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Introduction

The contemporary development of drugs that modulate G protein-coupled receptors 

(GPCRs) is based not only on organic synthesis, but also on structural studies of the protein 

targets. GPCRs contain seven membrane-spanning helical domains (TMs). The structural 

characterization of ligand interactions with specific regions of GPCRs presently requires 

mutagenesis (van Rhee and Jacobson, 1996) in conjunction with molecular modeling (Moro 

et al., 1998), since direct analysis has not yet been achieved. As molecular modeling of 

cloned GPCR sequences using a rhodopsin template has been refined, it has become 

possible to generate hypotheses for location of the binding sites that are consistent with 

mutagenesis results and ligand specificities. To obtain an energetically refined 3D structure 

of the ligand–receptor complex, we have introduced a new computational approach, a “cross 

docking” procedure, which simulates the reorganization of the native receptor induced by 

the ligand (Moro et al., 1998).

Mutagenesis and model for binding of agonists at human P2Y1 receptors

Extracellular nucleotides may act in cellular signaling through two families of membrane-

bound P2 receptors: P2Y subtypes, G protein-coupled receptors (GPCRs) activated by both 

adenine and uracil nucleotides; and P2X subtypes, ligand-gated ion channels activated 

principally by adenine nucleotides (Fredholm et al, 1994). As many as seven subtypes have 

been cloned within each family. We have selected the human P2Y1 receptor as a model 

system for development of ligands with the aid of molecular modeling and mutagenesis 

(Jiang et al., 1997; Moro et al., 1998). The P2Y1 receptor is a membrane bound G protein-

coupled receptor of the rhodopsin family and is stimulated by extracellular adenine 

nucleotides.
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The P2Y1 receptor subtype is a phospholipase C-activating receptor (Schachter et al, 1996) 

present in heart, skeletal muscle, and various smooth muscles. At this receptor, the potency 

order for activation is 2-methylthioadenosine 5′-diphosphate (2-MeSADP) > 2-

(hexylthio)adenosine 5′-monophosphate (HT-AMP) > ADP > ATP, while AMP and UTP 

are inactive (Boyer et al., 1996a).

Within the TM domains

In order to ascertain which residues of the human P2Y1 receptor are involved in ligand 

recognition (Fig. 1), we have mutated (Jiang et al., 1997; Hoffmann et al., 1999) the 

transmembrane helical domains (TM 3, 5, 6, and 7) and the extracellular loops (EL). The 

mutant receptors expressed in COS-7 cells were measured for stimulation of phospholipase 

C (PLC) in the presence of 2-MeSADP, an agonist which activates the wild-type receptor 

with an EC50 value of 2 nM, and other adenine nucleotides. A cluster of positively charged 

amino acids, Lys and Arg residues near the exofacial side of TMs 3 and 7 and to a lesser 

extent TM6, predicted by molecular modeling to coordinate the phosphate moieties of 

nucleotide ligands in the human P2Y, receptor, were replaced with alanine and, in some 

cases, by other amino acids (Jiang et al., 1997). Agonists had no activity at R128A (TM3) 

and R310A and S314A (TM7) mutant receptors and a markedly reduced potency at K280A 

(TM6) and Q307A (TM7) mutant receptors. Previously, positively charged residues of the 

human P2Y2 receptor (H262, R265, and R292 in TM6 and TM7) were similarly found to be 

critical for activation (Erb et al., 1995). These results suggest that residues on the exofacial 

side of TM3 and TM7 are critical determinants of the ATP binding pocket. In contrast, there 

was no change in the potency or maximal effect of agonists with the S317A mutant receptor, 

and alanine replacement of F131, H132, Y136, F226, or H277 resulted in mutant receptors 

that exhibited a seven- to 18-fold reduction in potency compared to that observed with the 

wild-type receptor. These residues thus appear to subserve a less important modulatory role 

in ligand binding to the P2Y1 receptor.

Since changes in the potency of 2-MeSADP and HT-AMP paralleled the changes in potency 

of 2-MeSATP at the various mutant receptors, the β- and γ-phosphates of the adenine 

nucleotides appear to be less important than the α-phosphate in ligand P2Y1 receptor 

interactions (Jiang et al., 1997). However, T221A and T222A mutant receptors exhibited 

much larger reductions in triphosphate (89- and 33-fold vs. wild-type receptors, 

respectively), rather than di- or monophosphate potency. This result may be indicative of a 

greater role of these TM5 residues in γ-phosphate recognition. Taken together the results 

suggest that the adenosine and a-phosphate moieties of ATP bind to critical residues in TM3 

and TM7 on the exofacial side of the receptor.

Within the extracellular domains

We have investigated the role in receptor activation of all charged amino acids (D, E, K and 

R) and cysteines in the extracellular loops (EL) 2 and 3 of the human P2Y1 receptor by 

alanine scanning mutagenesis (Hoffmann et al., 1999, Fig. 1).

Surface detection of most of the mutant receptors by ELISA showed at least 10% expression 

at the surface of the plasma membrane compared to the wild-type receptor. Control 
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experiments in which COS-7 cells were transfected with lower amounts of P2Y1 wild-type 

DNA showed full stimulation and no shift for EC50 values but surface expression rates 

dropped to approximately 10%. Therefore, assuming ≥10% receptor expression, shifts in the 

potency of 2-MeSADP and other agonists upon single amino acid replacement directly 

reflect the structural perturbations of the receptor, rather than insufficient receptor protein 

reaching the surface. In a few cases (see below), the receptor protein was undetectable at the 

cell surface. In those cases, the mutation was assumed to interfere with trafficking, and the 

effect on ligand recognition/activation could not be determined.

Two essential disulfide bridges in the extracellular domains have been identified, and 

several charged residues in the EL 2 (E209) and 3 (R287) have been found to be critical for 

receptor activation (Hoffmann et al., 1999). The C124A and C202A mutation, located in the 

upper part of transmembrane helix (TM) 3 and EL 2, prevented PLC stimulation by up to 

100 μM 2-MeSADP. These data indicate a disulfide bridge in the P2Y1 receptor between 

loop 2 and the upper part of TM 3, as found in many other G protein-coupled receptors. This 

disulfide bridge seems to be critical for the proper receptor trafficking to the cell surface. 

Presently it is unknown whether it is also critical for receptor activation. In contrast, the 

C42A and C296A mutant receptors (located in the N-terminal domain and EL 3) were 

activated by 2-MeSADP, but the EC50 values for stimulation were over 1000-fold greater 

than for the wild-type receptor. The double mutant receptor C42A/C296A exhibited no 

additive shift in the dose–response curve for 2-MeSADP. These data indicate that C42 and 

C296 form another disulfide bridge in the extracellular region which is critical for activation 

processes.

Upon replacement of charged amino acids in EL 2 and 3, we found only minor deviations 

from the agonist affinity at wild type receptors, with two remarkable exceptions (Hoffmann 

et al., 1999). E209 in the EL 2 exhibits a > 1000-fold shift in EC50 value when substituted 

with alanine, while it responds like wild-type if substituted with amino acids capable of H-

bonding (D, Q or R). Thus, E209 appears to be required for its ability to form H-bonding 

alone.

R287 in EL 3 was impaired similarly to E209 when substituted by alanine, i.e. dose–

response curves where shifted by > 1000-fold, and the curve shape was identical. 

Substitution of R287 by lysine, another positively charged residue, only partially restored 

the potency of 2-MeSADP as a P2Y1 receptor agonist, with an EC50 value of 75 nM. The 

possibility of a required ionic interaction between essential residues R287 and E209, which 

may be in physical proximity according to preliminary molecular modeling of the loop 

regions, was considered. This possibility was ruled out since the double mutant E209A/

R287A receptor demonstrates a shift that is additive relative to the single mutations. Refined 

molecular modeling indicates a direct interaction of the negatively charged phosphate chain 

of the ligand with R287. Moreover, the selective reduction in potency of 3′NH2–ATP in 

activating the E209R mutant receptor is consistent with the hypothesis of direct contact 

between EL2 and nucleotide ligands. Our findings support ATP binding to at least two 

distinct domains of the P2Y1 receptor, both outside the TM region (“meta-binding” sites) 

and within the TM core (Moro et al., 1999).
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Novel P2X receptor antagonists

We have developed selective agonists and antagonists for both P2Y and P2X receptors 

(Table 1). The P2X ligands were developed through an empirical rather than computational 

approach. Molecular modeling of inotropic P2X receptors is limited by the lack of a 

template protein, as well as specific knowledge of loop conformation (van Rhee et al., 

1997).

Structural modifications of the non-selective P2 antagonist pyridoxal-5′-phosphate-6-

azophenyl-2′,4′-disulfonate (PPADS, Lambrecht et al., 1992, Fig. 2), have been made 

through functional group substitution on the sulfophenyl ring and at the phosphate moiety 

through the inclusion of phosphonates, demonstrating that a phosphate linkage is not 

required for P2 receptor antagonism (Kim et al., 1998). Phosphonates are not hydrolyzable 

and thus may be more stable than phosphate analogues in pharmacological studies. 

Substituted 6-azophenyl and 6-azonaphthyl derivatives were evaluated (Fig. 2). Among the 

6-azophenyl derivatives, 5′-methyl, ethyl, propyl, vinyl, and allyl phosphonates were 

included. The compounds have been tested as antagonists at P2Y receptors in the turkey 

erythrocyte (Harden et al, 1988) and in the guinea-pig taenia coli and at P2X1 receptors in 

guinea-pig vas deferens and bladder and at recombinant rat P2X2 receptors expressed in 

Xenopus oocytes. Competitive binding assay at human P2X1 receptors in differentiated 

HL-60 cell membranes was carried out using [35S]ATP-γ-S. A 2′-chloro analogue of 

isoPPADS (MRS 2157, Fig. 2), a vinyl phosphonate derivative, MRS 2206, and an 

azonaphthyl derivative, MRS 2166, were particularly potent in binding at human P2X1 

receptors. Potencies of phosphate derivatives at turkey erythrocyte P2Y receptors were 

generally similar to PPADS itself (IC50 18.2 ± 1.7 μM; Fig. 3), except for the p-

carboxyphenylazo phosphate derivative, MRS 2159, and its m-chloro analogue, MRS 2160, 

which were selective for P2X vs. P2Y1 (IC50 > 100 μM) receptors. At 30 μM, both MRS 

2159 and 2160 significantly antagonized P2X receptor-induced contraction of guinea pig 

urinary bladder and vas deferens. MRS 2160 was very potent at rat P2X2 receptors 

expressed in Xenopus oocytes with an IC50 value of 0.82 ± 0.28 μM, while MRS 2159 was 

less potent with an IC50 value of 11.9 ± 1.4 μM.

Among the phosphonate derivatives (Fig. 2), [4-formyl-3-hydroxy-2-methyl-6-azo-(2′-

chloro-5′-sulfonylphenyl)-5-pyridyl]-methylphosphonic acid (MRS 2192) showed high 

potency at P2Y1 receptors with an IC50 of 4.35 ± 0.36 μM (Fig. 3). The corresponding 2′,5′-

disulfonylphenyl derivative, MRS 2191, was nearly inactive at turkey erythrocyte P2Y1 

receptors. Thus a single ring substitution, sulfo instead of chloro, has a major effect on the 

selectivity of these methylphosphonates as P2Y receptor antagonists. MRS 2191 was 

relatively potent at recombinant P2X1 receptors with an IC50 value of 1.1 ± 0.2 μM. Also, an 

ethyl phosphonate derivative, MRS 2142, while inactive at turkey P2Y1 receptors, was 

particularly potent at recombinant P2X2 receptors (IC50 1.5 ± 0.1 μM).

A pyridoxine cyclic phosphate (cyclic pyridoxine-α4,5-monophosphate, MRS 2219; Fig. 2) 

and its 6-azoaryl derivative (cyclic pyridoxine-α4,5-monophosphate-6-azophenyl-2′,5′-

disulfonic acid, MRS 2220) selectively potentiate and antagonize, respectively, P2X1 

receptors expressed in Xenopus oocytes (Jacobson et al., 1998). These derivatives are novel 
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analogues of the P2 receptor antagonists pyridoxal-5′-phosphate and the 6-azophenyl-2′,4′-

disulfonate derivative (Lambrecht et al., 1992; PPADS), in which the phosphate group was 

cyclized by esterification to a CH2OH group at the 4-position. The cyclic pyridoxine-α4,5-

monophosphate, MRS 2219, was found to be a selective potentiator of ATP-evoked 

responses at rat P2X1 receptors with an EC50 value of 5.9 ± 1.8 μM, while the corresponding 

6-azophenyl-2′,5′-disulfonate derivative, MRS 2220, was a selective antagonist (Fig. 4). The 

potency of compound MRS 2220 at the recombinant P2X1 receptor (IC50 10.2 ± 2.6 μM) 

was lower than PPADS (IC50 98.5 ± 5.5 nM) or iso-PPADS (IC50 42.5 ± 17.5 nM), although 

unlike PPADS its effect was reversible with washout and surmountable. Compound MRS 

2220 also showed weak antagonistic activity at the rat P2X1 receptor (IC50 58.3 ± 0.1 μM), 

while at recombinant rat P2X2 and P2X4 receptors no enhancing or antagonistic properties 

were evident. MRS 2219 and MRS 2220 were found to be inactive as either agonists or 

antagonists at the phospholipase C-coupled P2Y1 receptor of turkey erythrocytes, at 

recombinant human P2Y2 and P2Y4 receptors, and at recombinant rat P2Y6 receptors. 

Similarly, neither MRS 2219 nor MRS 2220 at a concentration of 100 μM had measurable 

affinity at adenosine rat A1, rat A2A, or human A3 receptors. The lack of an aldehyde group 

in these derivatives indicates that Schif’s base formation with the P2X1 receptor is not 

necessarily required for recognition of pyridoxal phosphate derivatives. Thus, MRS 2219 

and MRS 2220 are relatively selective pharmacological probes of P2X1 receptors, filling a 

long-standing need in the P2 receptor field, and may also be important lead compounds for 

future studies.

Novel P2Y receptor antagonists

Adenosine 3′3′- and 2′,5′-bisphosphates were previously demonstrated to act as competitive 

antagonists at the P2Y1 receptor (Boyer et al., 1996b). 2′- and 3′-Deoxyadenosine 

bisphosphate analogues containing various structural modifications at the 2- and 6-position 

of the adenine ring, on the ribose moiety, and on the phosphate groups have been 

synthesized with the goal of developing more potent and selective P2Y1 antagonists 

(Camaioni et al., 1998). Single-step phosphorylation reactions of adenosine nucleoside 

precursors were carried out. The activity of each analogue at P2Y1 receptors (Table 2) was 

determined by measuring its capacity to stimulate phospholipase C in turkey erythrocyte 

membranes (agonist effect) and to inhibit phospholipase C stimulation elicited by 10 nM 2-

MeSATP (antagonist effect). Both 2′- and 3′-deoxy modifications were well tolerated. The 

carbocyclic analogue of compound 3 proved to be a partial agonist of moderate potency at 

P2Y1 receptors (Nandanan et al., 1999). The N6-methyl modification (2′-deoxy-N6-

methyladenosine-3′,5′-bisphosphate, MRS 2179) both enhanced antagonistic potency of 2′-

deoxyadenosine 3′,5′-bisphosphate by 17-fold and eliminated residual agonist properties 

observed with the lead compounds (Boyer et al., 1998). In a Schild analysis MRS 2179 was 

found to be a competitive antagonist with a KB value 104 nM at P2Y1 receptors in turkey 

erythrocyte membranes (Fig. 5, Boyer et al., 1998). MRS 2179 did not partially activate 

either the turkey or human P2Y1 receptor, thus it is a pure antagonist. MRS 2179 was 

inactive at the P2Y1 receptor in C6 glioma cells which is coupled to inhibition of adenylate 

cyclase (J. Boyer et al., unpublished). The N6-ethyl modification provided intermediate 

potency as an antagonist, while the N6-propyl group completely abolished both agonist and 

antagonist properties (Camaioni et al., 1998). 2-Methylthio and 2-chloro analogues were 

Jacobson et al. Page 5

Prog Brain Res. Author manuscript; available in PMC 2015 February 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



partial agonists of intermediate potency. A 2′-methoxy group provided intermediate potency 

as an antagonist while enhancing agonist activity. An N1-methyl analogue was a weak 

antagonist with no agonist activity. An 8-bromo substitution and replacement of the N6-

amino group with methylthio, chloro, or hydroxy groups, greatly reduced the ability to 

interact with P2Y1 receptors. Benzoylation or dimethy lation of the N6-amino group also 

abolished the antagonist activity. In summary, our results further define the structure activity 

of adenosine bisphosphates as P2Y1 receptor antagonists and have led to the identification of 

MRS 2179 as the most potent antagonist reported to date for this receptor. Thus, MRS 2179 

was a potent, competitive antagonist, selective for the P2Y1 receptor vs. four other P2Y 

subtypes. However MRS 2179 has not yet been evaluated at the recently cloned P2Y11 

receptor (Communi et al., 1997).

Although MRS 2179 is selective for P2Y1 from among five different metabotropic P2 

receptors, caution is advised when using this agent when inotropic P2 receptors are present, 

since it was found to antagonize one subtype, i.e. the rat P2X1 receptor, expressed in 

Xenopus oocytes (Fig. 6, King et al., unpublished). Ion current induced by 3 μM ATP acting 

at P2X1 receptors was blocked by MRS 2179 with an IC50 value of 1.2 ± 0.2 μM. At the rat 

P2X3 receptor, MRS 2179 is a much weaker antagonist with an IC50 value of ~10 μM. The 

compound at a concentration of 10 μM was inactive at the rat P2X2 receptor, while at the rat 

P2X4 receptor, a potentiation of ion current by 25% was observed.

Binding model for antagonists at human PZY1 receptors

An antagonist P2Y1 receptor binding model has been developed (Moro et al., 1998). The 

structural similarity between the potent antagonist MRS 2179 and nucleotide agonists, 

which bind to a single putative binding region within the TM domains, suggests that 

receptor activation resulting in a specific conformational change may depend on subtle 

differences between ligands.

The molecular basis for recognition by human P2Y1 receptors of the selective, competitive 

antagonist MRS 2179 was probed using site-directed mutagenesis and molecular modeling. 

The potency of this antagonist was measured in mutant receptors in which key residues in 

TMs 3, 5, 6, and 7 were replaced by Ala or other amino acids. The capacity of MRS 2179 to 

block stimulation of phospholipase C promoted by 2-MeSADP was lost in P2Y1 receptors 

having F226A, K280A, or Q307A mutations, indicating that these residues are critical for 

the binding of the antagonist molecule. Mutation of the residues His132, Thr222, and 

Tyr136 had an intermediate effect on the capacity of MRS 2179 to block the P2Y1 receptor. 

These positions therefore appear to have a modulatory role in recognition of this antagonist. 

F131A, H277A, T221A, R310K, or S317A mutant receptors exhibited an apparent affinity 

for MRS 2179 that was similar to that observed with the wild-type receptor. Thus, Phel31, 

Thr221, His277, and Ser317 are not essential for recognition of the nucIeotide antagonist. A 

computer-generated model of the human P2Y1 receptor was built and analyzed to help 

interpret these results. The model was derived from using primary sequence comparison, 

secondary structure predictions, and three-dimensional homology building, using rhodopsin 

as a template, and was consistent with data obtained from mutagenesis studies. A putative 

nucleotide binding site was localized, following a cross docking procedure to obtain 
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energetically refined 3D structures of the ligand-receptor complexes, and used to predict 

which residues are likely to be in proximity to agonists and antagonists. According to our 

computational model TM6 and TM7 are close to the adenine ring, TM3 and TM6 are close 

to the ribose moiety, and TM3, TM6, and TM7 are near the triphosphate chain.

Initial results indicated that both suramin and PPADS retained antagonist properties at the 

P2Y, mutant receptors examined (Jiang et al, 1997). However, recently we have determined 

with full dose response curves that K280A and Q307A mutations greatly diminish the 

potency of the pyridoxal phosphate-related antagonists, i.e. 20 μM PPADS is ineffective 

(Guo et al., 1998). Thus, as for adenosine receptor antagonists, there appears to be a spatial 

overlap between the binding regions of the receptor for agonist and antagonist ligands, even 

those of highly divergent structure. Molecular modeling (Moro et al., 1998) using PowerFit 

(Molecular Simulations, Mahwah NJ) has suggested a possible model of superimposition of 

two classes of antagonists, nucleotides related to MRS 2179 and non-nucleotides related to 

pyridoxal phosphate (Fig. 7). In these energetically minimized conformations, it is possible 

to demonstrate overlap of negatively charged moieties, two monophosphate groups for MRS 

2179 and 5′-phosphate and phenyl-4-sulfonate groups for PPADS. Thus, a preliminary 

pharmacophore model features a hydrogen bond donor (e.g. the 6-NH2 of MRS 2179 and 3-

OH of PPADS), which is proposed to bind in vicinity of Glu307 of the P2Y1 receptor (Moro 

et al., 1998), and two anionic groups. The sulfonate group of PPADS (corresponding to 5′-

phosphate of MRS 2179) would interact directly with Lys280. By analogy (Moro et al., 

1998), this also allows prediction of overlap between PPADS and ATP-related agonists. In 

conclusion, pyridoxal phosphate antagonists appear to bind in the TM region of the human 

P2Y receptor, since the capacity of PPADS to block stimulation of phospholipase C was lost 

in receptors having K280A or Q307A mutations (TM6 and 7).

Conclusions

The cloning of at least 13 subtypes of P2 receptors has presented a unique challenge to 

medicinal chemists: the design of selective agonists and antagonists for this multiplicity of 

receptors with few existing leads. The human P2Y1 receptor as representative of the P2Y 

family of metabotropic purine and pyrimidine nucleotide receptors may be modeled based 

on a rhodopsin template, and the resulting model is highly consistent with pharmacological 

and mutagenesis results. Charged residues in both the transmembrane and extracellular 

domains and two disulfide bridges essential for receptor activation have been identified. 

Selective P2Y1 receptor antagonists such as MRS 2179 are under development. Modeling of 

P2X receptors has not been achieved, since no template for the extracellular nucleotide 

binding region exists. Nevertheless, a selective antagonist, MRS 2220, and a potentiator, 

MRS 2219, of this subtype have been identified. Both are based on pyridoxal-5′-phosphate 

antagonists (such as PPADS), for which the SAR is being examined at all of the P2 receptor 

subtypes.
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Fig. 1. 
Human P2Y1 receptor topology showing transmembrane helical (TM) regions, extracellular 

loops (EL), and intracellular loops. Single amino acid replacements were made in TM3, 5, 6, 

and 7, in EL2 and EL3, and in the N-terminal segment. Residues which when mutated to 

either Ala or the indicated amino acid (brackets), decreased the potency of 2-MeSADP by 

factors of one-to-five-fold (shaded), five-to-20-fold (shaded and underlined), or >20-fold 

(heavy circles).
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Fig. 2. 
Structures of pyridoxal-5′-phosphate (P-5-P) and other related P2 receptor antagonists, 

including those recently synthesized in the molecular recognition section (MRS).
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Fig. 3. 
Stimulation of phospholipase C in turkey erythrocyte membranes (Harden et al., 1988). 

Membranes were incubated for 30 min at 37°C. Data are presented as percent of maximum 

accumulation of tritiated inositol phosphates above basal levels in the presence of the 

antagonist and 10 nM 2-MeSATP, average of two experiments. EC50 values were 4.35 μM 

for MRS 2192 and 18.2 μM for PPADS.
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Fig.4. 
Effects of MRS 2219 (A) and MRS 2220 (B) on inward current induced by ATP, at the 

indicated concentrations, of recombinant rat P2X1 (3 μM), P2X2 (10 μM), P2X3 (1 μM), and 

P2X4 (30 μM) receptors, expressed in Xenopus oocytes, using the twin electrode voltage 

clamping technique. The agonist concentrations correspond approximately to the EC70 

values. IC50 values for MRS 2220 (n = 4) at P2X1 and P2X3 receptors were 10.2 ± 2.6 μM 

and 58.3 ± 0.1 μM, respectively.
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Fig. 5. 
Competitive inhibition by MRS 2179 of phopholipase C activation (by 10 nM 2-MeSATP) 

in turkey erythrocyte membranes (Boyer et al., 1998).
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Fig. 6. 
Effect of 10 μM MRS 2179 on inward current induced by activation by ATP, at the 

indicated concentrations, of recombinant rat P2X1 (3 μM), P2X3 (10 μM), P2X3 (1 μM), and 

P2X4 (30 μM) receptors, expressed in Xenopus oocytes, using the twin electrode voltage 

clamping technique (n = 4). The agonist concentrations correspond approximately to the 

EC50 values. IC50 values for MRS 2179 at P2Xl and P2X3 receptors were 1.2±0.2 μM and 

~10 μM, respectively. Potentiation of 25% was observed at P2X4 receptors.
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Fig. 7. 
Lower left: possible superposition of MRS 2179, PPADS, and MRS 2192 using steric and 

electrostatic alignment methodology. Lower right: scheme of the hypothetical 

pharmacophore map extrapolated using the superposition of MRS 2179, PPADS, and MRS 

2192 structures. At top: Structures of MRS 2179, PPADS, and MRS 2192 showing positions 

corresponding to the general pharmacophore.
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TABLE 1

Estimates for antagonist potencies (IC50 values, nM) in functional assays at P2 receptors
a

Compound P2X1 P2X2 P2X3 P2X4 P2Y1 P2Y2 P2Y4 P2Y6 P2YAC

PPADS
98.5±

5.5
e

1200±

200
e

239.5 ±

38.0
e
,

1700 ±
200(h)

b
18,200 ±

1700
e
.

~4000 (h)
c c 69%

f
(h) b

isoPPADS 43±18 398±
129 84±4 ND 28.1 ± 8.0 ND ND ND ND

pyridoxal-5-phosphate ~3000 39,500±
19,000 ND 219,000±

2400 ~50,000(h) b ND ND ND

suramin 4900 ± 1000
10,400±

2000
e

~3000,
14,900±
1900(h)

b d 48,000±
17,000 b 27%

f
(h)

4000±
2300

reactive blue 2 ND 360±80 ND 128,000±
11,800 d b 33%

f
(h) 87%

f
(h) 25±7

MRS 2179 1150±200 c ~10,000 c 330±59 b b b b

MRS 2270 10,200±
2600 b 58,300±

100 b b b b b b

ND not determined.

a
Effects of antagonists on inward current induced by activation by ATP, at the indicated concentrations, of recombinant rat P2X1 (3 μM), P2X2 

(10 μM), P2X3 (1 μM), and P2X4 (30 μM) receptors, expressed in Xenopus oocytes, using the twin electrode voltage clamping technique; or at 

phospholipase C-coupled P2Y1 receptor of turkey erythrocytes, at recombinant human P2Y2 and P2Y1 receptors, and at recombinant rat P2Y6 

receptors, unless noted. (h) indicates human clone.

b
inactive as antagonist at 100 μM.

c
inactive as antagonist at 10 μM.

d
right shift at 30 μM and decrease in maximal effect (Boyer et al., 1994).

e
Similar experiments gave IC50 ~ 1 μM (Charlton et al., 1996; North and Barnard, 1997).

f
Percent inhibition at 100 μM (Communi et al., 1996; Robaye et al, 1997)
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TABLE 2

Effects of 3′,5′-bisphosphate derivatives on stimulation of PLC in turkey erythrocytes and inhibition of effects 

of 10 nM 2-MeSATP

Compound R1 R2 R3 R4

Agonist
Effect

(% maximum)

EC50
(μM)

Antagonist
Effect

(%maximum)

IC50
(μM)

1 H NH2 H OH 21% 1.28 77% 4.19

2 H NH2 H OCH3 35% 12.9 65% 12.4

3 H NH2 H H 12% 6.26 87% 5.76

4 Cl NH2 H H 19% 0.651 80% 2.01

5 SCH3 NH2 H H 22% 0.550 77% 2.11

6 H NH2 Br H 0% 100% 36.7

7 H NHCH3 H H 0% 99% 0.330

(MRS 219)

8 H NHCH2CH3 H H 0% 100% 1.08

9 H NH(CH2)2CH3 H H 0% <20%

10 H NHCOC6H6 H H 0% 0%

11 H N(CH3)2 H H 0% 70% 46.7

12 H Cl H H <10% <10%

13 H OH H H 0% <20%

14 H SCH3 H H 0% 78% 29.1
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