. Our proposed move-set is among the
simplest ones that can propose for the problem and could be
improved. Another interesting avenue of research will be to
harness the known properties of P(H|G) to construct efficient
inference algorithms and perhaps connect the method to algo-
rithms in the graph theory of clique covers.

The higher-order interaction data we need to inform the
development of higher-order network science’ are often inac-
cessible. Our methods provide the tools needed to extract higher-
order structures from much more accessible and abundant rela-
tion data. With this work, we hope to have shown that moving to
principled techniques is possible, and that ad hoc reconstruction
methods should be avoided, in favor of those based on
information-theoretic parsimony and statistical evidence.

Data availability
The network data that support the findings of this study are available online in the
Netzschleuder network repository”.

Code availability
A fast implementation of the Markov Chain Monte Carlo algorithm described in this
study is freely available as part of the graph-tool Python library”’.
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